/************************************ * Rage * Against * The * Garage * Door * Opener * * Copyright (C) 2022 Paul Wieland * * GNU GENERAL PUBLIC LICENSE ************************************/ #include "ratgdo.h" #include "ratgdo_child.h" #include "esphome/core/log.h" namespace esphome { namespace ratgdo { static const char* const TAG = "ratgdo"; static const int STARTUP_DELAY = 2000; // delay before enabling interrupts /*************************** DRY CONTACT CONTROL OF LIGHT & DOOR * ***************************/ void IRAM_ATTR HOT RATGDOStore::isrDoorOpen(RATGDOStore* arg) { static unsigned long lastOpenDoorTime = 0; unsigned long currentMillis = millis(); // Prevent ISR during the first 2 seconds after reboot if (currentMillis < STARTUP_DELAY) return; if (!arg->trigger_open.digital_read()) { // save the time of the falling edge lastOpenDoorTime = currentMillis; } else if (currentMillis - lastOpenDoorTime > 500 && currentMillis - lastOpenDoorTime < 10000) { // now see if the rising edge was between 500ms and 10 seconds after the // falling edge arg->dryContactDoorOpen = true; } } void IRAM_ATTR HOT RATGDOStore::isrDoorClose(RATGDOStore* arg) { static unsigned long lastCloseDoorTime = 0; unsigned long currentMillis = millis(); // Prevent ISR during the first 2 seconds after reboot if (currentMillis < STARTUP_DELAY) return; if (!arg->trigger_close.digital_read()) { // save the time of the falling edge lastCloseDoorTime = currentMillis; } else if (currentMillis - lastCloseDoorTime > 500 && currentMillis - lastCloseDoorTime < 10000) { // now see if the rising edge was between 500ms and 10 seconds after the // falling edge arg->dryContactDoorClose = true; } } void IRAM_ATTR HOT RATGDOStore::isrLight(RATGDOStore* arg) { static unsigned long lastToggleLightTime = 0; unsigned long currentMillis = millis(); // Prevent ISR during the first 2 seconds after reboot if (currentMillis < STARTUP_DELAY) return; if (!arg->trigger_light.digital_read()) { // save the time of the falling edge lastToggleLightTime = currentMillis; } else if (currentMillis - lastToggleLightTime > 500 && currentMillis - lastToggleLightTime < 10000) { // now see if the rising edge was between 500ms and 10 seconds after the // falling edge arg->dryContactToggleLight = true; } } void IRAM_ATTR HOT RATGDOStore::isrObstruction(RATGDOStore* arg) { if (arg->input_obst.digital_read()) { // ESP_LOGD(TAG, "isrObstruction HIGH"); arg->lastObstructionHigh = millis(); } else { // ESP_LOGD(TAG, "isrObstruction LOW"); arg->obstructionLowCount++; } } void RATGDOComponent::setup() { this->pref_ = global_preferences->make_preference(734874333U); if (!this->pref_.load(&this->rollingCodeCounter)) { this->rollingCodeCounter = 0; } this->output_gdo_pin_->setup(); this->input_gdo_pin_->setup(); this->input_obst_pin_->setup(); this->trigger_open_pin_->setup(); this->trigger_close_pin_->setup(); this->trigger_light_pin_->setup(); this->status_door_pin_->setup(); this->status_obst_pin_->setup(); this->store_.input_obst = this->input_obst_pin_->to_isr(); this->store_.trigger_open = this->trigger_open_pin_->to_isr(); this->store_.trigger_close = this->trigger_close_pin_->to_isr(); this->store_.trigger_light = this->trigger_light_pin_->to_isr(); this->trigger_open_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP); this->trigger_close_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP); this->trigger_light_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP); this->status_door_pin_->pin_mode(gpio::FLAG_OUTPUT); this->status_obst_pin_->pin_mode(gpio::FLAG_OUTPUT); this->output_gdo_pin_->pin_mode(gpio::FLAG_OUTPUT); this->input_gdo_pin_->pin_mode(gpio::FLAG_INPUT | gpio::FLAG_PULLUP); this->input_obst_pin_->pin_mode(gpio::FLAG_INPUT); this->check_uart_settings(9600, 1, esphome::uart::UART_CONFIG_PARITY_NONE, 