Microsoft
Multitasking MS-DOS.
Product

Specification . -

S
s

"~ 3 Gebober 30, 1084
= Neen

o |

0 S

e

SEI-ES”ABSTRACT
This ,n’xle‘rk‘ iscusses in detail the extended memory management facilities of MS-DOS
4.0. ny of these facj tie\s\}re also available in the MS-Windows environment under

MS-DO QQ & P
e
Vil

. e
\‘Y/’

ﬂ

. Prerequisites
This document is one of a series of related documents. They are:

Microsoft Multitasking MS-DOS Product Specification OVERVIE W
Mierosoft Multitasking MS-DOS Product Specification DEVICE DRIVERS
Microsoft Multitasking MS-DOS Product Specification SYSTEM CALLS
286 and 8086 Compatibility

Microsoft Multitasking MS-DOS Product Specification IN TRODUCTION

Microsoft Multitasking MS-DOS Product Specification MEMORY MANAGE-
MENT oy

e Microsoft Multitasking MS-DOS Product Specification DYNAMIC’ LINKING

Microsoft Multitasking MS-DOS Product Specification SESSION MANAGER
Explicit and implicit reference will be made to terms\and ’ﬁggeepts mb'o-

duced in these documents. N .
e
2. Introduction ,-'\\ V’v-;;
The MS-DOS memory management e;m\gmeﬁ oy :1
e Provides automatic sharing of pureod&segments.> " -7
e Provides maximum flexibility to/relo¢ate and J{gments. Swapping

segments that belong solely to”idle tast is not sufficient. Segment sharing

me of an active task’s segments,

Is upward comp txhlf: (atw level language source level) with other

machine architec _r@&‘(such as'the

o Is efficient. The énvird
client programs.

° Is trap arent. As m\ﬁ uS possxble, ‘ordinary’ high level language pro-
ho d run wj out change. Likewise, minimal modifications should
be nec sary‘tq al d programs access to new services.

In summary} \MS-DOS will provide a segment-based environment that
creates, deletes, mansges and manipulates a variety of types of segments. This
task is stralghtforward on a 286 that has hardware relocation and protection, but
it is quite complex in the 8086/8088 environment.

8. The Man Behind the Curtain

Supporting virtual segmentaticn in an 8086 environment is complex;
whereas the 286 contains special hardware to make such features possible, the
8086 has none. In an 8086 environment, software must be used to compensate
for the missing hardware. '

Software is not used to emulate literally the additional 286 hardware
features. The performance of such a technique would be unacceptable. The goal
is to use software to provide the same results as the hardware, movable and
swappable segments, but using an approach that provides acceptable perfor-

mance. This requires a certain degree of cooperation from the programs that are
to use these features. L

’

Programs that exhibit such cooperation are called conforrpfni/ progra ns. As
will be discussed later, conformance is not an all-or-nothing situation. ;gf%]éam
can be partially conforming and thus be able to take advant@bf- a subset of the
A o Pl -y
memory management features. A:A\ P atd

3.1. Moving and Swapping - Why Not;_»'\\

ik eIz
On the 8086, the operating system caﬁlggg-‘_a_xsegmegt‘.ig}o memory wher-
ever it wants, but once the program ,Ka}begﬂgy}fé:gé}u_tjoﬂ jt7cannot be moved.

This is because the program is responsiblg/for placiug. the refdcation values in the
segment registers, and to move a ségment, all the relocation values that the pro-

gram might eventually load int(a. segment segister must be found and updated.
This is an impossible task. " ==

Swapping segments without having the to move them is possible, but
it is not useful. When it-is-time>to swap a segment back in, it must be reloaded
at its original addresy(bex use-if-¢annot appear to have moved when the pro-
gram resumes execut%bq};{This "éiiv_:_ hat when a segment is swapped out to free

some memory for anothdr use, it

'

ygist be guaranteed that the new user of that
memory will be comp ?:éﬁ:‘:s,gd v&g}\i;béfore it is time to swap in the original user.
This is an unmanageable-Festrictionin a general-purpose environment where the

OS has no prior knowledge-about-the behavior of the programs being executed.

7
e
3.2. Con m’irﬁxP ograms

Findin&k‘the segment pointers in an arbitrary program’s data area in
order to move a segment is an impossible task. However, it is possible to estab-
lish programming conventions that enable the DOS to find all the segment
pointers in programs that follow these conventions. “To accomplish this, all
pointers to a conforming program’s segments are kept and used only in specific
stack and register locations. If a conforming program needs to use a segment
pointer in some other manner, it must first explicitly lock the segment so the
DOS will not attempt to move it. When these pointers have been discarded, the
program must explicitly unlock the segment.

