/************************************ * Rage * Against * The * Garage * Door * Opener * * Copyright (C) 2022 Paul Wieland * * GNU GENERAL PUBLIC LICENSE ************************************/ #include "ratgdo.h" #include "esphome/core/log.h" namespace esphome { namespace ratgdo { static const char *const TAG = "ratgdo"; /*** Static Codes ***/ static const byte SYNC1[] = {0x55, 0x01, 0x00, 0x61, 0x12, 0x49, 0x2c, 0x92, 0x5b, 0x24, 0x96, 0x86, 0x0b, 0x65, 0x96, 0xd9, 0x8f, 0x26, 0x4a}; static const byte SYNC2[] = {0x55, 0x01, 0x00, 0x08, 0x34, 0x93, 0x49, 0xb4, 0x92, 0x4d, 0x20, 0x26, 0x1b, 0x4d, 0xb4, 0xdb, 0xad, 0x76, 0x93}; static const byte SYNC3[] = {0x55, 0x01, 0x00, 0x06, 0x1b, 0x2c, 0xbf, 0x4b, 0x6d, 0xb6, 0x4b, 0x18, 0x20, 0x92, 0x09, 0x20, 0xf2, 0x11, 0x2c}; static const byte SYNC4[] = {0x55, 0x01, 0x00, 0x95, 0x29, 0x36, 0x91, 0x29, 0x36, 0x9a, 0x69, 0x05, 0x2f, 0xbe, 0xdf, 0x6d, 0x16, 0xcb, 0xe7}; static const byte *SYNC_CODE[] = {SYNC1, SYNC2, SYNC3, SYNC4}; static const byte DOOR_CODE[] = {0x55, 0x01, 0x00, 0x94, 0x3f, 0xef, 0xbc, 0xfb, 0x7f, 0xbe, 0xfc, 0xa6, 0x1a, 0x4d, 0xa6, 0xda, 0x8d, 0x36, 0xb3}; static const byte LIGHT_CODE[] = {0x55, 0x01, 0x00, 0x94, 0x3f, 0xef, 0xbc, 0xfb, 0x7f, 0xbe, 0xff, 0xa6, 0x1a, 0x4d, 0xa6, 0xda, 0x8d, 0x76, 0xb1}; void RATGDOComponent::setup() { this->pref_ = global_preferences->make_preference(this->get_object_id_hash()); if (!this->pref_.load(&this->rollingCodeCounter)) { this->rollingCodeCounter = 0; } this->swSerial.begin(9600, SWSERIAL_8N2, -1, OUTPUT_GDO, true); pinMode(TRIGGER_OPEN, INPUT_PULLUP); pinMode(TRIGGER_CLOSE, INPUT_PULLUP); pinMode(TRIGGER_LIGHT, INPUT_PULLUP); pinMode(STATUS_DOOR, OUTPUT); pinMode(STATUS_OBST, OUTPUT); pinMode(INPUT_RPM1, INPUT_PULLUP); // set to pullup to add support for reed switches pinMode(INPUT_RPM2, INPUT_PULLUP); // make sure pin doesn't float when using reed switch // and fire interrupt by mistake pinMode(INPUT_OBST, INPUT); attachInterrupt(TRIGGER_OPEN, isrDoorOpen, CHANGE); attachInterrupt(TRIGGER_CLOSE, isrDoorClose, CHANGE); attachInterrupt(TRIGGER_LIGHT, isrLight, CHANGE); attachInterrupt(INPUT_OBST, isrObstruction, CHANGE); attachInterrupt(INPUT_RPM1, isrRPM1, RISING); attachInterrupt(INPUT_RPM2, isrRPM2, RISING); LittleFS.begin(); readCounterFromFlash(); if (this->useRollingCodes_) { ESP_LOGD(TAG, "Syncing rolling code counter after reboot..."); sync(); // if rolling codes are being used (rolling code counter > 0), send // reboot/sync to the opener on startup } else { ESP_LOGD(TAG, "Rolling codes are disabled."); } } void RATGDOComponent::loop() { obstructionLoop(); doorStateLoop(); dryContactLoop(); } void RATGDOComponent::set_rolling_codes(bool useRollingCodes) { this->useRollingCodes_ = useRollingCodes; } /*************************** DETECTING THE DOOR STATE * ***************************/ void RATGDOComponent::doorStateLoop() { static bool rotaryEncoderDetected = false; static int lastDoorPositionCounter = 0; static int lastDirectionChangeCounter = 0; static int lastCounterMillis = 0; // Handle reed switch // This may need to be debounced, but so far in testing I haven't detected any // bounces if (!rotaryEncoderDetected) { if (digitalRead(INPUT_RPM1) == LOW) { if (doorState != "reed_closed") { ESP_LOGD(TAG, "Reed switch closed"); this->doorState = "reed_closed"; digitalWrite(STATUS_DOOR, HIGH); } } else if (doorState != "reed_open") { ESP_LOGD(TAG, "Reed switch open"); this->doorState = "reed_open"; digitalWrite(STATUS_DOOR, LOW); } } // end reed switch handling // If the previous and the current state of the RPM2 Signal are different, // that means there is a rotary encoder detected and the door is moving if (this->doorPositionCounter != lastDoorPositionCounter) { rotaryEncoderDetected = true; // this