This commit is contained in:
J. Nick Koston 2023-06-05 12:13:01 -05:00
parent 1d04b22eb2
commit 4af7a079d8
No known key found for this signature in database
5 changed files with 543 additions and 501 deletions

View File

@ -1,16 +1,7 @@
import esphome.codegen as cg import esphome.codegen as cg import esphome.config_validation as cv from esphome.core import coroutine_with_priority
import esphome.config_validation as cv
from esphome.core import coroutine_with_priority
ratgdo_ns = cg.esphome_ns.namespace("ratgdo") ratgdo_ns = cg.esphome_ns.namespace("ratgdo")
CONFIG_SCHEMA = cv.All( CONFIG_SCHEMA = cv.All(cv.Schema({}), )
cv.Schema({}),
)
@coroutine_with_priority(1.0) async def to_code(config) :cg.add_library("bblanchon/ArduinoJson", "6.18.5") cg.add_define("USE_JSON") cg.add_global(ratgdo_ns.using)
@coroutine_with_priority(1.0)
async def to_code(config):
cg.add_library("bblanchon/ArduinoJson", "6.18.5")
cg.add_define("USE_JSON")
cg.add_global(ratgdo_ns.using)

View File

@ -11,27 +11,27 @@
* GNU GENERAL PUBLIC LICENSE * GNU GENERAL PUBLIC LICENSE
************************************/ ************************************/
#include "common.h"
#include "ratgdo.h" #include "ratgdo.h"
#include "common.h"
#include "esphome/core/log.h" #include "esphome/core/log.h"
namespace esphome namespace esphome {
{ namespace ratgdo {
namespace ratgdo
{
static const char *const TAG = "ratgdo"; static const char *const TAG = "ratgdo";
void RATGDOComponent::setup() void RATGDOComponent::setup() {
{
pinMode(TRIGGER_OPEN, INPUT_PULLUP); pinMode(TRIGGER_OPEN, INPUT_PULLUP);
pinMode(TRIGGER_CLOSE, INPUT_PULLUP); pinMode(TRIGGER_CLOSE, INPUT_PULLUP);
pinMode(TRIGGER_LIGHT, INPUT_PULLUP); pinMode(TRIGGER_LIGHT, INPUT_PULLUP);
pinMode(STATUS_DOOR, OUTPUT); pinMode(STATUS_DOOR, OUTPUT);
pinMode(STATUS_OBST, OUTPUT); pinMode(STATUS_OBST, OUTPUT);
pinMode(INPUT_RPM1, INPUT_PULLUP); // set to pullup to add support for reed switches pinMode(INPUT_RPM1,
pinMode(INPUT_RPM2, INPUT_PULLUP); // make sure pin doesn't float when using reed switch and fire interrupt by mistake INPUT_PULLUP); // set to pullup to add support for reed switches
pinMode(INPUT_RPM2,
INPUT_PULLUP); // make sure pin doesn't float when using reed switch
// and fire interrupt by mistake
pinMode(INPUT_OBST, INPUT); pinMode(INPUT_OBST, INPUT);
attachInterrupt(TRIGGER_OPEN, isrDoorOpen, CHANGE); attachInterrupt(TRIGGER_OPEN, isrDoorOpen, CHANGE);
@ -49,7 +49,8 @@ namespace esphome
// if(rollingCodeCounter == 0) rollingCodeCounter = 1; // if(rollingCodeCounter == 0) rollingCodeCounter = 1;
ESP_LOGD(TAG, "Syncing rolling code counter after reboot..."); ESP_LOGD(TAG, "Syncing rolling code counter after reboot...");
sync(); // if rolling codes are being used (rolling code counter > 0), send reboot/sync to the opener on startup sync(); // if rolling codes are being used (rolling code counter > 0), send
// reboot/sync to the opener on startup
} else { } else {
ESP_LOGD(TAG, "Rolling codes are disabled."); ESP_LOGD(TAG, "Rolling codes are disabled.");
} }
@ -61,13 +62,11 @@ namespace esphome
dryContactLoop(); dryContactLoop();
} }
} // namespace ratgdo } // namespace ratgdo
} // namespace esphome } // namespace esphome
/*************************** DETECTING THE DOOR STATE
* ***************************/
/*************************** DETECTING THE DOOR STATE ***************************/
void doorStateLoop() { void doorStateLoop() {
static bool rotaryEncoderDetected = false; static bool rotaryEncoderDetected = false;
static int lastDoorPositionCounter = 0; static int lastDoorPositionCounter = 0;
