/************************************ * Rage * Against * The * Garage * Door * Opener * * Copyright (C) 2022 Paul Wieland * * GNU GENERAL PUBLIC LICENSE ************************************/ #include "ratgdo.h" #include "ratgdo_state.h" #include "esphome/core/log.h" #define ESP_LOG1 ESP_LOGV #define ESP_LOG2 ESP_LOGV namespace esphome { namespace ratgdo { static const char* const TAG = "ratgdo"; static const int SYNC_DELAY = 1000; // // MAX_CODES_WITHOUT_FLASH_WRITE is a bit of a guess // since we write the flash at most every every 5s // // We want the rolling counter to be high enough that the // GDO will accept the command after an unexpected reboot // that did not save the counter to flash in time which // results in the rolling counter being behind what the GDO // expects. // static const uint8_t MAX_CODES_WITHOUT_FLASH_WRITE = 10; void RATGDOComponent::setup() { this->output_gdo_pin_->setup(); this->output_gdo_pin_->pin_mode(gpio::FLAG_OUTPUT); this->input_gdo_pin_->setup(); this->input_gdo_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP); if (this->input_obst_pin_ == nullptr || this->input_obst_pin_->get_pin() == 0) { // Our base.yaml is always going to set this so we check for 0 // as well to avoid a breaking change. this->obstruction_from_status_ = true; } else { this->input_obst_pin_->setup(); this->input_obst_pin_->pin_mode(gpio::FLAG_INPUT); this->input_obst_pin_->attach_interrupt(RATGDOStore::isr_obstruction, &this->isr_store_, gpio::INTERRUPT_FALLING_EDGE); } this->sw_serial_.begin(9600, SWSERIAL_8N1, this->input_gdo_pin_->get_pin(), this->output_gdo_pin_->get_pin(), true); this->sw_serial_.enableIntTx(false); this->sw_serial_.enableAutoBaud(true); ESP_LOGV(TAG, "Syncing rolling code counter after reboot..."); // many things happening at startup, use some delay for sync set_timeout(SYNC_DELAY, [=] { this->sync(); }); } void RATGDOComponent::loop() { if (this->transmit_pending_) { if (!this->transmit_packet()) { return; } } if (!this->obstruction_from_status_) { this->obstruction_loop(); } this->gdo_state_loop(); } void RATGDOComponent::dump_config() { ESP_LOGCONFIG(TAG, "Setting up RATGDO..."); LOG_PIN(" Output GDO Pin: ", this->output_gdo_pin_); LOG_PIN(" Input GDO Pin: ", this->input_gdo_pin_); if (this->obstruction_from_status_) { ESP_LOGCONFIG(TAG, " Input Obstruction Pin: not used, will detect from GDO status"); } else { LOG_PIN(" Input Obstruction Pin: ", this->input_obst_pin_); } ESP_LOGCONFIG(TAG, " Rolling Code Counter: %d", *this->rolling_code_counter); ESP_LOGCONFIG(TAG, " Client ID: %d", this->client_id_); } uint16_t RATGDOComponent::decode_packet(const WirePacket& packet) { uint32_t rolling = 0; uint64_t fixed = 0; uint32_t data = 0; decode_wireline(packet, &rolling, &fixed, &data); uint16_t cmd = ((fixed >> 24) & 0xf00) | (data & 0xff); data &= ~0xf000; // clear parity nibble if ((fixed & 0xfffffff) == this->client_id_) { // my commands ESP_LOG1(TAG, "[%ld] received mine: rolling=%07" PRIx32 " fixed=%010" PRIx64 " data=%08" PRIx32, millis(), rolling, fixed, data); return static_cast(Command::UNKNOWN); } else { ESP_LOG1(TAG, "[%ld] received rolling=%07" PRIx32 " fixed=%010" PRIx64 " data=%08" PRIx32, millis(), rolling, fixed, data); } Command cmd_enum = to_Command(cmd, Command::UNKNOWN); uint8_t nibble = (data >> 8) & 0xff; uint8_t byte1 = (data >> 16) & 0xff; uint8_t byte2 = (data >> 24) & 0xff; ESP_LOG1(TAG, "cmd=%03x (%s) byte2=%02x byte1=%02x nibble=%01x", cmd, Command_to_string(cmd_enum), byte2, byte1, nibble); if (cmd == Command::STATUS) { auto door_state = to_DoorState(nibble, DoorState::UNKNOWN); auto prev_door_state = *this->door_state; // opening duration calibration if (*this->opening_duration == 0) { if (door_state == DoorState::OPENING && prev_door_state == DoorState::CLOSED) { this->start_opening = millis(); } if (door_state == DoorState::OPEN && prev_door_state == DoorState::OPENING && this->start_opening > 0) { auto duration = (millis() - this->start_opening) / 1000; this->set_opening_duration(round(duration * 10) / 10); } if (door_state == DoorState::STOPPED) { this->start_opening = -1; } } // closing duration calibration if (*this->closing_duration == 0) { if (door_state == DoorState::CLOSING && prev_door_state == DoorState::OPEN) { this->start_closing = millis(); } if (door_state == DoorState::CLOSED && prev_door_state == DoorState::CLOSING && this->start_closing > 0) { auto duration = (millis() - this->start_closing) / 1000; this->set_closing_duration(round(duration * 10) / 10); } if (door_state == DoorState::STOPPED) { this->start_closing = -1; } } if (door_state == DoorState::OPENING) { // door started opening if (prev_door_state == DoorState::CLOSING) { this->door_position_update(); this->cancel_position_sync_callbacks(); this->door_move_delta = DOOR_DELTA_UNKNOWN; } this->door_start_moving = millis(); this->door_start_position = *this->door_position; if (this->door_move_delta == DOOR_DELTA_UNKNOWN) { this->door_move_delta = 1.0 - this->door_start_position; } this->schedule_door_position_sync(); } else if (door_state == DoorState::CLOSING) { // door started closing if (prev_door_state == DoorState::OPENING) { this->door_position_update(); this->cancel_position_sync_callbacks(); this->door_move_delta = DOOR_DELTA_UNKNOWN; } this->door_start_moving = millis(); this->door_start_position = *this->door_position; if (this->door_move_delta == DOOR_DELTA_UNKNOWN) { this->door_move_delta = 0.0 - this->door_start_position; } this->schedule_door_position_sync(); } else if (door_state == DoorState::STOPPED) { this->door_position_update(); if (*this->door_position == DOOR_POSITION_UNKNOWN) { this->door_position = 0.5; // best guess } this->cancel_position_sync_callbacks(); } else if (door_state == DoorState::OPEN) { this->door_position = 1.0; this->cancel_position_sync_callbacks(); } else if (door_state == DoorState::CLOSED) { this->door_position = 0.0; this->cancel_position_sync_callbacks(); } this->door_state = door_state; this->door_state_received(door_state); this->light_state = static_cast((byte2 >> 1) & 1); // safe because it can only be 0 or 1 this->lock_state = static_cast(byte2 & 1); // safe because it can only be 0 or 1 this->motion_state = MotionState::CLEAR; // when the status message is read, reset motion state to 0|clear this->motor_state = MotorState::OFF; // when the status message is read, reset motor state to 0|off if (this->obstruction_from_status_) { // ESP_LOGD(TAG, "Obstruction: reading from byte2, bit2, status=%d", ((byte2 >> 2) & 1) == 1); this->obstruction_state = static_cast((byte1 >> 6) & 1); // This isn't very fast to update, but its still better // than nothing in the case the obstruction sensor is not // wired up. ESP_LOGD(TAG, "Obstruction: reading from GDO status byte1, bit6=%s", ObstructionState_to_string(*this->obstruction_state)); } if (door_state == DoorState::CLOSED && door_state != prev_door_state) { this->send_command(Command::GET_OPENINGS); } ESP_LOGD(TAG, "Status: door=%s light=%s lock=%s", DoorState_to_string(*this->door_state), LightState_to_string(*this->light_state), LockState_to_string(*this->lock_state)); } else if (cmd == Command::LIGHT) { if (nibble == 0) { this->light_state = LightState::OFF; } else if (nibble == 1) { this->light_state = LightState::ON; } else if (nibble == 2) { // toggle this->light_state = light_state_toggle(*this->light_state); } ESP_LOGD(TAG, "Light: action=%s state=%s", nibble == 0 ? "OFF" : nibble == 1 ? "ON" : "TOGGLE", LightState_to_string(*this->light_state)); } else if (cmd == Command::MOTOR_ON) { this->motor_state = MotorState::ON; ESP_LOGD(TAG, "Motor: state=%s", MotorState_to_string(*this->motor_state)); } else if (cmd == Command::DOOR_ACTION) { this->button_state = (byte1 & 1) == 1 ? ButtonState::PRESSED : ButtonState::RELEASED; ESP_LOGD(TAG, "Open: button=%s", ButtonState_to_string(*this->button_state)); } else if (cmd == Command::OPENINGS) { // nibble==0 if it's our request // update openings only from our request or if it's not unknown state if (nibble == 0 || *this->openings != 0) { this->openings = (byte1 << 8) | byte2; ESP_LOGD(TAG, "Openings: %d", *this->openings); } else { ESP_LOGD(TAG, "Ignoring openings, not from our request"); } } else if (cmd == Command::MOTION) { this->motion_state = MotionState::DETECTED; if (*this->light_state == LightState::OFF) { this->send_command(Command::GET_STATUS); } ESP_LOGD(TAG, "Motion: %s", MotionState_to_string(*this->motion_state)); } else if (cmd == Command::SET_TTC) { auto seconds = (byte1 << 8) | byte2; ESP_LOGD(TAG, "Time to close (TTC): %ds", seconds); } return cmd; } void RATGDOComponent::schedule_door_position_sync(float update_period) { ESP_LOG1(TAG, "Schedule position sync: delta %f, start position: %f, start moving: %d", this->door_move_delta, this->door_start_position, this->door_start_moving); auto duration = this->door_move_delta > 0 ? *this->opening_duration : *this->closing_duration; auto count = int(1000 * duration / update_period); set_retry("position_sync_while_moving", update_period, count, [=](uint8_t r) { this->door_position_update(); return RetryResult::RETRY; }); } void RATGDOComponent::door_position_update() { if (this->door_start_moving == 0 || this->door_start_position == DOOR_POSITION_UNKNOWN || this->door_move_delta == DOOR_DELTA_UNKNOWN) { return; } auto now = millis(); auto duration = this->door_move_delta > 0 ? *this->opening_duration : -*this->closing_duration; auto position = this->door_start_position + (now - this->door_start_moving) / (1000 * duration); ESP_LOG2(TAG, "[%d] Position update: %f", now, position); this->door_position = clamp(position, 0.0f, 1.0f); } void RATGDOComponent::encode_packet(Command command, uint32_t data, bool increment, WirePacket& packet) { auto cmd = static_cast(command); uint64_t fixed = ((cmd & ~0xff) << 24) | this->client_id_; uint32_t send_data = (data << 8) | (cmd & 0xff); ESP_LOG2(TAG, "[%ld] Encode for transmit rolling=%07" PRIx32 " fixed=%010" PRIx64 " data=%08" PRIx32, millis(), *this->rolling_code_counter, fixed, send_data); encode_wireline(*this->rolling_code_counter, fixed, send_data, packet); if (increment) { this->increment_rolling_code_counter(); } } void RATGDOComponent::set_opening_duration(float duration) { ESP_LOGD(TAG, "Set opening duration: %.1fs", duration); this->opening_duration = duration; } void RATGDOComponent::set_closing_duration(float duration) { ESP_LOGD(TAG, "Set closing duration: %.1fs", duration); this->closing_duration = duration; } void RATGDOComponent::set_rolling_code_counter(uint32_t counter) { ESP_LOGV(TAG, "Set rolling code counter to %d", counter); this->rolling_code_counter = counter; } void RATGDOComponent::increment_rolling_code_counter(int delta) { this->rolling_code_counter = (*this->rolling_code_counter + delta) & 0xfffffff; } void RATGDOComponent::print_packet(const WirePacket& packet) const { ESP_LOGV(TAG, "Counter: %d Send code: [%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X]", *this->rolling_code_counter, packet[0], packet[1], packet[2], packet[3], packet[4], packet[5], packet[6], packet[7], packet[8], packet[9], packet[10], packet[11], packet[12], packet[13], packet[14], packet[15], packet[16], packet[17], packet[18]); } /*************************** OBSTRUCTION DETECTION ***************************/ void RATGDOComponent::obstruction_loop() { long current_millis = millis(); static unsigned long last_millis = 0; static unsigned long last_asleep = 0; // the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), obstructed (HIGH), asleep (LOW) // the transitions between awake and asleep are tricky because the voltage drops slowly when falling asleep // and is high without pulses when