8); this->trigger_open_pin_->attach_interrupt(RATGDOStore::isrDoorOpen, &this->store_, gpio::INTERRUPT_ANY_EDGE); this->trigger_close_pin_->attach_interrupt(RATGDOStore::isrDoorClose, &this->store_, gpio::INTERRUPT_ANY_EDGE); this->trigger_light_pin_->attach_interrupt(RATGDOStore::isrLight, &this->store_, gpio::INTERRUPT_ANY_EDGE); this->input_obst_pin_->attach_interrupt(RATGDOStore::isrObstruction, &this->store_, gpio::INTERRUPT_ANY_EDGE); ESP_LOGD(TAG, "Syncing rolling code counter after reboot..."); sync(); // reboot/sync to the opener on startup } void RATGDOComponent::loop() { // ESP_LOGD(TAG, "loop rollingCodeCounter: %d", this->rollingCodeCounter); obstructionLoop(); gdoStateLoop(); dryContactLoop(); statusUpdateLoop(); // ESP_LOGD(TAG, "Door State: %s", this->doorState.c_str()); } void RATGDOComponent::dump_config() { ESP_LOGCONFIG(TAG, "Setting up RATGDO..."); LOG_PIN(" Output GDO Pin: ", this->output_gdo_pin_); LOG_PIN(" Input GDO Pin: ", this->input_gdo_pin_); LOG_PIN(" Input Obstruction Pin: ", this->input_obst_pin_); LOG_PIN(" Trigger Open Pin: ", this->trigger_open_pin_); LOG_PIN(" Trigger Close Pin: ", this->trigger_close_pin_); LOG_PIN(" Trigger Light Pin: ", this->trigger_light_pin_); LOG_PIN(" Status Door Pin: ", this->status_door_pin_); LOG_PIN(" Status Obstruction Pin: ", this->status_obst_pin_); } void RATGDOComponent::readRollingCode(uint8_t& door, uint8_t& light, uint8_t& lock, uint8_t& motion, uint8_t& obstruction) { uint32_t rolling = 0; uint64_t fixed = 0; uint32_t data = 0; uint16_t cmd = 0; uint8_t nibble = 0; uint8_t byte1 = 0; uint8_t byte2 = 0; decode_wireline(this->rxRollingCode, &rolling, &fixed, &data); cmd = ((fixed >> 24) & 0xf00) | (data & 0xff); nibble = (data >> 8) & 0xf; byte1 = (data >> 16) & 0xff; byte2 = (data >> 24) & 0xff; if (cmd == 0x81) { door = nibble; light = (byte2 >> 1) & 1; lock = byte2 & 1; motion = 0; // when the status message is read, reset motion state to 0|clear // obstruction = (byte1 >> 6) & 1; // unreliable due to the time it takes to register an obstruction } else if (cmd == 0x281) { light ^= 1; // toggle bit } else if (cmd == 0x84) { } else if (cmd == 0x285) { motion = 1; // toggle bit } } void RATGDOComponent::getRollingCode(Commands command) { uint64_t id = 0x539; uint64_t fixed = 0; uint32_t data = 0; switch (command) { case REBOOT1: fixed = 0x400000000; data = 0x0000618b; case REBOOT2: fixed = 0; data = 0x01009080; case REBOOT3: fixed = 0; data = 0x0000b1a0; case REBOOT4: fixed = 0; data = 0x01009080; case REBOOT5: fixed = 0x300000000; data = 0x00008092; case REBOOT6: fixed = 0x300000000; data = 0x00008092; case DOOR1: fixed = 0x200000000; data = 0x01018280; case DOOR2: fixed = 0x200000000; data = 0x01009280; case LIGHT: fixed = 0x200000000; data = 0x00009281; case LOCK: fixed = 0x0100000000; data = 0x0000728c; default: ESP_LOGD(TAG, "ERROR: Invalid command"); return; } fixed = fixed | id; encode_wireline(this->rollingCodeCounter, fixed, data, this->txRollingCode); printRollingCode(); if (command != Commands::DOOR1) { // door2 is created with same counter and should always be called after door1 this->rollingCodeCounter = (this->rollingCodeCounter + 1) & 0xfffffff; } return; } void RATGDOComponent::printRollingCode() { ESP_LOGD(TAG, "Counter: %d Send code: [%02x][%02x][%02x][%02x][%02x][%02x][%02x][%02x][%02x][%02x][%02x][%02x][%02x][%02x][%02x][%02x][%02x][%02x][%02x]", this->rollingCodeCounter, this->txRollingCode[0], this->txRollingCode[1], this->txRollingCode[2], this->txRollingCode[3], this->txRollingCode[4], this->txRollingCode[5], this->txRollingCode[6], this->txRollingCode[7], this->txRollingCode[8], this->txRollingCode[9], this->txRollingCode[10], this->txRollingCode[11], this->txRollingCode[12], this->txRollingCode[13], this->txRollingCode[14], this->txRollingCode[15], this->txRollingCode[16], this->txRollingCode[17], this->txRollingCode[18]); } // handle changes to the dry contact state void RATGDOComponent::dryContactLoop() { if (this->store_.dryContactDoorOpen) { ESP_LOGD(TAG, "Dry Contact: open the door"); this->store_.dryContactDoorOpen = false; openDoor(); } if (this->store_.dryContactDoorClose) { ESP_LOGD(TAG, "Dry Contact: close the door"); this->store_.dryContactDoorClose = false; closeDoor(); } if (this->store_.dryContactToggleLight) { ESP_LOGD(TAG, "Dry Contact: toggle the light"); this->store_.dryContactToggleLight = false; toggleLight(); } } /*************************** OBSTRUCTION DETECTION ***************************/ void RATGDOComponent::obstructionLoop() { long currentMillis = millis(); static unsigned long lastMillis = 0; // the obstruction sensor has 3 states: clear (HIGH with LOW pulse every 7ms), obstructed (HIGH), asleep (LOW) // the transitions between awake and asleep are tricky because the voltage drops slowly when falling asleep // and is high without pulses when waking up // If at least 3 low pulses are counted within 50ms, the door is awake, not obstructed and we don't have to check anything else // Every 50ms if (currentMillis - lastMillis > 50) { // check to see if we got between 3 and 8 low pulses on the line if (this->store_.obstructionLowCount >= 3 && this->store_.obstructionLowCount <= 8) { // obstructionCleared(); this->store_.obstructionState = ObstructionState::OBSTRUCTION_STATE_CLEAR; // if there have been no pulses the line is steady high or low } else if (this->store_.obstructionLowCount == 0) { // if the line is high and the last high pulse was more than 70ms ago, then there is an obstruction present if (this->input_obst_pin_->digital_read() && currentMillis - this->store_.lastObstructionHigh > 70) { this->store_.obstructionState = ObstructionState::OBSTRUCTION_STATE_OBSTRUCTED; // obstructionDetected(); } else { // asleep } } lastMillis = currentMillis; this->store_.obstructionLowCount = 0; } } void RATGDOComponent::gdoStateLoop() { if (!this->available()) { // ESP_LOGD(TAG, "No data available input:%d output:%d", this->input_gdo_pin_->get_pin(), this->output_gdo_pin_->get_pin()); return; } uint8_t serData; if (!this->read_byte(&serData)) { ESP_LOGD(TAG, "Failed to read byte"); return; } static uint32_t msgStart; static bool reading = false; static uint16_t byteCount = 0; if (!reading) { // shift serial byte onto msg start msgStart <<= 8; msgStart |= serData; // truncate to 3 bytes msgStart &= 0x00FFFFFF; // if we are at the start of a message, capture the next 16 bytes if (msgStart == 0x550100) { byteCount = 3; rxRollingCode[0] = 0x55; rxRollingCode[1] = 0x01; rxRollingCode[2] = 0x00; reading = true; return; } } if (reading) { this->rxRollingCode[byteCount] = serData; byteCount++; if (byteCount == 19) { reading = false; msgStart = 0; byteCount = 0; readRollingCode(this->store_.doorState, this->store_.lightState, this->store_.lockState, this->store_.motionState, this->store_.obstructionState); } } } void RATGDOComponent::statusUpdateLoop() { // initialize to unknown static uint8_t previousDoorState = DoorState::DOOR_STATE_UNKNOWN; static uint8_t previousLightState = LightState::LIGHT_STATE_UNKNOWN; static uint8_t previousLockState = LockState::LOCK_STATE_UNKNOWN; static uint8_t previousObstructionState = ObstructionState::OBSTRUCTION_STATE_UNKNOWN; if (this->store_.doorState != previousDoorState) sendDoorStatus(); if (this->store_.lightState != previousLightState) sendLightStatus(); if (this->store_.lockState != previousLockState) sendLockStatus(); if (this->store_.obstructionState != previousObstructionState) sendObstructionStatus(); if (this->store_.motionState == MotionState::MOTION_STATE_DETECTED) { sendMotionStatus(); this->store_.motionState = MotionState::MOTION_STATE_CLEAR; sendMotionStatus(); } previousDoorState = this->store_.doorState; previousLightState = this->store_.lightState; previousLockState = this->store_.lockState; previousObstructionState = this->store_.obstructionState; } void RATGDOComponent::sendDoorStatus() { DoorState val = static_cast(this->store_.doorState); ESP_LOGD(TAG, "Door state: %s", door_state_to_string(val)); for (auto* child : this->children_) { child->on_door_state(val); } this->status_door_pin_->digital_write(this->store_.doorState == 1); } void RATGDOComponent::sendLightStatus() { LightState val = static_cast(this->store_.lightState); ESP_LOGD(TAG, "Light state %s", light_state_to_string(val)); for (auto* child : this->children_) { child->on_light_state(val); } } void RATGDOComponent::sendLockStatus() { LockState val = static_cast(this->store_.lockState); ESP_LOGD(TAG, "Lock state %s", lock_state_to_string(val)); for (auto* child : this->children_) { child->on_lock_state(val); } } void RATGDOComponent::sendMotionStatus() { MotionState val = static_cast(this->store_.motionState); ESP_LOGD(TAG, "Motion state %s", motion_state_to_string(val)); for (auto* child : this->children_) { child->on_motion_state(val); } } void RATGDOComponent::sendObstructionStatus() { ObstructionState val = static_cast(this->store_.obstructionState); ESP_LOGD(TAG, "Obstruction state %s", obstruction_state_to_string(val)); for (auto* child : this->children_) { child->on_obstruction_state(val); } this->status_obst_pin_->digital_write(this->store_.obstructionState == 0); } /************************* DOOR COMMUNICATION *************************/ /* * Transmit a message to the door opener over uart1 * The TX1 pin is controlling a transistor, so the logic is inverted * A HIGH state on TX1 will pull the 12v line LOW * * The opener requires a specific duration low/high pulse before it will accept * a message */ void RATGDOComponent::transmit(Commands command) { getRollingCode(command); this->output_gdo_pin_->digital_write(true); // pull the line high for 1305 micros so the // door opener responds to the message delayMicroseconds(1305); this->output_gdo_pin_->digital_write(false); // bring the line low delayMicroseconds(1260); // "LOW" pulse duration before the message start this->write_array(this->txRollingCode, CODE_LENGTH); } void RATGDOComponent::sync() { transmit(Commands::REBOOT1); delay(65); transmit(Commands::REBOOT2); delay(65); transmit(Commands::REBOOT3); delay(65); transmit(Commands::REBOOT4); delay(65); transmit(Commands::REBOOT5); delay(65); transmit(Commands::REBOOT6); delay(65); this->pref_.save(&this->rollingCodeCounter); } void RATGDOComponent::openDoor() { if (this->store_.doorState == DoorState::DOOR_STATE_OPEN || this->store_.doorState == DoorState::DOOR_STATE_OPENING) { ESP_LOGD(TAG, "The door is already %s", door_state_to_string(static_cast(this->store_.doorState))); return; } toggleDoor(); } void RATGDOComponent::closeDoor() { if (this->store_.doorState == DoorState::DOOR_STATE_CLOSED || this->store_.doorState == DoorState::DOOR_STATE_CLOSING) { ESP_LOGD(TAG, "The door is already %s", door_state_to_string(static_cast(this->store_.doorState))); return; } toggleDoor(); } void RATGDOComponent::stopDoor() { if (this->store_.doorState == DoorState::DOOR_STATE_OPENING || this->store_.doorState == DoorState::DOOR_STATE_CLOSING) { toggleDoor(); } else { ESP_LOGD(TAG, "The door is not moving."); } } void RATGDOComponent::toggleDoor() { transmit(Commands::DOOR1); delay(40); transmit(Commands::DOOR2); this->pref_.save(&this->rollingCodeCounter); } void RATGDOComponent::lightOn() { if (this->store_.lightState == LightState::LIGHT_STATE_ON) { ESP_LOGD(TAG, "already on"); } else { toggleLight(); } } void RATGDOComponent::lightOff() { if (this->store_.lightState == LightState::LIGHT_STATE_OFF) { ESP_LOGD(TAG, "already off"); } else { toggleLight(); } } void RATGDOComponent::toggleLight() { sendCommand(Commands::LIGHT); } // Lock functions void RATGDOComponent::lock() { if (this->store_.lockState == LockState::LOCK_STATE_LOCKED) { ESP_LOGD(TAG, "already locked"); } else { toggleLock(); } } void RATGDOComponent::unlock() { if (this->store_.lockState == LockState::LOCK_STATE_UNLOCKED) { ESP_LOGD(TAG, "already unlocked"); } else { toggleLock(); } } void RATGDOComponent::toggleLock() { sendCommand(Commands::LOCK); } void RATGDOComponent::sendCommand(Commands command) { transmit(command); this->pref_.save(&this->rollingCodeCounter); } void RATGDOComponent::register_child(RATGDOClient* obj) { this->children_.push_back(obj); obj->set_parent(this); } } // namespace ratgdo } // namespace esphome