@ -75,15 +74,18 @@ void doorStateLoop(){
static int lastCounterMillis = 0; static int lastCounterMillis = 0;
// Handle reed switch // Handle reed switch
// This may need to be debounced, but so far in testing I haven't detected any bounces // This may need to be debounced, but so far in testing I haven't detected any
// bounces
if (!rotaryEncoderDetected) { if (!rotaryEncoderDetected) {
if (digitalRead(INPUT_RPM1) == LOW) { if (digitalRead(INPUT_RPM1) == LOW) {
if (doorState != "reed_closed") { if (doorState != "reed_closed") {
ESP_LOGD(TAG, "Reed switch closed"); ESP_LOGD(TAG, "Reed switch closed");
doorState = "reed_closed"; doorState = "reed_closed";
if (isConfigFileOk) { if (isConfigFileOk) {
bootstrapManager.publish(overallStatusTopic.c_str(), "reed_closed", true); bootstrapManager.publish(overallStatusTopic.c_str(), "reed_closed",
bootstrapManager.publish(doorStatusTopic.c_str(), "reed_closed", true); true);
bootstrapManager.publish(doorStatusTopic.c_str(), "reed_closed",
true);
} }
digitalWrite(STATUS_DOOR, HIGH); digitalWrite(STATUS_DOOR, HIGH);
} }
@ -99,7 +101,8 @@ void doorStateLoop(){
} }
// end reed switch handling // end reed switch handling
// If the previous and the current state of the RPM2 Signal are different, that means there is a rotary encoder detected and the door is moving // If the previous and the current state of the RPM2 Signal are different,
// that means there is a rotary encoder detected and the door is moving
if (doorPositionCounter != lastDoorPositionCounter) { if (doorPositionCounter != lastDoorPositionCounter) {
rotaryEncoderDetected = true; // this disables the reed switch handler rotaryEncoderDetected = true; // this disables the reed switch handler
lastCounterMillis = millis(); lastCounterMillis = millis();
@ -139,8 +142,10 @@ void doorStateLoop(){
doorState = "closed"; doorState = "closed";
ESP_LOGD(TAG, "Closed"); ESP_LOGD(TAG, "Closed");
if (isConfigFileOk) { if (isConfigFileOk) {
bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(), true); bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(),
bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(), true); true);
bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(),
true);
} }
digitalWrite(STATUS_DOOR, LOW); digitalWrite(STATUS_DOOR, LOW);
} }
@ -150,8 +155,10 @@ void doorStateLoop(){
doorState = "open"; doorState = "open";
ESP_LOGD(TAG, "Open"); ESP_LOGD(TAG, "Open");
if (isConfigFileOk) { if (isConfigFileOk) {
bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(), true); bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(),
bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(), true); true);
bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(),
true);
} }
digitalWrite(STATUS_DOOR, HIGH); digitalWrite(STATUS_DOOR, HIGH);
} }
@ -160,7 +167,8 @@ void doorStateLoop(){
lastDoorPositionCounter = doorPositionCounter; lastDoorPositionCounter = doorPositionCounter;
} }
/*************************** DRY CONTACT CONTROL OF LIGHT & DOOR ***************************/ /*************************** DRY CONTACT CONTROL OF LIGHT & DOOR
* ***************************/
void IRAM_ATTR isrDebounce(const char *type) { void IRAM_ATTR isrDebounce(const char *type) {
static unsigned long lastOpenDoorTime = 0; static unsigned long lastOpenDoorTime = 0;
static unsigned long lastCloseDoorTime = 0; static unsigned long lastCloseDoorTime = 0;
@ -168,14 +176,17 @@ void IRAM_ATTR isrDebounce(const char *type){
unsigned long currentMillis = millis(); unsigned long currentMillis = millis();