waking up // If at least 3 low pulses are counted within 50ms, the door is awake, not obstructed and we don't have to check anything else const long CHECK_PERIOD = 50; const long PULSES_LOWER_LIMIT = 3; if (current_millis - last_millis > CHECK_PERIOD) { // ESP_LOGD(TAG, "%ld: Obstruction count: %d, expected: %d, since asleep: %ld", // current_millis, this->isr_store_.obstruction_low_count, PULSES_EXPECTED, // current_millis - last_asleep // ); // check to see if we got more then PULSES_LOWER_LIMIT pulses if (this->isr_store_.obstruction_low_count > PULSES_LOWER_LIMIT) { this->obstruction_state = ObstructionState::CLEAR; } else if (this->isr_store_.obstruction_low_count == 0) { // if there have been no pulses the line is steady high or low if (!this->input_obst_pin_->digital_read()) { // asleep last_asleep = current_millis; } else { // if the line is high and was last asleep more than 700ms ago, then there is an obstruction present if (current_millis - last_asleep > 700) { this->obstruction_state = ObstructionState::OBSTRUCTED; } } } last_millis = current_millis; this->isr_store_.obstruction_low_count = 0; } } void RATGDOComponent::gdo_state_loop() { static bool reading_msg = false; static uint32_t msg_start = 0; static uint16_t byte_count = 0; static WirePacket rx_packet; if (!reading_msg) { while (this->sw_serial_.available()) { uint8_t ser_byte = this->sw_serial_.read(); if (ser_byte != 0x55 && ser_byte != 0x01 && ser_byte != 0x00) { ESP_LOG2(TAG, "Ignoring byte: %02X, baud: %d", ser_byte, this->sw_serial_.baudRate()); byte_count = 0; continue; } msg_start = ((msg_start << 8) | ser_byte) & 0xffffff; byte_count++; // if we are at the start of a message, capture the next 16 bytes if (msg_start == 0x550100) { ESP_LOG1(TAG, "Baud: %d", this->sw_serial_.baudRate()); rx_packet[0] = 0x55; rx_packet[1] = 0x01; rx_packet[2] = 0x00; reading_msg = true; break; } } } if (reading_msg) { while (this->sw_serial_.available()) { uint8_t ser_byte = this->sw_serial_.read(); rx_packet[byte_count] = ser_byte; byte_count++; if (byte_count == PACKET_LENGTH) { reading_msg = false; byte_count = 0; this->decode_packet(rx_packet); return; } } } } void RATGDOComponent::query_status() { send_command(Command::GET_STATUS); } void RATGDOComponent::query_openings() { send_command(Command::GET_OPENINGS); } void RATGDOComponent::send_command(Command command, uint32_t data, bool increment) { ESP_LOG1(TAG, "Send command: %s, data: %08" PRIx32, Command_to_string(command), data); if (!this->transmit_pending_) { // have an untransmitted packet this->encode_packet(command, data, increment, this->tx_packet_); } else { // unlikely this would happed, we're ensuring any pending packet // is transmitted each loop before doing anyting else ESP_LOGW(TAG, "Have untransmitted packet, ignoring command: %s", Command_to_string(command)); } this->transmit_packet(); } void RATGDOComponent::send_command(Command command, uint32_t data, bool increment, std::function&& on_sent) { this->command_sent.then(on_sent); this->send_command(command, data, increment); } bool RATGDOComponent::transmit_packet() { auto now = micros(); while (micros() - now < 1300) { if (this->input_gdo_pin_->digital_read()) { ESP_LOGD(TAG, "Collision detected, waiting to send packet"); this->transmit_pending_ = true; return false; } delayMicroseconds(100); } ESP_LOG2(TAG, "Sending packet"); this->print_packet(this->tx_packet_); // indicate the start of a frame by pulling the 12V line low for at leat 1 byte followed by // one STOP bit, which indicates to the receiving end that the start of the message follows // The output pin is controlling a transistor, so the logic is inverted this->output_gdo_pin_->digital_write(true); // pull the line low for at least 1 byte delayMicroseconds(1300); this->output_gdo_pin_->digital_write(false); // line high for at least 1 bit