Microsoft
Multitasking MS—DOS
Product
Specification

I/‘

« e
~-\ - Y

1. Introduction

This document gives a brief overview of the function and use of an MS-DOS
4.0 dynamic linking facility. This document is one of a series of related docu-
ments. They are:

Microsoft Multitasking MS-DOS Product Specification OVERVIEW
Microsoft Multitasking MS-DOS Produet Specification DEVICE DRIVERS

Microsoft Multitasking MS-DOS Product Specification SYSTEM CALLS
286 and 8086 Compatibility

Microsoft Multitasking MS-DOS Product Specification INTRODUCTION

Microsoft Multitasking MS-DOS Product Specification MEMORY-MANAGE-
MENT T 2

Microsoft Multtasking MS-DOS Product Specification DYNAMIC LINKING

Microsoft Multitasking MS-DOS Product Specification ; ESS]OIY M'/UYAQER

= W e
’\/‘- Lot ol | LY,

2N : ¥

Dynamic linking (or *‘delayed binding") is ver'y“\-as_txjg' htforward; ':é;p{c')gram
contains long calls to a variety of procedures. These procedures are not included
in the .EXE file when the program is initially\linked; insteadthe names of the
procedures (and other identifying informat'io;i)\;‘ e built m%é the .EXE file.
When the program is to be run, the ope M@gﬁs?g@;&ot@‘ thé’references to the
dynamic procedures, loads them into pfem Yy, ah finishies lipking the callers to
the callees. This is a deceptively simaple grocess that. yi some very powerful
gains as described below. o

When reading this documelﬁ,\ i 'she
linking mechanism is coupled with the
that provides some extra feature 1

Demand Loading

Depending upon thep ‘s preference and the load media (hard disk or
floppy), some or 3gll'g fie loaded only on demand. This applies to
dynamically linkéd:outines @if-;zvell. The results are obvious: greatly
improved memory “ailizition as fhe code segments for error handling, and
features that are no\‘@d} gt never loaded. Simply put, there will be
segment~based virtual memory.

Code Shafing _ =
It is common %o hdve multiple copies of a procedure or application. Pure
code segments are autdmatically and transparently shared.

Shared Programs ™\ v :
Many dynamically linked services want a fresh “instance” for each calling
process. This is automatic and transparent. Shared routines can also allocate
“‘global’ segments that are accessible by each instance of the routine. ISAM

1s a good example; it wants global segments to hold data and index cache
sectors.

o&.kept in mind that the dynamic
mory»segment-management facility

2. Benefits of Dynamic Linking

Rather than get real ‘“‘blue sky” about the desirability of powerful and
extendible mechanisms, a partial list of concrete benefits obtained from dynamic
linking is presented.

2.1. Flexibility

Software is highly inflexible by its nature. An individual program can only
do what it is coded to do. It cannot learn, adapt, or change. To get around this,
architects define standard interfaces to act as a kind of fire wall: the software on
each side of the interface becomes independent of the software on the other side,
as long as the interface conventions are maintained. The individual packages are
still inflexible, but the system made up of the packages becomes more and more

flexible as individual packages are changed and upgraded. - .- - .

s &

MS-DOS contains three such interfaces today: the dei_;i_cp“‘dri{'er ;ipte‘rf';’;*ge,
the system call interface, and the INT vector interface. 'l*hes‘\é;ine,wha\t_ @Iﬁﬁw
programs to be device independent, and what allow MS—‘DQS fl‘pfb'g;ams'tdﬁun
under MS-DOS 2.0. Lar. 5 AL

~ &

N\,

Dynamic linking is another such interface, one of-tremel ou}ﬁaver. The
procedure call is the interface. The procedurg‘?))l ackage- namg;‘ the arguments
and the calling conventions are all that is visible aerpss the\'d)"q.ﬂmic link. This
interface is much more powerful th:(zle\o‘n?s{ﬂjg%se‘ei,abp}é because of its

great flexibility, large name space, and highefficienc
linking of the C language run-time libra
grams that are binary compatiblé between>
printf() is a call to printf{), regﬁdleé's
that procedure. 4

The system call interf 3ve, us compatibi ny between earlier versions of
the MS-DOS; dynamic }j g;g:[;og s compatibility between entire operating
systems. Sometimes a &ystgm c}ﬂ\, ot be upgraded without changing the
interface. In this case a{nes m ¥alids defined; the old one is kept for compa-

tibility. Dynamic linkiﬁcg‘i; Jows exactly the same process, with the advantage
currently need the old version, then that

S-DOS and XENIX; a call to
orm of the system calls issued by

that if there are no old 6;5}3133'15*

code need not be resident x‘%mor .