// Prevent ISR during the first 2 seconds after reboot // Prevent ISR during the first 2 seconds after reboot
if(currentMillis < 2000) return; if (currentMillis < 2000)
return;
if (strcmp(type, "openDoor") == 0) { if (strcmp(type, "openDoor") == 0) {
if (digitalRead(TRIGGER_OPEN) == LOW) { if (digitalRead(TRIGGER_OPEN) == LOW) {
// save the time of the falling edge // save the time of the falling edge
lastOpenDoorTime = currentMillis; lastOpenDoorTime = currentMillis;
}else if(currentMillis - lastOpenDoorTime > 500 && currentMillis - lastOpenDoorTime < 10000){ } else if (currentMillis - lastOpenDoorTime > 500 &&
// now see if the rising edge was between 500ms and 10 seconds after the falling edge currentMillis - lastOpenDoorTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
dryContactDoorOpen = true; dryContactDoorOpen = true;
} }
} }
@ -184,8 +195,10 @@ void IRAM_ATTR isrDebounce(const char *type){
if (digitalRead(TRIGGER_CLOSE) == LOW) { if (digitalRead(TRIGGER_CLOSE) == LOW) {
// save the time of the falling edge // save the time of the falling edge
lastCloseDoorTime = currentMillis; lastCloseDoorTime = currentMillis;
}else if(currentMillis - lastCloseDoorTime > 500 && currentMillis - lastCloseDoorTime < 10000){ } else if (currentMillis - lastCloseDoorTime > 500 &&
// now see if the rising edge was between 500ms and 10 seconds after the falling edge currentMillis - lastCloseDoorTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
dryContactDoorClose = true; dryContactDoorClose = true;
} }
} }
@ -194,29 +207,23 @@ void IRAM_ATTR isrDebounce(const char *type){
if (digitalRead(TRIGGER_LIGHT) == LOW) { if (digitalRead(TRIGGER_LIGHT) == LOW) {
// save the time of the falling edge // save the time of the falling edge
lastToggleLightTime = currentMillis; lastToggleLightTime = currentMillis;
}else if(currentMillis - lastToggleLightTime > 500 && currentMillis - lastToggleLightTime < 10000){ } else if (currentMillis - lastToggleLightTime > 500 &&
// now see if the rising edge was between 500ms and 10 seconds after the falling edge currentMillis - lastToggleLightTime < 10000) {
// now see if the rising edge was between 500ms and 10 seconds after the
// falling edge
dryContactToggleLight = true; dryContactToggleLight = true;
} }
} }
} }
void IRAM_ATTR isrDoorOpen(){ void IRAM_ATTR isrDoorOpen() { isrDebounce("openDoor"); }
isrDebounce("openDoor");
}
void IRAM_ATTR isrDoorClose(){ void IRAM_ATTR isrDoorClose() { isrDebounce("closeDoor"); }
isrDebounce("closeDoor");
}
void IRAM_ATTR isrLight(){ void IRAM_ATTR isrLight() { isrDebounce("toggleLight"); }
isrDebounce("toggleLight");
}
// Fire on RISING edge of RPM1 // Fire on RISING edge of RPM1
void IRAM_ATTR isrRPM1(){ void IRAM_ATTR isrRPM1() { rpm1Pulsed = true; }
rpm1Pulsed = true;
}
// Fire on RISING edge of RPM2 // Fire on RISING edge of RPM2
// When RPM1 HIGH on RPM2 rising edge, door closing: // When RPM1 HIGH on RPM2 rising edge, door closing:
@ -227,9 +234,10 @@ void IRAM_ATTR isrRPM1(){
// RPM1: ___|--|__ // RPM1: ___|--|__
// RPM2: __|--|___ // RPM2: __|--|___
void IRAM_ATTR isrRPM2() { void IRAM_ATTR isrRPM2() {
// The encoder updates faster than the ESP wants to process, so by sampling every 5ms we get a more reliable curve // The encoder updates faster than the ESP wants to process, so by sampling
// The counter is behind the actual pulse counter, but it doesn't matter since we only need a reliable linear counter // every 5ms we get a more reliable curve The counter is behind the actual