disables the reed switch handler lastCounterMillis = millis(); ESP_LOGD(TAG, "Door Position: %d", doorPositionCounter); } // Wait 5 pulses before updating to door opening status if (doorPositionCounter - lastDirectionChangeCounter > 5) { if (this->doorState != "opening") { ESP_LOGD(TAG, "Door Opening..."); } lastDirectionChangeCounter = this->doorPositionCounter; this->doorState = "opening"; } if (this->lastDirectionChangeCounter - this->doorPositionCounter > 5) { if (this->doorState != "closing") { ESP_LOGD(TAG, "Door Closing..."); } lastDirectionChangeCounter = this->doorPositionCounter; this->doorState = "closing"; } // 250 millis after the last rotary encoder pulse, the door is stopped if (millis() - lastCounterMillis > 250) { // if the door was closing, and is now stopped, then the door is closed if (this->doorState == "closing") { this->doorState = "closed"; ESP_LOGD(TAG, "Closed"); digitalWrite(STATUS_DOOR, LOW); } // if the door was opening, and is now stopped, then the door is open if (this->doorState == "opening") { this->doorState = "open"; ESP_LOGD(TAG, "Open"); digitalWrite(STATUS_DOOR, HIGH); } } lastDoorPositionCounter = doorPositionCounter; } /*************************** DRY CONTACT CONTROL OF LIGHT & DOOR * ***************************/ void IRAM_ATTR RATGDOComponent::isrDebounce(const char *type) { static unsigned long lastOpenDoorTime = 0; static unsigned long lastCloseDoorTime = 0; static unsigned long lastToggleLightTime = 0; unsigned long currentMillis = millis(); // Prevent ISR during the first 2 seconds after reboot if (currentMillis < 2000) return; if (strcmp(type, "openDoor") == 0) { if (digitalRead(TRIGGER_OPEN) == LOW) { // save the time of the falling edge this->lastOpenDoorTime = currentMillis; } else if (currentMillis - lastOpenDoorTime > 500 && currentMillis - lastOpenDoorTime < 10000) { // now see if the rising edge was between 500ms and 10 seconds after the // falling edge this->dryContactDoorOpen = true; } } if (strcmp(type, "closeDoor") == 0) { if (digitalRead(TRIGGER_CLOSE) == LOW) { // save the time of the falling edge lastCloseDoorTime = currentMillis; } else if (currentMillis - lastCloseDoorTime > 500 && currentMillis - lastCloseDoorTime < 10000) { // now see if the rising edge was between 500ms and 10 seconds after the // falling edge this->dryContactDoorClose = true; } } if (strcmp(type, "toggleLight") == 0) { if (digitalRead(TRIGGER_LIGHT) == LOW) { // save the time of the falling edge this->lastToggleLightTime = currentMillis; } else if (currentMillis - lastToggleLightTime > 500 && currentMillis - lastToggleLightTime < 10000) { // now see if the rising edge was between 500ms and 10 seconds after the // falling edge this->dryContactToggleLight = true; } } } void IRAM_ATTR isrDoorOpen() { isrDebounce("openDoor"); } void IRAM_ATTR isrDoorClose() { isrDebounce("closeDoor"); } void IRAM_ATTR isrLight() { isrDebounce("toggleLight"); } // Fire on RISING edge of RPM1 void IRAM_ATTR isrRPM1() { this->rpm1Pulsed = true; } // Fire on RISING edge of RPM2 // When RPM1 HIGH on RPM2 rising edge, door closing: // RPM1: __|--|___ // RPM2: ___|--|__ // When RPM1 LOW on RPM2 rising edge, door opening: // RPM1: ___|--|__ // RPM2: __|--|___ void IRAM_ATTR RATGDOComponent::isrRPM2() { // The encoder updates faster than the ESP wants to process, so by sampling // every 5ms we get a more reliable curve The counter is behind the actual // pulse counter, but it doesn't matter since we only need a reliable linear // counter to determine the door direction static unsigned long lastPulse = 0; unsigned long currentMillis = millis(); if (currentMillis - lastPulse < 5) { return; } // In rare situations, the rotary encoder can be parked so that RPM2 // continuously fires this ISR. This