Backw/ara\gompatibilitx is an important feature; ISVs are reluctant to

release products With new eatures if those features cannot be supported under
earlier Mg’-‘&l{’rele e3¢ Dyrnamic linking gives us the capability of providing
backward suppoi\by emylating the new features in the dynamically linked
module. Dynamic tin\kin_g’is more powerful than this; it removes the boundary
between the resident ‘operating system and the machine’s software operating
environment. A program invoking a dynamic link has no idea if it is invoking a
subroutine function, a kernel function, or even a cross-network service. The
phrase: “Dynamic linking can be used to emulate the new feature on older
operating systems” is actually short-sighted: what has been done is to tmplement

the new feature on the old operating system, field upgrading it.

-4-

In summary, dynamic linking allows us to put the critical parts of a pro-
gram (such as its operating system interface) behind interfaces. The programs
can then be transparently modified in the field by substituting various implemen-
tations of those interfaces. Transportability between machines, environments,
release versions and even operating systems is enhanced without “paying” for
features not being used. :

2.2. Interrupt Vectors

Even with today’s rudimentary tools, programmers are endeavoring to share
- standardized system services. For example, it is common for a program to ‘‘ter-
minate and stay resident,” setting up entry points by setting interrupt vectors.
The limited “name space” for interrupt vectors is causing much conflict and
difficulty. R -
Dynamic linking provides this desirable service (demand-loaded virtual-seg-
ments are far better than terminate-and-stay-resident sekixiep_t_s_),/ and "with a
much more general name space. There can be multip namésﬁac‘é.(by-’spgi:‘ify-
ing multiple library directories) so that there can bespecjal versions of }l}faria

to provide compatibility support. ek N ~~
o ‘
Note that the operating system (ac m&;;\gheh)iqixmnghnk' package that is

itself partially dynamically linked) ar an?s the<p
v

caller and the callee. The callee ne d’not ' e machine; it might

be across a network. Alternatively; the called procedure might run on another

processor, or under another operating-sys{em.
%

~

2.4. Standard Services

Dynamic linking allo¥ 's |ore-than compatibility substitutions; it permits the
creation of standard sy tejﬁ*s?r‘ A system might be shipped with an ISAM
package, a SORT pac!c % H-package and a few others. Users can buy
enhanced or higher peﬁ{é}_"ﬁ nce versiona of these packages from the original ven-
dor or from third pakties—>and Hav¢ their existing applications immediately
benefit from the upgradi&“‘-?—’f?‘ e 4

e
2.6. Ex ‘/;)l\es\

~,

\
Some s ple.ehkmyé;)'fﬂynamic linking in use are presented in the follow-

ing sections. P

2.5.1. ISAM ./

Microsoft’s ISAM package is accessed via dynamic linking. To begin with,
the desired ‘‘central ISAM server” model is automatically obtained (although
“separate server per client” model is available if preferred). Under MS-DOS 2.0,
ISAM is terminate and stay resident and is accessed via a special INT function.
Backward compatibility to MS-DOS 2.0 is provided by dynamically linked ISAM
modules that issue the INT 21 to the existing 2.0 ISAM. (A special loader

5B

program transparently does dynamic linking under MS-DOS 2.0. Naturally,
there is no segment movability or swappability; there are no virtual segments
under MS-DOS 2.0—the segments remain resident).

Microsoft will soon release a networked version of ISAM. A new ISAM
dynamic library is provided whose entry points determine if the request should
be served on the machine, or from across the network. If on machine, these rou-
tines in turn make dynamic calls to the ISAM server procedures. If across the

network, they establish communication with an ISAM netserver on a remote
machine.

For example, if the ISAM netserver is run on a local machine, allowing
remote access to local ISAM data bases, it also dynamically calls the local ISAM
server. As a result, there is complete flexibility with automatic optimal memory
management. If network requests are not being made, the network code-is‘mot in
memory. If local requests are not being made, the local code isnot’in memory.
If both the local requestor and the local netserver are being ﬁé&’d}{hp}’ A‘ﬂfbmﬁ.fi-
cally and transparently share the same local ISAM packag& "Q/"‘, S

-
O~

2.6. Service Packages \\-\\ _,/

An example of a system service package wohld be a hi‘ixih’jt;‘t'atistics library.
A programmer might use such things infrequez@y; ; only to h@@}licap the foot-
ball pools. The programmer would buy a \ixx\exp\eg&ma}l-[?%t and Bngadan:
ably accurate’ package. / - e aw o

Down the hall, a scientist doing”criti a large amount of
money to buy a large, slow, but extremely adcurate package that differentiates
between 13 types of negative infini & =

As another ISAM example, perhaps an
down because a data base
problem: get a new IS
instantly make use of it
blished in any of these:a
provide interface-compati

it > B

A capacity of the package. No

H-As belieyedthat as soon as a market leader is esta-
& ’stat package, etc.) competitors will either
"ainterfaéé_i”f;' r will provide dynamic routines that
stigh. Competition under a standard inter-

S, B0-Optiph.