// to determine the door direction // pulse counter, but it doesn't matter since we only need a reliable linear
// counter to determine the door direction
static unsigned long lastPulse = 0; static unsigned long lastPulse = 0;
unsigned long currentMillis = millis(); unsigned long currentMillis = millis();
@ -237,9 +245,10 @@ void IRAM_ATTR isrRPM2(){
return; return;
} }
// In rare situations, the rotary encoder can be parked so that RPM2 continuously fires this ISR. // In rare situations, the rotary encoder can be parked so that RPM2
// This causes the door counter to change value even though the door isn't moving // continuously fires this ISR. This causes the door counter to change value
// To solve this, check to see if RPM1 pulsed. If not, do nothing. If yes, reset the pulsed flag // even though the door isn't moving To solve this, check to see if RPM1
// pulsed. If not, do nothing. If yes, reset the pulsed flag
if (rpm1Pulsed) { if (rpm1Pulsed) {
rpm1Pulsed = false; rpm1Pulsed = false;
} else { } else {
@ -248,7 +257,8 @@ void IRAM_ATTR isrRPM2(){
lastPulse = millis(); lastPulse = millis();
// If the RPM1 state is different from the RPM2 state, then the door is opening // If the RPM1 state is different from the RPM2 state, then the door is
// opening
if (digitalRead(INPUT_RPM1)) { if (digitalRead(INPUT_RPM1)) {
doorPositionCounter--; doorPositionCounter--;
} else { } else {
@ -284,18 +294,19 @@ void IRAM_ATTR isrObstruction(){
} else { } else {
obstructionLowCount++; obstructionLowCount++;
} }
} }
void obstructionLoop() { void obstructionLoop() {
long currentMillis = millis(); long currentMillis = millis();
static unsigned long lastMillis = 0; static unsigned long lastMillis = 0;
// the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), obstructed (HIGH), asleep (LOW) // the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms),
// the transitions between awake and asleep are tricky because the voltage drops slowly when falling asleep // obstructed (HIGH), asleep (LOW) the transitions between awake and asleep
// and is high without pulses when waking up // are tricky because the voltage drops slowly when falling asleep and is high
// without pulses when waking up
// If at least 3 low pulses are counted within 50ms, the door is awake, not obstructed and we don't have to check anything else // If at least 3 low pulses are counted within 50ms, the door is awake, not
// obstructed and we don't have to check anything else
// Every 50ms // Every 50ms
if (currentMillis - lastMillis > 50) { if (currentMillis - lastMillis > 50) {
@ -305,7 +316,8 @@ void obstructionLoop(){
// if there have been no pulses the line is steady high or low // if there have been no pulses the line is steady high or low
} else if (obstructionLowCount == 0) { } else if (obstructionLowCount == 0) {
// if the line is high and the last high pulse was more than 70ms ago, then there is an obstruction present // if the line is high and the last high pulse was more than 70ms ago,
// then there is an obstruction present
if (digitalRead(INPUT_OBST) && currentMillis - lastObstructionHigh > 70) { if (digitalRead(INPUT_OBST) && currentMillis - lastObstructionHigh > 70) {
obstructionDetected(); obstructionDetected();
} else { } else {
@ -330,7 +342,8 @@ void obstructionDetected(){
if (isConfigFileOk) { if (isConfigFileOk) {
bootstrapManager.publish(overallStatusTopic.c_str(), "obstructed", true); bootstrapManager.publish(overallStatusTopic.c_str(), "obstructed", true);