delayMicroseconds(130); this->sw_serial_.write(this->tx_packet_, PACKET_LENGTH); this->transmit_pending_ = false; this->command_sent(); return true; } void RATGDOComponent::sync() { auto sync_step = [=]() { if (*this->door_state == DoorState::UNKNOWN) { this->send_command(Command::GET_STATUS); return RetryResult::RETRY; } if (*this->openings == 0) { this->send_command(Command::GET_OPENINGS); return RetryResult::RETRY; } return RetryResult::DONE; }; const uint8_t MAX_ATTEMPTS = 10; set_retry( 500, MAX_ATTEMPTS, [=](uint8_t r) { auto result = sync_step(); if (result == RetryResult::RETRY) { if (r == MAX_ATTEMPTS - 2 && *this->door_state == DoorState::UNKNOWN) { // made a few attempts and no progress (door state is the first sync request) // increment rolling code counter by some amount in case we crashed without writing to flash the latest value this->increment_rolling_code_counter(MAX_CODES_WITHOUT_FLASH_WRITE); } if (r == 0) { // this was last attempt, notify of sync failure ESP_LOGD(TAG, "Triggering sync failed actions."); this->sync_failed = true; } } return result; }, 1.5f); } void RATGDOComponent::open_door() { if (*this->door_state == DoorState::OPENING) { return; // gets ignored by opener } this->door_command(data::DOOR_OPEN); } void RATGDOComponent::close_door() { if (*this->door_state == DoorState::CLOSING) { return; // gets ignored by opener } if (*this->door_state == DoorState::OPENING) { // have to stop door first, otherwise close command is ignored this->door_command(data::DOOR_STOP); this->door_state_received.then([=](DoorState s) { if (s == DoorState::STOPPED) { this->door_command(data::DOOR_CLOSE); } }); return; } this->door_command(data::DOOR_CLOSE); } void RATGDOComponent::stop_door() { if (*this->door_state != DoorState::OPENING && *this->door_state != DoorState::CLOSING) { ESP_LOGW(TAG, "The door is not moving."); return; } this->door_command(data::DOOR_STOP); } void RATGDOComponent::toggle_door() { this->door_command(data::DOOR_TOGGLE); } void RATGDOComponent::door_move_to_position(float position) { if (*this->door_state == DoorState::OPENING || *this->door_state == DoorState::CLOSING) { this->door_command(data::DOOR_STOP); this->door_state_received.then([=](DoorState s) { if (s == DoorState::STOPPED) { this->door_move_to_position(position); } }); return; } auto delta = position - *this->door_position; if (delta == 0) { ESP_LOGD(TAG, "Door is already at position %.2f", position); return; } auto duration = delta > 0 ? *this->opening_duration : -*this->closing_duration; if (duration == 0) { ESP_LOGW(TAG, "I don't know duration, ignoring move to position"); return; } auto operation_time = 1000 * duration * delta; this->door_move_delta = delta; ESP_LOGD(TAG, "Moving to position %.2f in %.1fs", position, operation_time / 1000.0); this->door_command(delta > 0 ? data::DOOR_OPEN : data::DOOR_CLOSE); set_timeout("move_to_position", operation_time, [=] { this->ensure_door_command(data::DOOR_STOP); }); } void RATGDOComponent::cancel_position_sync_callbacks() { if (this->door_start_moving != 0) { ESP_LOGD(TAG, "Cancelling position callbacks"); cancel_timeout("move_to_position"); cancel_retry("position_sync_while_moving"); this->door_start_moving = 0; this->door_start_position = DOOR_POSITION_UNKNOWN; this->door_move_delta = DOOR_DELTA_UNKNOWN; } } void RATGDOComponent::door_command(uint32_t data) { data |= (1 << 16); // button 1 ? data |= (1 << 8); // button press this->send_command(Command::DOOR_ACTION, data, false, [=]() { set_timeout(100, [=] { auto data2 = data & ~(1 << 8); // button release this->send_command(Command::DOOR_ACTION, data2); }); }); } void RATGDOComponent::ensure_door_command(uint32_t data, uint32_t delay) { if (data == data::DOOR_TOGGLE) { ESP_LOGW(TAG, "It's not recommended to use ensure_door_command with non-idempotent commands such as DOOR_TOGGLE"); } auto prev_door_state = *this->door_state; this->door_state_received.then([=](DoorState s) { if ((data == data::DOOR_STOP) && (s != DoorState::STOPPED) && !