T
2.7. Com ercial Interface Packages

A compa ma}_\'\vg t tg,"éonnect its Local Area Network (LAN) to a com-
mercial “long-hatl packet pet. The existing software can locate the “address” of
correspondents by using & dynamically loaded directory package that was pro-
vided by the network vendor. This package takes calls in some standard format
and generates vendor-specific network requests. It may converse with gateway
machines, peruse clearing-house files, or whatever, as long as it provides the
necessary information. Note that the “network address” for the intended target
need not be standardized. It is just a “magic cookie” generated by the vendor’s

dictionary package for specification as an address to the vendor’s network inter-
face.

«a 0

Later, the company may find that some other vendor js cheaper or faster.
They can be wired into the second vendor’s network, replace the old vendor’s

dictionary package with the pew vendor’s package, and continue business as
usual.

2.8. Hardware Interface Packages

Although not a substitute for device drivers, dynamic linking can be very
valuable in handling hardware. For example, one may own a high-resolution laser
printer. A vendor supplied package does vector-to-raster conversion, font gen-
eration, and so forth. Device drivers allow independenf communication with vari-

ous devices; dynamic libraries will allow performance of higher-level functions in

the same vein. e

»

2.9. Operating System Related Services l & S

There are a variety of services that are logically a pgrt_‘_gffthe operatipg sys-
tem (and that perhaps must track the MS-DOS releases), b@tijbey’do;ﬁqt_,’-belong
in the kernel. A couple of recent examples are error message lool;up?gut.i’hes and

AL
< e

Pathname parsing routines. wdele g

Programmers do not want fixed linki with“a”routing that prints alpha
explanations of error messages, because the next release-of MS-DOS will contain
error codes missing from the table. It isnt “desirable to: make this function an
MS-DOS call because of the amount of’ ted-RAN - Instead it is a dynamically
linked routine that is re-released Zé }{ch new: MS-DQS release. Similarly, a
new pathname-parsing package cafi be & W\\n-h/
that programs which parse pathnan
made to the format. N

o

vy o T

stributed with every MS-DOS release so
-¢alautomatically handle any extensions

As observed earl; r=the dynamic linking interface can be used to connect
programs to the ge eral” librﬁj{ijf tines, operating system routines, the DOS
kernel itself, or eve ,t,ﬁgnetwork.z;;; e MS-DOS calls, for example buffered 1/0
and writing to the s‘eiﬁgﬁﬁi\g.;;gdgxance critical. INT 21 takes time because
system mode is entere “and: exif ed. N

Under MS-DOS 4.0, % arts of the operating system can be called in
user modé ¥ia dynamic links while physically residing in the kernel. For exam-
ple, buffered file_writes ould run in user mode until the buffer is discovered to
be full; the r&tin_\éw ldlﬂfen issue the INT 21 to cause the buffer to be written.

b4

rd
A 3
#

\‘Y/‘

o

3. How does it work?

This section provides a general overview of how dynamic linking works.
The various details of the mechanism and directions for building the various
“magic"’ files are presented later in this document.

A program calls a dynamically linked routine just as it would any far exter-
nal routine: it declares the procedure a “far external” and then calls it at will.
When the program is assembled or compiled, a standard external reference -
record is generated, no different than any other external procedure reference.

At link time, the programmer specifies one or more libraries which contain
routines to satisfy those externals. External routines which are to be “true
linked” are extracted from the library and linked in; external routines which are
to be dynamically linked have special definition records in the library. These
definition records tell the linker that the routine in question is to be dynamigally
linked; they provide the linker with a module name and an' cr_z?ry*‘riamg_.\At%ths
point the user has an .EXE file that is ready to be run. Sbme}pf-.ghe pragraim’s
external references were satisfied by procedures taker™rom \ﬂne‘libr,ari@ others
are described in the .EXE file as module/entry name. pairs to be’ dynagiically
linked at load time. NgE =

Note that there is no distinction betwee_;_r?a.ging a “{eﬁguf@g” far procedure
and a dynamically linked one. In fact, the programmer mé.y""npft be aware that
many of the procedures he has called wi ’&\gy\ﬂmﬂg__ @ked‘;f

When the program is to be run, e)Bf)S loadér Joads it into memory and
discovers the presence of dynamic dinks.\The DOS uses"the module name to
locate the actual code for the procedure:from_a file in a special directory; the
file’s name is the module name. The DOS\thien Yoads the code and data segments
in the called module, and links the callers to e called procedures.