bootstrapManager.publish(obstructionStatusTopic.c_str(), "obstructed", true); bootstrapManager.publish(obstructionStatusTopic.c_str(), "obstructed",
true);
} }
} }
lastInterruptTime = interruptTime; lastInterruptTime = interruptTime;
@ -354,7 +367,8 @@ void sendDoorStatus(){
ESP_LOGD(TAG, "Door state %s", doorState); ESP_LOGD(TAG, "Door state %s", doorState);
if (isConfigFileOk) { if (isConfigFileOk) {
bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(), true); bootstrapManager.publish(overallStatusTopic.c_str(), doorState.c_str(),
true);
bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(), true); bootstrapManager.publish(doorStatusTopic.c_str(), doorState.c_str(), true);
} }
} }
@ -367,10 +381,9 @@ void sendCurrentCounter(){
} }
} }
/********************************** MANAGE HARDWARE BUTTON *****************************************/ /********************************** MANAGE HARDWARE BUTTON
void manageHardwareButton(){ * *****************************************/
} void manageHardwareButton() {}
/************************* DOOR COMMUNICATION *************************/ /************************* DOOR COMMUNICATION *************************/
/* /*
@ -378,10 +391,12 @@ void manageHardwareButton(){
* The TX1 pin is controlling a transistor, so the logic is inverted * The TX1 pin is controlling a transistor, so the logic is inverted
* A HIGH state on TX1 will pull the 12v line LOW * A HIGH state on TX1 will pull the 12v line LOW
* *
* The opener requires a specific duration low/high pulse before it will accept a message * The opener requires a specific duration low/high pulse before it will accept
* a message
*/ */
void transmit(byte *payload, unsigned int length) { void transmit(byte *payload, unsigned int length) {
digitalWrite(OUTPUT_GDO, HIGH); // pull the line high for 1305 micros so the door opener responds to the message digitalWrite(OUTPUT_GDO, HIGH); // pull the line high for 1305 micros so the
// door opener responds to the message
delayMicroseconds(1305); delayMicroseconds(1305);
digitalWrite(OUTPUT_GDO, LOW); // bring the line low digitalWrite(OUTPUT_GDO, LOW); // bring the line low
@ -390,7 +405,8 @@ void transmit(byte* payload, unsigned int length){
} }
void sync() { void sync() {
if(!useRollingCodes) return; if (!useRollingCodes)
return;
getRollingCode("reboot1"); getRollingCode("reboot1");
transmit(rollingCode, CODE_LENGTH); transmit(rollingCode, CODE_LENGTH);
@ -425,7 +441,9 @@ void openDoor(){
return; return;
} }
doorState = "opening"; // It takes a couple of pulses to detect opening/closing. by setting here, we can avoid bouncing from rapidly repeated commands doorState = "opening"; // It takes a couple of pulses to detect
// opening/closing. by setting here, we can avoid
// bouncing from rapidly repeated commands
if (useRollingCodes) { if (useRollingCodes) {
getRollingCode("door1"); getRollingCode("door1");
@ -455,7 +473,9 @@ void closeDoor(){
return; return;
} }
doorState = "closing"; // It takes a couple of pulses to detect opening/closing. by setting here, we can avoid bouncing from rapidly repeated commands doorState = "closing"; // It takes a couple of pulses to detect
// opening/closing. by setting here, we can avoid
// bouncing from rapidly repeated commands
if (useRollingCodes) { if (useRollingCodes) {
getRollingCode("door1"); getRollingCode("door1");
@ -471,7 +491,6 @@ void closeDoor(){
for (int i = 0; i < 4; i++) { for (int i = 0; i < 4; i++) {
ESP_LOGD(TAG, "sync_code[%d]", i); ESP_LOGD(TAG, "sync_code[%d]", i);
transmit(SYNC_CODE[i], CODE_LENGTH); transmit(SYNC_CODE[i], CODE_LENGTH);