(prev_door_state == DoorState::OPENING && s == DoorState::OPEN) && !(prev_door_state == DoorState::CLOSING && s == DoorState::CLOSED)) { return; } if (data == data::DOOR_OPEN && !(s == DoorState::OPENING || s == DoorState::OPEN)) { return; } if (data == data::DOOR_CLOSE && !(s == DoorState::CLOSED || s == DoorState::CLOSING)) { return; } ESP_LOG1(TAG, "Received door status, cancel door command retry"); cancel_timeout("door_command_retry"); }); this->door_command(data); ESP_LOG1(TAG, "Ensure door command, setup door command retry"); set_timeout("door_command_retry", delay, [=]() { this->ensure_door_command(data); }); } void RATGDOComponent::light_on() { this->light_state = LightState::ON; this->send_command(Command::LIGHT, data::LIGHT_ON); } void RATGDOComponent::light_off() { this->light_state = LightState::OFF; this->send_command(Command::LIGHT, data::LIGHT_OFF); } void RATGDOComponent::toggle_light() { this->light_state = light_state_toggle(*this->light_state); this->send_command(Command::LIGHT, data::LIGHT_TOGGLE); } // Lock functions void RATGDOComponent::lock() { this->lock_state = LockState::LOCKED; this->send_command(Command::LOCK, data::LOCK_ON); } void RATGDOComponent::unlock() { this->lock_state = LockState::UNLOCKED; this->send_command(Command::LOCK, data::LOCK_OFF); } void RATGDOComponent::toggle_lock() { this->lock_state = lock_state_toggle(*this->lock_state); this->send_command(Command::LOCK, data::LOCK_TOGGLE); } LightState RATGDOComponent::get_light_state() const { return *this->light_state; } void RATGDOComponent::subscribe_rolling_code_counter(std::function&& f) { // change update to children is defered until after component loop // if multiple changes occur during component loop, only the last one is notified this->rolling_code_counter.subscribe([=](uint32_t state) { defer("rolling_code_counter", [=] { f(state); }); }); } void RATGDOComponent::subscribe_opening_duration(std::function&& f) { this->opening_duration.subscribe([=](float state) { defer("opening_duration", [=] { f(state); }); }); } void RATGDOComponent::subscribe_closing_duration(std::function&& f) { this->closing_duration.subscribe([=](float state) { defer("closing_duration", [=] { f(state); }); }); } void RATGDOComponent::subscribe_openings(std::function&& f) { this->openings.subscribe([=](uint16_t state) { defer("openings", [=] { f(state); }); }); } void RATGDOComponent::subscribe_door_state(std::function&& f) { this->door_state.subscribe([=](DoorState state) { defer("door_state", [=] { f(state, *this->door_position); }); }); this->door_position.subscribe([=](float position) { defer("door_state", [=] { f(*this->door_state, position); }); }); } void RATGDOComponent::subscribe_light_state(std::function&& f) { this->light_state.subscribe([=](LightState state) { defer("light_state", [=] { f(state); }); }); } void RATGDOComponent::subscribe_lock_state(std::function&& f) { this->lock_state.subscribe([=](LockState state) { defer("lock_state", [=] { f(state); }); }); } void RATGDOComponent::subscribe_obstruction_state(std::function&& f) { this->obstruction_state.subscribe([=](ObstructionState state) { defer("obstruction_state", [=] { f(state); }); }); } void RATGDOComponent::subscribe_motor_state(std::function&& f) { this->motor_state.subscribe([=](MotorState state) { defer("motor_state", [=] { f(state); }); }); } void RATGDOComponent::subscribe_button_state(std::function&& f) { this->button_state.subscribe([=](ButtonState state) { defer("button_state", [=] { f(state); }); }); } void RATGDOComponent::subscribe_motion_state(std::function&& f) { this->motion_state.subscribe([=](MotionState state) { defer("motion_state", [=] { f(state); }); }); } void RATGDOComponent::subscribe_sync_failed(std::function&& f) { this->sync_failed.subscribe(std::move(f)); } } // namespace ratgdo } // namespace esphome