Actually, this descri i0n ;18"

must be fully conformi/ng?ég’fﬁgfé (
demand loadable. (Se¢ thg
Specification MEMOR M

features.)

oversimpliffcation. Dynamic link modules
uch are movable, swappable, shareable, and
docu ’EE%Microsaft Multstasking MS-DOS Product
NAGE. j§§T for a more detailed discussion of these

.
ST P =
DA -z

T AT
‘““Shareable’ means i -more #han one program wants to use the dynami-
cally linked routines, the system doCs not load in more than one copy of the pure
segments b)ftﬁ:ares a single copy among the users. Naturally, each client has its
own set of\a{y ixﬁu{e segrneiits

“DemandNoading'is ax adaptation of the swap mechanism. The DOS has
the capability of \sw\appin,g’ out a conforming segment and then swapping it back
in when it is referenced. Pure segments cannot have been changed from their
original form, so the DOS may discard these segments rather than swapping
them. When they are referenced, the DOS reloads them from their original .EXE
files. (DOS discards pure segments if they were originally loaded from a fixed
media device or if there is no swap device.) Demand loading takes this process
one step further. Some segments are not brought into memory a‘ all when they
are named by a loading program. They will be loaded only when (and if) they
are referenced. The author of the dynamically linked routines has the option of

-8-

flagging each segment “load immediately” or “load on demand.”

3.1. Run-time Dynamie Linking

In addition to “load-time linking” - the fixing up of dynamic link references
when the client program is first loaded into memory, MS-DOS 4.0 also supports
“run-time linking.” Run-time linking is similar to the load-time linking, except
instead of coding an explicit reference to an external procedure in the program
source, the client program declares at run-time that it wants to call specific rou-
tines. As in load-time linking, the DOS loads the desired routines and fixes up a
linkage for the client. The client supplies MS-DOS with a module name and a
list of entry point names; MS-DOS loads the module and returns a list of
addresses corresponding to the entry points. e

-~ 2

In short: T

load-time run-time
=
automatic upon ‘:C‘F::f_»-
load request | detection of special Procedure call\.\l’;:ﬂ}::},;
link record .. &

use far call

;.":'}

automatic at death
release or via
=3 procedure call
The exact form of the routines used’to accomplish run-time dynamic linking is
described in Appendix A.
i

i Sy =
B
4. Library ules” 7
This documen ~has_discussed dynamic linking as a mechanism to provide

load-time linking to\‘!ibrary subroutines to supplement link-time access. A
dynamic-link module which contains one or more such subroutines is called a

library module.

There are three types of library modules which are supported: “no data,”
“global data,” and “instance data.”” A no data module consists of one or more
code segments but no data segments. The code uses no data values other than
its parameters and other stack locations. When—a routine in the module is

=0~

executed, the caller’s DS remains in effect, allowing the library routine to refer-
ence structures and buffers in the caller’s data segment if near pointers to them
are passed. A far pointer may be passed to the library routine so that it can
access an arbitrary data segment. In such a case, the segment locking rules
described in the Microsoft Multitasking MS-DOS Product Specification MEMORY
MANAGEMENT document apply.

The compiler and linker work in concert to ensure that a no data routine
does not make non-pointer DS references.

A global data library routine has a single data segment. Although multiple
programs may call this routine, each execution (*“activation”) of the routine uses
the same data segment. The only way that this type of library routine can
access the caller’s data is via a call-by-value with far pointers-passed as argu-
ments. Note that this type of library routine must be careful to use' RAM-based
semaphores to interlock writes to its data segment because the BOS may context
switch between activations of the same library routine (and thus the same data
segment) at any time. : vl

~ 5 Lt ;’
An instance data library routine has a sepangfé_- data segment_;l;)o/r/évery
different calling process. The data segment is cre\atédi}iv_ n the-program is
linked to the library routine; it is destroyed \when the~ ¢allihg program ter-
minates. As with global data routines, the libfary routine can’¢ofmunicate with
its caller only through values and long poi taxiigigs_ as garé&ieters. Because
there is a separate data segment per a i(:r;)'un, dach” aetivatioh can modify its
data freely without the use of semaphofes. I

In all cases, dynamic linking is 4 subroutine call mechanism, not an interpro-
cess communication mechanism. This;means:that when a process calls a dynamic
subroutine, that subroutine runs a¥ a co onentwof the calling process. For
example, if three processes are calling a globalk library routine, and if that
routine wants to read some datafile, it will havé to open the file once for each
calling process and remember-a-different handle value for each opening. The iso-
lation of the multiple idstafices of global data routine can be an advantage. A
global data library rou[hfgj\gan havefzﬁgiance data by simply issuing the global-
allocate system call wh E}iﬁ!,\qf _its client tasks calls it. The memory allocated
will belong to the current\progess; no# to the library routine. The routine must
keep track of the different handles”of the different client segments in its global
data segmext, Or it must pass the handle back to the client and have the client

Sremind™ h\oi;qukandl ¢ Finally, when a client terminates the client-specific

data segment ¥wanishes. hejgiobal data segment associated with the library rou-
tine remains unti he last wser of the library terminates.)

The distinction\be'w’een the task model and dynamic linking is important
because it keeps separate tasks from interfering with each other accidentally
(encapsulation) or deliberately (security).

