/* SoftwareSerial.cpp - Implementation of the Arduino software serial for ESP8266/ESP32. Copyright (c) 2015-2016 Peter Lerup. All rights reserved. Copyright (c) 2018-2019 Dirk O. Kaar. All rights reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "SoftwareSerial.h" #include using namespace EspSoftwareSerial; #ifndef ESP32 uint32_t UARTBase::m_savedPS = 0; #else portMUX_TYPE UARTBase::m_interruptsMux = portMUX_INITIALIZER_UNLOCKED; #endif __attribute__((always_inline)) inline void IRAM_ATTR UARTBase::disableInterrupts() { #ifndef ESP32 m_savedPS = xt_rsil(15); #else taskENTER_CRITICAL(&m_interruptsMux); #endif } __attribute__((always_inline)) inline void IRAM_ATTR UARTBase::restoreInterrupts() { #ifndef ESP32 xt_wsr_ps(m_savedPS); #else taskEXIT_CRITICAL(&m_interruptsMux); #endif } constexpr uint8_t BYTE_ALL_BITS_SET = ~static_cast(0); UARTBase::UARTBase() { } UARTBase::UARTBase(int8_t rxPin, int8_t txPin, bool invert) { m_rxPin = rxPin; m_txPin = txPin; m_invert = invert; } UARTBase::~UARTBase() { end(); } void UARTBase::setRxGPIOPinMode() { if (m_rxValid) { pinMode(m_rxPin, m_rxGPIOHasPullUp && m_rxGPIOPullUpEnabled ? INPUT_PULLUP : INPUT); } } void UARTBase::setTxGPIOPinMode() { if (m_txValid) { pinMode(m_txPin, m_txGPIOOpenDrain ? OUTPUT_OPEN_DRAIN : OUTPUT); } } void UARTBase::begin(uint32_t baud, Config config, int8_t rxPin, int8_t txPin, bool invert) { if (-1 != rxPin) m_rxPin = rxPin; if (-1 != txPin) m_txPin = txPin; m_oneWire = (m_rxPin == m_txPin); m_invert = invert; m_dataBits = 5 + (config & 07); m_parityMode = static_cast(config & 070); m_stopBits = 1 + ((config & 0300) ? 1 : 0); m_pduBits = m_dataBits + static_cast(m_parityMode) + m_stopBits; m_bitTicks = (microsToTicks(1000000UL) + baud / 2) / baud; m_intTxEnabled = true; } void UARTBase::beginRx(bool hasPullUp, int bufCapacity, int isrBufCapacity) { m_rxGPIOHasPullUp = hasPullUp; m_rxReg = portInputRegister(digitalPinToPort(m_rxPin)); m_rxBitMask = digitalPinToBitMask(m_rxPin); m_buffer.reset(new circular_queue((bufCapacity > 0) ? bufCapacity : 64)); if (m_parityMode) { m_parityBuffer.reset(new circular_queue((m_buffer->capacity() + 7) / 8)); m_parityInPos = m_parityOutPos = 1; } m_isrBuffer.reset(new circular_queue((isrBufCapacity > 0) ? isrBufCapacity : m_buffer->capacity() * (2 + m_dataBits + static_cast(m_parityMode)))); if (m_buffer && (!m_parityMode || m_parityBuffer) && m_isrBuffer) { m_rxValid = true; setRxGPIOPinMode(); } } void UARTBase::beginTx() { #if !defined(ESP8266) m_txReg = portOutputRegister(digitalPinToPort(m_txPin)); #endif m_txBitMask = digitalPinToBitMask(m_txPin); m_txValid = true; if (!m_oneWire) { setTxGPIOPinMode(); digitalWrite(m_txPin, !m_invert); } } void UARTBase::end() { enableRx(false); m_txValid = false; if (m_buffer) { m_buffer.reset(); } m_parityBuffer.reset(); if (m_isrBuffer) { m_isrBuffer.reset(); } } uint32_t UARTBase::baudRate() { return 1000000UL / ticksToMicros(m_bitTicks); } void UARTBase::setTransmitEnablePin(int8_t txEnablePin) { if (-1 != txEnablePin) { m_txEnableValid = true; m_txEnablePin = txEnablePin; pinMode(m_txEnablePin, OUTPUT); digitalWrite(m_txEnablePin, LOW); } else { m_txEnableValid = false; } } void UARTBase::enableIntTx(bool on) { m_intTxEnabled = on; } void UARTBase::enableRxGPIOPullUp(bool on) { m_rxGPIOPullUpEnabled = on; setRxGPIOPinMode(); } void UARTBase::enableTxGPIOOpenDrain(bool on) { m_txGPIOOpenDrain = on; setTxGPIOPinMode(); } void UARTBase::enableTx(bool on) { if (m_txValid && m_oneWire) { if (on) { enableRx(false); setTxGPIOPinMode(); digitalWrite(m_txPin, !m_invert); } else { setRxGPIOPinMode(); enableRx(true); } } } void UARTBase::enableRx(bool on) { if (m_rxValid && on != m_rxEnabled) { if (on) { m_rxLastBit = m_pduBits - 1; // Init to stop bit level and current tick m_isrLastTick = (microsToTicks(micros()) | 1) ^ m_invert; if (m_bitTicks >= microsToTicks(1000000UL / 74880UL)) attachInterruptArg(digitalPinToInterrupt(m_rxPin), reinterpret_cast(rxBitISR), this, CHANGE); else attachInterruptArg(digitalPinToInterrupt(m_rxPin), reinterpret_cast(rxBitSyncISR), this, m_invert ? RISING : FALLING); } else { detachInterrupt(digitalPinToInterrupt(m_rxPin)); } m_rxEnabled = on; } } int UARTBase::read() { if (!m_rxValid) { return -1; } if (!m_buffer->available()) { rxBits(); if (!m_buffer->available()) { return -1; } } auto val = m_buffer->pop(); if (m_parityBuffer) { m_lastReadParity = m_parityBuffer->peek() & m_parityOutPos; m_parityOutPos <<= 1; if (!m_parityOutPos) { m_parityOutPos = 1; m_parityBuffer->pop(); } } return val; } int UARTBase::read(uint8_t* buffer, size_t size) { if (!m_rxValid) { return 0; } int avail; if (0 == (avail = m_buffer->pop_n(buffer, size))) { rxBits(); avail = m_buffer->pop_n(buffer, size); } if (!avail) return 0; if (m_parityBuffer) { uint32_t parityBits = avail; while (m_parityOutPos >>= 1) ++parityBits; m_parityOutPos = (1 << (parityBits % 8)); m_parityBuffer->pop_n(nullptr, parityBits / 8); } return avail; } size_t UARTBase::readBytes(uint8_t* buffer, size_t size) { if (!m_rxValid || !size) { return 0; } size_t count = 0; auto start = millis(); do { auto readCnt = read(&buffer[count], size - count); count += readCnt; if (count >= size) break; if (readCnt) { start = millis(); } else { optimistic_yield(1000UL); } } while (millis() - start < _timeout); return count; } int UARTBase::available() { if (!m_rxValid) { return 0; } rxBits(); int avail = m_buffer->available(); if (!avail) { optimistic_yield(10000UL); } return avail; } void UARTBase::lazyDelay() { // Reenable interrupts while delaying to avoid other tasks piling up if (!m_intTxEnabled) { restoreInterrupts(); } const auto expired = microsToTicks(micros()) - m_periodStart; const int32_t remaining = m_periodDuration - expired; const uint32_t ms = remaining > 0 ? ticksToMicros(remaining) / 1000UL : 0; if (ms > 0) { delay(ms); } else { optimistic_yield(10000UL); } // Assure that below-ms part of delays are not elided preciseDelay(); // Disable interrupts again if applicable if (!m_intTxEnabled) { disableInterrupts(); } } void IRAM_ATTR UARTBase::preciseDelay() { uint32_t ticks; do { ticks = microsToTicks(micros()); } while ((ticks - m_periodStart) < m_periodDuration); m_periodDuration = 0; m_periodStart = ticks; } void IRAM_ATTR UARTBase::writePeriod( uint32_t dutyCycle, uint32_t offCycle, bool withStopBit) { preciseDelay(); if (dutyCycle) { #if defined(ESP8266) if (16 == m_txPin) { GP16O = 1; } else { GPOS = m_txBitMask; } #else *m_txReg |= m_txBitMask; #endif m_periodDuration += dutyCycle; if (offCycle || (withStopBit && !m_invert)) { if (!withStopBit || m_invert) { preciseDelay(); } else { lazyDelay(); } } } if (offCycle) { #if defined(ESP8266) if (16 == m_txPin) { GP16O = 0; } else { GPOC = m_txBitMask; } #else *m_txReg &= ~m_txBitMask; #endif m_periodDuration += offCycle; if (withStopBit && m_invert) lazyDelay(); } } size_t UARTBase::write(uint8_t byte) { return write(&byte, 1); } size_t UARTBase::write(uint8_t byte, Parity parity) { return write(&byte, 1, parity); } size_t UARTBase::write(const uint8_t* buffer, size_t size) { return write(buffer, size, m_parityMode); } size_t IRAM_ATTR UARTBase::write(const