causes the door counter to change value // even though the door isn't moving To solve this, check to see if RPM1 // pulsed. If not, do nothing. If yes, reset the pulsed flag if (this->rpm1Pulsed) { this->rpm1Pulsed = false; } else { return; } lastPulse = millis(); // If the RPM1 state is different from the RPM2 state, then the door is // opening if (digitalRead(INPUT_RPM1)) { this->doorPositionCounter--; } else { this->doorPositionCounter++; } } // handle changes to the dry contact state void RATGDOComponent::dryContactLoop() { if (this->dryContactDoorOpen) { ESP_LOGD(TAG, "Dry Contact: open the door"); this->dryContactDoorOpen = false; openDoor(); } if (this->dryContactDoorClose) { ESP_LOGD(TAG, "Dry Contact: close the door"); this->dryContactDoorClose = false; closeDoor(); } if (this->dryContactToggleLight) { ESP_LOGD(TAG, "Dry Contact: toggle the light"); this->dryContactToggleLight = false; toggleLight(); } } /*************************** OBSTRUCTION DETECTION ***************************/ void IRAM_ATTR isrObstruction() { if (digitalRead(INPUT_OBST)) { this->lastObstructionHigh = millis(); } else { this->obstructionLowCount++; } } void RATGDOComponent::obstructionLoop() { long currentMillis = millis(); static unsigned long lastMillis = 0; // the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), // obstructed (HIGH), asleep (LOW) the transitions between awake and asleep // are tricky because the voltage drops slowly when falling asleep and is high // without pulses when waking up // If at least 3 low pulses are counted within 50ms, the door is awake, not // obstructed and we don't have to check anything else // Every 50ms if (currentMillis - lastMillis > 50) { // check to see if we got between 3 and 8 low pulses on the line if (this->obstructionLowCount >= 3 && this->obstructionLowCount <= 8) { obstructionCleared(); // if there have been no pulses the line is steady high or low } else if (this->obstructionLowCount == 0) { // if the line is high and the last high pulse was more than 70ms ago, // then there is an obstruction present if (digitalRead(INPUT_OBST) && currentMillis - this->lastObstructionHigh > 70) { obstructionDetected(); } else { // asleep } } lastMillis = currentMillis; this->obstructionLowCount = 0; } } void RATGDOComponent::obstructionDetected() { static unsigned long lastInterruptTime = 0; unsigned long interruptTime = millis(); // Anything less than 100ms is a bounce and is ignored if (interruptTime - lastInterruptTime > 250) { this->doorIsObstructed = true; digitalWrite(STATUS_OBST, HIGH); ESP_LOGD(TAG, "Obstruction Detected"); } lastInterruptTime = interruptTime; } void RATGDOComponent::obstructionCleared() { if (this->doorIsObstructed) { this->doorIsObstructed = false; digitalWrite(STATUS_OBST, LOW); ESP_LOGD(TAG, "Obstruction Cleared"); } } void RATGDOComponent::sendDoorStatus() { ESP_LOGD(TAG, "Door state %s", this->doorState); } void RATGDOComponent::sendCurrentCounter() { String msg = String(this->rollingCodeCounter); ESP_LOGD(TAG, "Current counter %d", this->rollingCodeCounter); } /************************* DOOR COMMUNICATION *************************/ /* * Transmit a message to the door opener over uart1 * The TX1 pin is controlling a transistor, so the logic is inverted * A HIGH state on TX1 will pull the 12v line LOW * * The opener requires a specific duration low/high pulse before it will accept * a message */ void RATGDOComponent::transmit(byte *payload, unsigned int length) { digitalWrite(OUTPUT_GDO, HIGH); // pull the line high for 1305 micros so the // door opener responds to the message delayMicroseconds(1305); digitalWrite(OUTPUT_GDO, LOW); // bring the line low delayMicroseconds(1260); // "LOW" pulse duration before the message start this->swSerial.write(payload, length); } void