-]0-
5. Restrictions Upon Library Modules

5.1. Library Modules Must Be Conforming

Library routines must be fully conforming, as described in the document
Microsoft Multitasking MS-DOS Product Specification MEMORY MANACE-
MENT. Conforming code maintains properly formatted stack, loads and stores
values from/to the segment registers only in prescribed ways, and properly locks
movable segments before generating far pointers to them.

Note that the calling (“client”) routine need not be conforming, as long as it
loads BP with zero before calling a dynamically linked routine and places only
proper code segment values into CS (i.e., avoids “segment games” with the CS
register). These should be easy restrictions to meet; non-conforming programs
routinely play ‘‘segment games’ with DS and ES but only rarely ‘?’iEhJCS-ﬁ,

The following discussion serves as a brief recapitulation’ of-the-ramifications
of locking for each of the three library module formats. his - discussion: is"not
intended to be a complete definition of conformation; the programier B}x%tjlso
study the document Microsoft Multitasking MS-DOSN Product Specificdtion
MEMORY MANAGEMENT. N W)

No-Data Modules F e *{-l—g{;;‘

These library routines have no data ,ségr\n?‘én@s%_;ﬂ}t_:b\eir own:y The caller’s DS
is in eflect when they execute. y{s ans that-the callet can supply this
type of library routine with neay/poinfers to the-zalier’s"data. This, in turn,
means that the caller’s data segment s not have to be locked because no

s

far pointers were generated. <_ 7

However, if the module requirg the ca
which contains the pointed-ta cbject must

s a far posnter, the segment
ed or locked.

Single-Data Modules [/ =

=] o203
These library rou Resihave a singl§ data segment shared by all activations.

As noted earlier, 1?3’4_&;\1-93%;1;? ility of the library routine to watch for
critical sections. e

In this case, it is illegalfor~the caller to pass a short pointer because the
library” % ine cannot.make use of it; all addresses passed to this routine
must‘be\fal"}q@ters Note that neither the compiler, assembler, linker nor
the DOS \sxn":et thi;/liind of error.

he

Just as t ller cad provide the library routine with a far pointer, the
library routine tould conceivably return a far pointer to its own data seg-
ment. The library routine should eall LockObject to generate this far
pointer (even if the segment is already locked) so that a matching
UnLockObject can be performed when the pointer is no longer needed.
The programmer must be careful to ensure that either a subsequent call to
the subroutine unlocks its data segment, or that the handle of the module’s

automatic data segment calling routine has been passed so that the caller

-11-

can do the unlock. This mechanism is complex and allows disastrous bugs
to be introduced, therefore it should be avoided if possible.

Multiple-Data Modules

These library routines have a separate data segment for every instance.

They have no concerns about critical sections, but they are restrained like
single-data segment routines.

5.2. Pure code

In addition to being conforming, dynamically linked library -modules must
contain all of their code in pure code segments. This restriction exists because
any segment which calls an impure code segment is itself impure. - (Thig::ie a
result of the way the call thunk works.) Since dynamic libr: -y_:médule_s.ma‘jfr;sall
other such modules, a single impure library code segment could ‘make many code
segments in the system effectively impure. The r&ultaNoss ol segment shating

would seriously hamper the operation of MS-DOS 40‘ &,

NGl N -

Y

6.3. Compatibility Between Dynamh:\ Ext rnalsf;ﬁtﬂ True-Linked
= ’ =<7

Externals N R L b
A programmer codes a call to z:lfd%xa cally Ll 'e;i_}':iaxt)é{nal in exactly the
same way as to an external which will be K ~tirme. However, depend-
ing upon the functionality of the routine there may be a significant difference
between the two techniques. &'_i ==

Consider the case of a subroutine which needs’some amount of static data.
In the traditional link-time }imk:; rgcess (“‘true ligk™) the subroutine is assigned
the memory it needs fro &h&;proegﬁsu g static data area. The linker fixes up the
instructions in the subrbutife thatrefetence that area so that they point to the
proper locations. Shouid #gme othe '.iﬁ{,gram also be using that library routine,
it repeats this process.>Ehdoubte llyzthe static data area will end up at a
different offset in the secémd-program:ds it did in the first, but this presents no
problem because each pro rart hasifs own copy of the subroutine’s code, and
each copy was\fixed differently (by the linker), to point to the proper location.

Howet 3 if\bhis subpdutine were part of a dynamic link library module,

there would only_\On_ opy, of the code. The library might be prepared in one
of two forms: e\ -

e
N, Y &

Instance Data Module i

In this case, the subroutine’s static data would be part of the module’s
private data segment. The offset to the static cells is the same, regardless of
the calling task, because each different activation of the subroutine uses jts
own copy of the module’s data segment.

- Las -

The disadvantage to this scheme, however, is that if the calling program
wants to pass addresses within its automatic data segment, it must generate

far pointers that require the automatic data segment to be locked during the
call.