delay(45); delay(45);
} }

View File

@ -14,57 +14,76 @@
#ifndef _RATGDO_H #ifndef _RATGDO_H
#define _RATGDO_H #define _RATGDO_H
#include "BootstrapManager.h" // Must use the https://github.com/PaulWieland/arduinoImprovBootstrapper fork, ratgdo branch #include "BootstrapManager.h" // Must use the https://github.com/PaulWieland/arduinoImprovBootstrapper fork, ratgdo branch
#include "SoftwareSerial.h" // Using espsoftwareserial https://github.com/plerup/espsoftwareserial #include "SoftwareSerial.h" // Using espsoftwareserial https://github.com/plerup/espsoftwareserial
#include "rolling_code.h"
#include "home_assistant.h" #include "home_assistant.h"
#include "rolling_code.h"
SoftwareSerial swSerial; SoftwareSerial swSerial;
/********************************** BOOTSTRAP MANAGER *****************************************/ /********************************** BOOTSTRAP MANAGER
* *****************************************/
BootstrapManager bootstrapManager; BootstrapManager bootstrapManager;
/********************************** PIN DEFINITIONS *****************************************/ /********************************** PIN DEFINITIONS
#define OUTPUT_GDO D4 // red control terminal / GarageDoorOpener (UART1 TX) pin is D4 on D1 Mini * *****************************************/
#define OUTPUT_GDO \
D4 // red control terminal / GarageDoorOpener (UART1 TX) pin is D4 on D1 Mini
#define TRIGGER_OPEN D5 // dry contact for opening door #define TRIGGER_OPEN D5 // dry contact for opening door
#define TRIGGER_CLOSE D6 // dry contact for closing door #define TRIGGER_CLOSE D6 // dry contact for closing door
#define TRIGGER_LIGHT D3 // dry contact for triggering light (no discrete light commands, so toggle only) #define TRIGGER_LIGHT \
D3 // dry contact for triggering light (no discrete light commands, so toggle
// only)
#define STATUS_DOOR D0 // output door status, HIGH for open, LOW for closed #define STATUS_DOOR D0 // output door status, HIGH for open, LOW for closed
#define STATUS_OBST D8 // output for obstruction status, HIGH for obstructed, LOW for clear #define STATUS_OBST \
#define INPUT_RPM1 D1 // RPM1 rotary encoder input OR reed switch if not soldering to the door opener logic board D8 // output for obstruction status, HIGH for obstructed, LOW for clear
#define INPUT_RPM2 D2 // RPM2 rotary encoder input OR not used if using reed switch #define INPUT_RPM1 \
D1 // RPM1 rotary encoder input OR reed switch if not soldering to the door
// opener logic board
#define INPUT_RPM2 \
D2 // RPM2 rotary encoder input OR not used if using reed switch
#define INPUT_OBST D7 // black obstruction sensor terminal #define INPUT_OBST D7 // black obstruction sensor terminal
/********************************** MQTT TOPICS
/********************************** MQTT TOPICS *****************************************/ * *****************************************/
String doorCommandTopic = ""; // will be mqttTopicPrefix/deviceName/command String doorCommandTopic = ""; // will be mqttTopicPrefix/deviceName/command
String setCounterTopic = ""; // will be mqttTopicPrefix/deviceName/set_code_counter String setCounterTopic =
""; // will be mqttTopicPrefix/deviceName/set_code_counter
String doorCommand = ""; // will be [open|close|light] String doorCommand = ""; // will be [open|close|light]
String overallStatusTopic = ""; // legacy from 1.0. Will be mqttTopicPrefix/deviceName/status String overallStatusTopic =
""; // legacy from 1.0. Will be mqttTopicPrefix/deviceName/status