RATGDOComponent::sync() { if (!this->useRollingCodes_) return; getRollingCode("reboot1"); transmit(this->rollingCode, CODE_LENGTH); delay(45); getRollingCode("reboot2"); transmit(this->rollingCode, CODE_LENGTH); delay(45); getRollingCode("reboot3"); transmit(this->rollingCode, CODE_LENGTH); delay(45); getRollingCode("reboot4"); transmit(this->rollingCode, CODE_LENGTH); delay(45); getRollingCode("reboot5"); transmit(this->rollingCode, CODE_LENGTH); delay(45); getRollingCode("reboot6"); transmit(this->rollingCode, CODE_LENGTH); delay(45); writeCounterToFlash(); } void RATGDOComponent::openDoor() { if (this->doorState == "open" || this->doorState == "opening") { ESP_LOGD(TAG, "The door is already %s", doorState); return; } this->doorState = "opening"; // It takes a couple of pulses to detect // opening/closing. by setting here, we can avoid // bouncing from rapidly repeated commands if (this->useRollingCodes) { getRollingCode("door1"); transmit(this->rollingCode, CODE_LENGTH); delay(40); getRollingCode("door2"); transmit(this->rollingCode, CODE_LENGTH); writeCounterToFlash(); } else { for (int i = 0; i < 4; i++) { ESP_LOGD(TAG, "sync_code[%d]", i); transmit(SYNC_CODE[i], CODE_LENGTH); delay(45); } ESP_LOGD(TAG, "door_code") transmit(DOOR_CODE, CODE_LENGTH); } } void RATGDOComponent::closeDoor() { if (this->doorState == "closed" || this->doorState == "closing") { ESP_LOGD(TAG, "The door is already %s", this->doorState); return; } this->doorState = "closing"; // It takes a couple of pulses to detect // opening/closing. by setting here, we can avoid // bouncing from rapidly repeated commands if (this->useRollingCodes_) { getRollingCode("door1"); transmit(this->rollingCode, CODE_LENGTH); delay(40); getRollingCode("door2"); transmit(this->rollingCode, CODE_LENGTH); writeCounterToFlash(); } else { for (int i = 0; i < 4; i++) { ESP_LOGD(TAG, "sync_code[%d]", i); transmit(SYNC_CODE[i], CODE_LENGTH); delay(45); } ESP_LOGD(TAG, "door_code") transmit(DOOR_CODE, CODE_LENGTH); } } void RATGDOComponent::toggleLight() { if (this->useRollingCodes) { getRollingCode("light"); transmit(this->rollingCode, CODE_LENGTH); writeCounterToFlash(); } else { for (int i = 0; i < 4; i++) { ESP_LOGD(TAG, "sync_code[%d]", i); transmit(SYNC_CODE[i], CODE_LENGTH); delay(45); } ESP_LOGD(TAG, "light_code") transmit(LIGHT_CODE, CODE_LENGTH); } } void RATGDOComponent::getRollingCode(const char *command, int rollingCodeCounter){ uint64_t id = 0x539; uint64_t fixed = 0; uint32_t data = 0; if(strcmp(command,"reboot1") == 0){ fixed = 0x400000000; data = 0x0000618b; }else if(strcmp(command,"reboot2") == 0){ fixed = 0; data = 0x01009080; }else if(strcmp(command,"reboot3") == 0){ fixed = 0; data = 0x0000b1a0; }else if(strcmp(command,"reboot4") == 0){ fixed = 0; data = 0x01009080; }else if(strcmp(command,"reboot5") == 0){ fixed = 0x300000000; data = 0x00008092; }else if(strcmp(command,"reboot6") == 0){ fixed = 0x300000000; data = 0x00008092; }else if(strcmp(command,"door1") == 0){ fixed = 0x200000000; data = 0x01018280; }else if(strcmp(command,"door2") == 0){ fixed = 0x200000000; data = 0x01009280; }else if(strcmp(command,"light") == 0){ fixed = 0x200000000; data = 0x00009281; }else{ ESP_LOGD(TAG,"ERROR: Invalid command"); return; } fixed = fixed | id; encode_wireline(rollingCodeCounter, fixed, data, rollingCode); printRollingCode(); if(strcmp(command,"door1") != 0){ // door2 is created with same counter and should always be called after door1 this->rollingCodeCounter = (this->rollingCodeCounter + 1) & 0xfffffff; } return; } void printRollingCode(){ for(int i = 0; i < CODE_LENGTH; i++){ if(this->rollingCode[i] <= 0x0f) ESP_LOGD(TAG, "0"); ESP_LOGD(TAG, "%x", this->rollingCode[i]); } } } // namespace ratgdo } // namespace esphome