No Data Module

If the subroutine takes pointers for some of its arguments and the program-
mer doesn’t want to have to lock the automatic data segment, he might
prepare the library routine as a no data library module. Since the subrou-
tine will be using the caller's DS it can use near pointers. Unfortunately,
the subroutine now has no place to store its static data. It could issue a
LocalAlloe call to allocate the memory from the automatic-data segment,
but the offset of that memory will be different for every differént client of
the subroutine. Further, the subroutine has no static datg-blrc{arto‘stoi‘g\the
pointer to the allocated static data area. e =2 el T
To sum up, a problem arises with library routines thg.tj& \/ __/_"’ 7
.:\-:»:.:f_-‘_.‘._'- \ £ "4 ;/
1) Need to have some private static data. NESED,
2) Take pointers into the caller’s automatic.‘dgta,\segmeﬁbi:asf:afguments and do
not want to use far pointers or handle;offse tf;ppﬂ.'__ s
\ ‘\; SN =f
The most common reason that P ograxﬁ; make thé second requirement is to
maintain source-level compatibility ‘with ah.existing library routine that is not
currently called via dynamic links. Ip% is case, it may be undesirable to force
users of the subroutine to change théir so rce-code to include the generation of
far pointers and the LockObject and UnLockObjet calls.

There are two recom) endj:d’«*. hniques to maintain an existing near pointer
calling sequence to a i/ dfga“xmalfy; ked subroutine which requires static

memory. In both case azfpecial ¢ ramsfer” subroutine is written. For a given
library, the routine S R renamg@& LSUBR, and made into a dynamically
linked routine. Then a'$tandxin SUBRs created that does the required segment
locking and far pointer geger dtion, “agd then calls LSUBR. The LSUBR routine

r thinks SUBR is doing. This renaming pro-
cess is necesSary. to provide source compatibility with existing programs.

actually does_the work that the g
Meth&u; A_ﬂ’\“vf{ns\f}r routine.
oy rd

Silds

The transfer subroutine “SUBR” is defined as follows:

SUBR (a, b, ¢)

char #3; [* arbitrary parameters */
char *b;
int ¢;
static int dshandle = 0;
{

if (dshandle == 0)
dshandle = GetDSHandle();
LockObject (dshandle);
LSUBR ((farp)a, (farp)b, c); y i
UnLockObject (dshandle); gk,
} -

- A
s % i
i i . =T ,S:

This routine simply does the requisite segment locking a d generation ‘of ghe
necessary far pointers so that the source of the callergb‘l\.S\UBR oes not'have to
be changed. The module containing LSUBR would‘fhla}_'_e‘}g\instag'ge ’ggtq{ seg-
ment. : \1';{,_:-;;};?_-}\

Method 2: Pass a Pointer to the Static Da,,t;é'\.\\ _-%
Once again a “transfer” rout; g@ﬁ:}y%ed to cafl the real
dynamically linked subrc;u/ti{; tfﬁ{{ﬁxét od, however, the
routine LSUBR is part of/a no“data librasy: mo

transfer routine SUBR -dllocates:the necessary static memory
and passes LSUBR aéea.;q) inter-tq i
.

\\
Note lht\th\e}e\ig e problem with SUBR as shown here: the size of the
static data area e{;uire is ,ﬁ'§(ed in the .EXE file of the calling program, but the
LSUBR routine that uses that memory is dynamically linked and may be
updated. Perhaps a new release of the LSUBR library will require a larger static
data area. :

A more flexible implementation of the above is:

-14-

SUBR (a);
char #a;
{
static HANDLE han;
static int init = 0;

if (init == 0) {

init++;

han = LSUBR_INIT();
}

LSUBR (a, han); Ao Lgrom s

Eene” SN
In this case, the first call to the SUBR transfer roﬁt\ calls another’&ynaﬁm—
cally linked entry point “LSUBR_INIT.” This in turn’ calls ocalAllog,tré/ allo-
cate the memory as a local object. Since LSUBR has™ no static memory of its
own in which to store the handle of its static-memory, it ‘returps to SUBR the

value (of the handle of its static memory) tl af s pr ented to I)$UBR upon the
call to SUBR. Rt

Note that in both of these scenarios LSIUBR nﬁ%&\ff/wﬁ’tten to access its
data items via the passed handle or-pointer, anguage this would be
done with a structure definition an{thg

. L

6.4. Shared Language

It is a common chargcteri level languages that the programs they
produce include many ué:ang;‘.essary X n.-t;me library routines. This is tied to the
fact that when the linkt riSkes that ,eﬂgme A calls Routine B, it has to link in
Routine B, whether or GLElet _/exB‘. ill ever be called. For example, the C
language printf routine a?brma specification for floating point output in
exponential form. Printf confains“g call to a subroutine to produce this format
and consequén\ﬂy every C program that uses printf also loads the exponential

format sub\w\g% \Qf whether or not the program uses that floating

point format s

For this reason, it is highly desirable that the language run-time libraries be
dynamxcally linked. A dynamlcally linked run-time library will solve the “fat
program” problem in two ways:

1) There will be only one copy of the run-time library in memory, and it will
be shared by all programs written in that language.