String availabilityStatusTopic = ""; // online|offline String availabilityStatusTopic = ""; // online|offline
String obstructionStatusTopic = ""; // obstructed|clear String obstructionStatusTopic = ""; // obstructed|clear
String doorStatusTopic = ""; // open|opening|closing|closed|reed_open|reed_closed String doorStatusTopic =
String rollingCodeTopic = ""; // broadcast the current rolling code count for debugging purposes ""; // open|opening|closing|closed|reed_open|reed_closed
String rollingCodeTopic =
""; // broadcast the current rolling code count for debugging purposes
/********************************** GLOBAL VARS *****************************************/ /********************************** GLOBAL VARS
* *****************************************/
bool setupComplete = false; bool setupComplete = false;
unsigned int rollingCodeCounter; unsigned int rollingCodeCounter;
byte rollingCode[CODE_LENGTH]; byte rollingCode[CODE_LENGTH];
String doorState = "unknown"; // will be [online|offline|opening|open|closing|closed|obstructed|clear|reed_open|reed_closed] String doorState =
"unknown"; // will be
// [online|offline|opening|open|closing|closed|obstructed|clear|reed_open|reed_closed]
unsigned int obstructionLowCount = 0; // count obstruction low pulses unsigned int obstructionLowCount = 0; // count obstruction low pulses
unsigned long lastObstructionHigh = 0; // count time between high pulses from the obst ISR unsigned long lastObstructionHigh =
0; // count time between high pulses from the obst ISR
bool doorIsObstructed = false; bool doorIsObstructed = false;
bool dryContactDoorOpen = false; bool dryContactDoorOpen = false;
bool dryContactDoorClose = false; bool dryContactDoorClose = false;
bool dryContactToggleLight = false; bool dryContactToggleLight = false;
int doorPositionCounter = 0; // calculate the door's movement and position int doorPositionCounter = 0; // calculate the door's movement and position
bool rpm1Pulsed = false; // did rpm1 get a pulse or not - eliminates an issue when the sensor is parked on a high pulse which fires rpm2 isr bool rpm1Pulsed =
false; // did rpm1 get a pulse or not - eliminates an issue when the sensor
// is parked on a high pulse which fires rpm2 isr
/********************************** FUNCTION DECLARATION *****************************************/ /********************************** FUNCTION DECLARATION
* *****************************************/
void callback(char *topic, byte *payload, unsigned int length); void callback(char *topic, byte *payload, unsigned int length);
void manageDisconnections(); void manageDisconnections();
void manageQueueSubscription(); void manageQueueSubscription();
@ -85,7 +104,8 @@ void sendDoorStatus();
void doorStateLoop(); void doorStateLoop();
void dryContactLoop(); void dryContactLoop();
/********************************** INTERRUPT SERVICE ROUTINES ***********************************/ /********************************** INTERRUPT SERVICE ROUTINES
* ***********************************/
void IRAM_ATTR isrDebounce(const char *type); void IRAM_ATTR isrDebounce(const char *type);
void IRAM_ATTR isrDoorOpen(); void IRAM_ATTR isrDoorOpen();
void IRAM_ATTR isrDoorClose(); void IRAM_ATTR isrDoorClose();
@ -95,14 +115,20 @@ void IRAM_ATTR isrRPM1();
void IRAM_ATTR isrRPM2(); void IRAM_ATTR isrRPM2();
/*** Static Codes ***/ /*** Static Codes ***/
byte SYNC1[] = {0x55,0x01,0x00,0x61,0x12,0x49,0x2c,0x92,0x5b,0x24,0x96,0x86,0x0b,0x65,0x96,0xd9,0x8f,0x26,0x4a}; byte SYNC1[] = {0x55, 0x01, 0x00, 0x61, 0x12, 0x49, 0x2c, 0x92, 0x5b, 0x24,