uint8_t* buffer, size_t size, Parity parity) { if (m_rxValid) { rxBits(); } if (!m_txValid) { return -1; } if (m_txEnableValid) { digitalWrite(m_txEnablePin, HIGH); } // Stop bit: if inverted, LOW, otherwise HIGH bool b = !m_invert; uint32_t dutyCycle = 0; uint32_t offCycle = 0; if (!m_intTxEnabled) { // Disable interrupts in order to get a clean transmit timing disableInterrupts(); } const uint32_t dataMask = ((1UL << m_dataBits) - 1); bool withStopBit = true; m_periodDuration = 0; m_periodStart = microsToTicks(micros()); for (size_t cnt = 0; cnt < size; ++cnt) { uint8_t byte = pgm_read_byte(buffer + cnt) & dataMask; // push LSB start-data-parity-stop bit pattern into uint32_t // Stop bits: HIGH uint32_t word = ~0UL; // inverted parity bit, performance tweak for xor all-bits-set word if (parity && m_parityMode) { uint32_t parityBit; switch (parity) { case PARITY_EVEN: // from inverted, so use odd parity parityBit = byte; parityBit ^= parityBit >> 4; parityBit &= 0xf; parityBit = (0x9669 >> parityBit) & 1; break; case PARITY_ODD: // from inverted, so use even parity parityBit = byte; parityBit ^= parityBit >> 4; parityBit &= 0xf; parityBit = (0x6996 >> parityBit) & 1; break; case PARITY_MARK: parityBit = 0; break; case PARITY_SPACE: // suppresses warning parityBit uninitialized default: parityBit = 1; break; } word ^= parityBit; } word <<= m_dataBits; word |= byte; // Start bit: LOW word <<= 1; if (m_invert) word = ~word; for (int i = 0; i <= m_pduBits; ++i) { bool pb = b; b = word & (1UL << i); if (!pb && b) { writePeriod(dutyCycle, offCycle, withStopBit); withStopBit = false; dutyCycle = offCycle = 0; } if (b) { dutyCycle += m_bitTicks; } else { offCycle += m_bitTicks; } } withStopBit = true; } writePeriod(dutyCycle, offCycle, true); if (!m_intTxEnabled) { // restore the interrupt state if applicable restoreInterrupts(); } if (m_txEnableValid) { digitalWrite(m_txEnablePin, LOW); } return size; } void UARTBase::flush() { if (!m_rxValid) { return; } m_buffer->flush(); if (m_parityBuffer) { m_parityInPos = m_parityOutPos = 1; m_parityBuffer->flush(); } } bool UARTBase::overflow() { bool res = m_overflow; m_overflow = false; return res; } int UARTBase::peek() { if (!m_rxValid) { return -1; } if (!m_buffer->available()) { rxBits(); if (!m_buffer->available()) return -1; } auto val = m_buffer->peek(); if (m_parityBuffer) m_lastReadParity = m_parityBuffer->peek() & m_parityOutPos; return val; } void UARTBase::rxBits() { #ifdef ESP8266 if (m_isrOverflow.load()) { m_overflow = true; m_isrOverflow.store(false); } #else if (m_isrOverflow.exchange(false)) { m_overflow = true; } #endif m_isrBuffer->for_each(m_isrBufferForEachDel); // A stop bit can go undetected if leading data bits are at same level // and there was also no next start bit yet, so one word may be pending. // Check that there was no new ISR data received in the meantime, inserting an // extraneous stop level bit out of sequence breaks rx. if (m_rxLastBit < m_pduBits - 1) { const uint32_t detectionTicks = (m_pduBits - 1 - m_rxLastBit) * m_bitTicks; if (!m_isrBuffer->available() && microsToTicks(micros()) - m_isrLastTick > detectionTicks) { // Produce faux stop bit level, prevents start bit maldetection // tick's LSB is repurposed for the level bit rxBits(((m_isrLastTick + detectionTicks) | 1) ^ m_invert); } } } void UARTBase::rxBits(const uint32_t isrTick) { const bool level = (m_isrLastTick & 1) ^ m_invert; // error introduced by edge value in LSB of isrTick is negligible uint32_t ticks = isrTick - m_isrLastTick; m_isrLastTick = isrTick; uint32_t bits = ticks / m_bitTicks; if (ticks % m_bitTicks > (m_bitTicks >> 1)) ++bits; while (bits > 0) { // start bit detection if (m_rxLastBit >= (m_pduBits - 1)) { // leading edge of start bit? if (level) break; m_rxLastBit = -1; --bits; continue; } // data bits if (m_rxLastBit < (m_dataBits - 1)) { uint8_t dataBits = min(bits, static_cast(m_dataBits - 1 - m_rxLastBit)); m_rxLastBit += dataBits; bits -= dataBits; m_rxCurByte >>= dataBits; if (level) { m_rxCurByte |= (BYTE_ALL_BITS_SET << (8 - dataBits)); } continue; } // parity bit if (m_parityMode && m_rxLastBit == (m_dataBits - 1)) { ++m_rxLastBit; --bits; m_rxCurParity = level; continue; } // stop bits // Store the received value in the buffer unless we have an overflow // if not high stop bit level, discard word if (bits >= static_cast(m_pduBits - 1 - m_rxLastBit) && level) { m_rxCurByte >>= (sizeof(uint8_t) * 8 - m_dataBits); if (!m_buffer->push(m_rxCurByte)) { m_overflow = true; } else { if (m_parityBuffer) { if (m_rxCurParity) { m_parityBuffer->pushpeek() |= m_parityInPos; } else { m_parityBuffer->pushpeek() &= ~m_parityInPos; } m_parityInPos <<= 1; if (!m_parityInPos) { m_parityBuffer->push(); m_parityInPos = 1; } } } } m_rxLastBit = m_pduBits - 1; // reset to 0 is important for masked bit logic m_rxCurByte = 0; m_rxCurParity = false; break; } } void IRAM_ATTR UARTBase::rxBitISR(UARTBase* self) { const bool level = *self->m_rxReg & self->m_rxBitMask; const uint32_t curTick = microsToTicks(micros()); const bool empty = !self->m_isrBuffer->available(); // Store level and tick in the buffer unless we have an overflow // tick's LSB is repurposed for the level bit if (!self->m_isrBuffer->push((curTick | 1U) ^ !level)) self->m_isrOverflow.store(true); // Trigger rx callback only when receiver is starved if (empty) self->m_rxHandler(); } void IRAM_ATTR UARTBase::rxBitSyncISR(UARTBase* self) { bool level = self->m_invert; const uint32_t start = microsToTicks(micros()); uint32_t wait = self->m_bitTicks; const bool empty = !self->m_isrBuffer->available(); // Store level and tick in the buffer unless we have an overflow // tick's LSB is repurposed for the level bit if (!self->m_isrBuffer->push(((start + wait) | 1U) ^ !level)) self->m_isrOverflow.store(true); for (uint32_t i = 0; i < self->m_pduBits; ++i) { while (microsToTicks(micros()) - start < wait) {}; wait += self->m_bitTicks; // Store level and tick in the buffer unless we have an overflow // tick's LSB is repurposed for the level bit if (static_cast(*self->m_rxReg & self->m_rxBitMask) != level) { if (!self->m_isrBuffer->push(((start + wait) | 1U) ^ level)) self->m_isrOverflow.store(true); level = !level; } } // Trigger rx callback only when receiver is starved if (empty) self->m_rxHandler(); } void UARTBase::onReceive(const Delegate& handler) { disableInterrupts(); m_rxHandler = handler; restoreInterrupts(); } void UARTBase::onReceive(Delegate&& handler) { disableInterrupts(); m_rxHandler = std::move(handler); restoreInterrupts(); } // The template member functions below must be in IRAM, but due to a bug GCC doesn't currently // honor the attribute. Instead, it is possible to do explicit specialization and adorn // these with the IRAM attribute: // Delegate<>::operator (), circular_queue<>::available, // circular_queue<>::available_for_push, circular_queue<>::push_peek, circular_queue<>::push template void IRAM_ATTR delegate::detail::DelegateImpl::operator()() const; template size_t IRAM_ATTR circular_queue::available() const; template bool IRAM_ATTR circular_queue::push(uint32_t&&); template bool IRAM_ATTR circular_queue::push(const uint32_t&);