-10-

2) If rarely used routines (such as the exponential formatter) are put in their
own code segments, The MS-DOS segment swapping feature will swap out
unused routines until they are actually used.

Since the operating system itself is invoked by means of library routines,
dynamically linking the libraries will also provide an unprecedented degree of
portability between operating systems themselves. It is anticipated that pro-
grams that only make use of the standard language run-time library will be
binary-compatible between MS-DOS and XENIX.

A consideration of the library routine printf will show that a problem
exists. Printf needs to take a pointer as part of its argument string and it needs
to have its own static data (for buffers). However, the calling sequence to printf
cannot be changed by requiring that it take far pointers. One of -the salutions
outlined previously could be used; they work quite well’ for” priatf. _U&for-
tunately, they add too much CPU overhead for some of the More " freqiiently
called library routines. e I E

. y l:/;” A _/,-”- =y

The language run-time libraries solve this problf:n}b means of a-dedicated
pointer WORD that appears at a constant locatioi’rx@{tg\gutozﬁaﬁci ata seg-
ment of every routine which calls those run-time routines:-“There are 24 of these

WORD: allowing us to support up to 24 different\ibraries :\Q_itli:i%lis mechanism.

When the program is loaded, the Hb}@@pﬁg 's init/ihfi'zé'tion entry point
is called. This routine uses LoealAlloé to allbégt};i’{_tgrstaﬁ{ data the library
routines need; the handle of that loeéie ject is stored i e dedicated offset

%

from the automatic DS of the callef. Eaé‘h\library subroutine that needs static

data uses this pointer to find the{oca_l.‘
static data area. W

Because of the difficulty in arbitrating theas
offset cells, this mechanis }vﬂ}?_n“et

- -3

-

-16-

6. Process Modules

Library modules can provide a variety of services, but there are fundamen-
tal limitations on their operation. They always execute as the calling process.
This means that a shared library routine cannot have its own open files, file han-
dles, assigned resources (such as a device or some shared memory), ete.

Some services, for example an ISAM package or a print spooler, want to
have the same autonomy that is granted to processes:

The ability to stay around regardless of the existence of clients.

The ability to have its own open files (and probably, to restrict access by
others to those files). e

® The ability to have shared memory and other system respifrgesa%_signed;,,_and
yet provide a dynamic-link service interface to other processes.-” -, ,fx

MS-DOS 4.0 allows processes to make dynamic-Jitk entry-points availgble.
When the DOS loads the process into memory and’ starts,its execution;.jt” also
registers the dynamic-link entry points it offers. This-pro can -b¥ started
manually by user command or batch file, or automatically ‘by-MS-DOS when it
brings the module into memory to satisfy a clién_t:’s\;\ namic‘l_inkfﬁequest.

Recall that a library module caz}zﬂh@gﬁi@éﬁ the ga‘qéﬁ, instance data,

or global data. A process module must ise the glob ~data forsh. Only one copy
of the process module can be run at ofie t npt: xec a second copy

’Ey’’ error message.

When a client process calls on .of the ynamic-link entry points of a process
module, the called code is running as the clieqt process, not as the module pro-
cess. The dynamic link call behave: ibTary module dynamic link call;
the call itself does not ipVolve s prouess switch. As is the case for a call to a
library module with a g(opﬁvﬁfiéggiﬁgnt, the automatic code segment belongs
to the process module. \"gge automytididata segment is the module’s data seg-

ment, but the calling ﬁ;o@gss contini{_éigto use its own stack segment and stack
area. ST g

"~

;: e \.\'.

HFOX module shares access to its code segments
and automatid-data segment with the client processes, but its stack and frame
variables age private. :\a client can only call subroutines in the process
module th:t&aglisf‘ed__ dypamic link entry points. Further, any resources or
global memory “segments ,#hich the process module allocates belong to it
exclusively. They ¢annot-be accessed by the client process, even when the client
process is executing code in the process module. (Of course, the 8086/8088 is an
unprotected machine and cannot enforce memory privacy rules. They are

enforced when running in protected mode on the 286. MS-DOS itself supports
the privacy of the other resources.)

The best way to understand process modules it to consider them as indepen-
dent service tasks which provide a client interface via dynamic links instead of
(or in addition to) via named pipes or shared memory. When the client makes a

=0T =

request, one of the offered entry points is called. This code has access to the pro-
cess module’s data segment, but it is not running as the process itself. If the
request can be satisfied by running some of the process module’s subroutines as
the client task, then they would return to their callers. If the request requires
some action on the part of the module's own process, then the process module’s
code would have the client process communicate with the module’s process via

some form of inter-process communication (IPC): perhaps named pipes or a block
of shared memory.