byte SYNC2[] = {0x55,0x01,0x00,0x08,0x34,0x93,0x49,0xb4,0x92,0x4d,0x20,0x26,0x1b,0x4d,0xb4,0xdb,0xad,0x76,0x93}; 0x96, 0x86, 0x0b, 0x65, 0x96, 0xd9, 0x8f, 0x26, 0x4a};
byte SYNC3[] = {0x55,0x01,0x00,0x06,0x1b,0x2c,0xbf,0x4b,0x6d,0xb6,0x4b,0x18,0x20,0x92,0x09,0x20,0xf2,0x11,0x2c}; byte SYNC2[] = {0x55, 0x01, 0x00, 0x08, 0x34, 0x93, 0x49, 0xb4, 0x92, 0x4d,
byte SYNC4[] = {0x55,0x01,0x00,0x95,0x29,0x36,0x91,0x29,0x36,0x9a,0x69,0x05,0x2f,0xbe,0xdf,0x6d,0x16,0xcb,0xe7}; 0x20, 0x26, 0x1b, 0x4d, 0xb4, 0xdb, 0xad, 0x76, 0x93};
byte SYNC3[] = {0x55, 0x01, 0x00, 0x06, 0x1b, 0x2c, 0xbf, 0x4b, 0x6d, 0xb6,
0x4b, 0x18, 0x20, 0x92, 0x09, 0x20, 0xf2, 0x11, 0x2c};
byte SYNC4[] = {0x55, 0x01, 0x00, 0x95, 0x29, 0x36, 0x91, 0x29, 0x36, 0x9a,
0x69, 0x05, 0x2f, 0xbe, 0xdf, 0x6d, 0x16, 0xcb, 0xe7};
byte *SYNC_CODE[] = {SYNC1, SYNC2, SYNC3, SYNC4}; byte *SYNC_CODE[] = {SYNC1, SYNC2, SYNC3, SYNC4};
byte DOOR_CODE[] = {0x55,0x01,0x00,0x94,0x3f,0xef,0xbc,0xfb,0x7f,0xbe,0xfc,0xa6,0x1a,0x4d,0xa6,0xda,0x8d,0x36,0xb3}; byte DOOR_CODE[] = {0x55, 0x01, 0x00, 0x94, 0x3f, 0xef, 0xbc, 0xfb, 0x7f, 0xbe,
0xfc, 0xa6, 0x1a, 0x4d, 0xa6, 0xda, 0x8d, 0x36, 0xb3};
byte LIGHT_CODE[] = {0x55,0x01,0x00,0x94,0x3f,0xef,0xbc,0xfb,0x7f,0xbe,0xff,0xa6,0x1a,0x4d,0xa6,0xda,0x8d,0x76,0xb1}; byte LIGHT_CODE[] = {0x55, 0x01, 0x00, 0x94, 0x3f, 0xef, 0xbc, 0xfb, 0x7f, 0xbe,
0xff, 0xa6, 0x1a, 0x4d, 0xa6, 0xda, 0x8d, 0x76, 0xb1};
#endif #endif

View File

@ -1,5 +1,5 @@
#include "common.h"
#include "rolling_code.h" #include "rolling_code.h"
#include "common.h"
#include "secplus.h" #include "secplus.h"
void readCounterFromFlash() { void readCounterFromFlash() {
@ -82,7 +82,8 @@ void getRollingCode(const char *command){
printRollingCode(); printRollingCode();
if(strcmp(command,"door1") != 0){ // door2 is created with same counter and should always be called after door1 if (strcmp(command, "door1") != 0) { // door2 is created with same counter and
// should always be called after door1
rollingCodeCounter = (rollingCodeCounter + 1) & 0xfffffff; rollingCodeCounter = (rollingCodeCounter + 1) & 0xfffffff;
} }
return; return;
@ -90,7 +91,8 @@ void getRollingCode(const char *command){
void printRollingCode() { void printRollingCode() {
for (int i = 0; i < CODE_LENGTH; i++) { for (int i = 0; i < CODE_LENGTH; i++) {
if(rollingCode[i] <= 0x0f) Serial.print("0"); if (rollingCode[i] <= 0x0f)
Serial.print("0");
Serial.print(rollingCode[i], HEX); Serial.print(rollingCode[i], HEX);
} }
Serial.println(""); Serial.println("");

View File

@ -1,18 +1,22 @@
#ifndef _RATGDO_ROLLING_CODE_H #ifndef _RATGDO_ROLLING_CODE_H
#define _RATGDO_ROLLING_CODE_H #define _RATGDO_ROLLING_CODE_H
#include <Arduino.h>
#include <LittleFS.h>
#include <ArduinoJson.h>
#include "BootstrapManager.h" #include "BootstrapManager.h"
#include <Arduino.h>
#include <ArduinoJson.h>
#include <LittleFS.h>
extern "C" { extern "C" {
#include "secplus.h" #include "secplus.h"
} }
void readCounterFromFlash(); // get the rolling code counter from setup.json & return it void readCounterFromFlash(); // get the rolling code counter from setup.json &
// return it
void writeCounterToFlash(); // write the counter back to setup.json void writeCounterToFlash(); // write the counter back to setup.json
void getRollingCode(const char *command); // get the next rolling code for type [reboot1,reboot2,reboot3,reboot4,reboot5,door1,light] void getRollingCode(
const char
*command); // get the next rolling code for type
// [reboot1,reboot2,reboot3,reboot4,reboot5,door1,light]
void printRollingCode(); void printRollingCode();
#endif #endif