For example, consider a simple ISAM server package. It wants to be the
exclusive user of an ISAM file and to provide its clients with controlled access to
that file. Upon startup, the ISAM process would open the file and setup some
buffers. It would probably put these buffers in a manual, movable segment
rather than the automatic data segment. This is because gl of ISAM’s clients
would be able to read and write the automatic data segment and ISAM doesn't
want one client to be able to see data belonging to anotlier client. ‘When:MS-
DOS links the client and ISAM together it would give the'client -access to sl of
ISAM'’s initial data segments. Any resources that the] process obtains #hile
executing: open files, more memory segments, etc., would belong tqitegsgh’sively.

When a client wants to obtain ISAM serviéé,‘{@hji;}grogram calls an
ISAM_OPEN dynamic link routine. This ‘gbhti{xe might alldcate an area of
shared memory to hold client-specific buffers-and\ then usé 313 named pipe to
announce the new client to the ISAM pr ’chq. “Nate. t} at 3R’h9§'gh the client pro-
cess and the ISAM process may be Z\ésu ing the- ‘imecoy{ they use different
segments and must use IPC mechanisms ate.

Perhaps the client later wants to read’
might call ISAM_READ with its reqdest. would look in the shared-
memory segment that is shared between cli ISAM to see if the informa-

tion is already in memorey/lﬁ_j_;‘, . then ISAM_] can return without having
to communicate with the’ISAM process. If the data is not available, it might be
in the ISAM master bufferst it iz It he on disk. In either case, the code cannot

\ %he ISAM master buffer and the disk file

access the data directf)gg~ ause both

are inaccessible to the elhent procé_;ssf:y The ISAM_READ code must use some
form of IPC to requesf<t & 3hre ISARA process get the data and put it in the

of clfents
Some séryice Packages may be casual and not take much notice as clients
come and go. Others may’have client-specific information and/or resources and
may need to be notified of new client arrivals and client terminations. Three
mechanisms are providéd for this:

Client Arrival

- 18-

Client Death

Process Module Death

After a process module’s last client has terminated, the module may want to
clean up and terminate rather than remain resident in memory and occupy
system resources. This must be done carefully to avoid the problem of a
new client arriving while the process module is getting ready to exit. In
fact, the arrival could take place one instruction before the module issues
the Exit system call. -~

o o
The StopModule call is provided to deal with this situation. ;‘Sioqudnle
is called when the process module believes that its last client h_gs-termi_n_?ttgd.
If there are no current users of the module’s dynamic entfy points, then
those entry points are removed from the system dyna link tables, : When
StopModule returns with a “OK" status then\ the pr&wﬁj_nff‘syfe is
assured that it will not have another client and it ¢a terminate_without
interruption. Note, however, that if a new client somes. ilong a new copy of
the process module will be loaded for .,_it}Qecause‘ftl\xfeu_»bNgl copy has ter-
minated. This means that authors of {proce: modulqé'-'_;néed to interlock
their global resources (such as files §e\th‘§t theni cgmiggf‘éopy waits until
the outgoing one has terminate%hj;/coul e-done }'}i,z a semaphore, for

example.

0
~

6.2. Initialization Synchronlz{t.ioﬁ s 22N

As discussed previously, MS-DOS will start-a Process module running when
it sees a dynamic link requ t=to~t, if it isn’t ruching already. This means that
it is possible for a client/prograns td>make a dynamic call to one of the process
module’s service points /bgia?e the-mnodyle’s own process has started. It is up to
the author of the proceés f

€Sy ‘-j}%handle this situation. A recommended
method is to define sche=already-sét=R -semaphores in the process module's
data segment. Those d§;“ J:_*:l,mfk’fbgfry points that may be called prematurely
should be blocked until th _semaphores are cleared. The process module’s pro-
cess clears yx‘e\{emaphore when it has finished initializing the module.

h
_\\ /
g R v

-20-
7.3. Withdraw Request

StopModule()

Unlike LoadModule and FreeModule, StopModule is not called by a
client program, but only by a process module. If there are are no clients
currently dynamically linked to the process module, StopModule removes the
module’s dynamic-link entry points from MS-DOS's “available” list, and returns
a boolean TRUE (FFFFh). If there are still clients linked to the process module
StopModule does nothing and returns a boolean FALSE (0).

StopModule is provided so that a process module can, when it believes
that it has no more clients, clean up and terminate without the possibility of a
new client arriving during that process. Should a program request a link to the
process module a new copy will be started, even though the-old. copy. may not
have exited yet. For this reason, process modules that manipulate glabal
resources (such as files or devices) should use some mechanism such_as—systém
semaphores to delay the running of the new copy until thewold espy hés: fer-
minated. ’D\ ey

<