3.3. Segmented Model

A program can be viewed as a series of seginents. The different segment
types are:

Fixed Segment

The segment is fixed in memory. It is used by only one process, dies when
the process dies, and is never moved or swapped. Fixed segments are
created by manual request or by the system when loading the automatic seg-
ments of a non-conforming program in the new-style .EXE format.

Manual Segment -~

P

a

The segment was explicitly created by a process. It b’elgpgs’to, the process,
and evaporates when explicitly released or when the process dies. _The seg-
ment is referenced via an indirect pointer; it may be moved or swapped.
NE S a
Code Segment LT £

‘ ; R

A code segment may be shared by multiﬁ_l_e_;_ sks. It is automatically
created when code is loaded, and disappears \wgé_n‘i:t_ last “user-dies. It may
be moved or swapped. \ = S ??\

Auto Data - Solo Segment - e

. e b5
An automatic data segment belonging ﬁ‘;a’,;.@}@&sggmeg}

7 All activations of
the code segment share this sapfe dgfa se t:in-DS> It may be moved or

swapped. It is automatical v’ created when code_is” oaded; dies when code

dies. i e
Auto Data - Instance Segment<w.; =

An automatic data segment belonging_to £ code segment /process pair (an
“instance” of the eode See erent segment for each different
process’s calling [the:code 4 is automatically created when the instance is
created; dies w Jeg;%ﬁat ixﬁ@; €

Physical Block TS|

A contiguous, impable black?

ot
S e

iovable block7of memory. It is created when an old-style
.EXE or .COM f&xﬁjﬁ_ﬁ:mgr is loaded, and may occupy up to one mega-
byte of memory. It iS-simifar to a fixed segment, except it is not a true seg-

ment inthat it may e larger than 65K.
BL
When aconfori ing/ Jp/rogram is loaded, the system creates one or more code

segments and ohe or more data segments.

v

4. Manual Segments

Manual segments are explicitly created by a running process by means of an
allocation call. A manual segment may be either fixed or movable; this is
specified when the segment is allocated. Movable segments are manipulated and
accessed via a handle, discussed in Section 4.1.1. ‘

4.1. Far (Global) Memory

Far (global) segments are allocated in multiples of 16 bytes (i.e., the 8088
“paragraph” size) and have a maximum size of 64K bytes. Each far segment is
aligned on a 64-byte boundary.

—

4.1.1. Handles

A handle is a 16-bit “name” for a segment. A handle contains sufficient
information to allow a call to the memory management subsystem to locate the
named segment. The low-order two bits describe the type of segment, and the
remaining 14 bits contain identifier information.

To move a movable, manual segment, the system must find all pointers to it
and edit them. The DOS memory manager subsystem accomplishes this by
allowing only one pointer to the segment, and it stores that pointer in a memory
manager data area where it can be easily located and edited. The memory

manager data area also contains a count of the number of outstanding locks on
the segment. N

When a movable far segment is allocated manually, the DOS creates the seg-
ment, sets up the pointer, sets the lock count to zero, and returns the name for
that segment: the handle. The DOS does not return the address of the segment
itself; it cannot because, except while the segment is locked, there must exist only

one pointer to it - the one stored in the memory management subsystem’s data
area.

To access a movable far segment the program must first call LockObject().
The LockObject() call locks the segment and returns a far pointer to it.
Because the segment is locked, the DOS will not attempt to move it or locate the
pointers to it. The program is now free to use the segment. It may reference the
segment’s contents, generate far pointers to items within the segment, and other-
wise treat it as a fixed memory object. When the program has finished its
current use of the segment, it calls UnLockObject to unlock the segment.
After the UnLockObject call all far pointers to the segment become invalid. It
is critical that the using program does not make any further reference far
pointers that are generated while the segment is locked. All subsequent refer-

ences to the segment must involve a new call to LockObject and the generation
of new far pointers.

A locked segment is immovable and interferes with the DOS’s allocation of
memory. Consequently, LockObject and UnLockObject operate relatively
quickly so that a program does not keep a movable segment locked longer than
necessary. Note that a program must not remember or use the address of a seg-
ment after that segment has been unlocked; it must use LockObject to

-B8-
redetermine the address of the segment.

4.1.2. Swapping

The memory allocator supports swapping of movable far segments. Only
movable segments with a lock count of zero are eligible to be swapped. Pro-
grams have the option of identifying which segments are the best candidates for
swapping; this is discussed later.

The compaction routine moves and compacts far segments in physical
memory. Swapping occurs only when the compact routine is unable to acquire
enough space through compaction alone. Swapping continues until-the compac-
tion procedure is able to satisfy the request for space. S

When LockObject() is called upon a swapped-out object, it _.'(;auéé?hgsys-
tem to swap the object back in before it returns to its ca er. This meal‘isj,—élat,
except for timing considerations, the swapping of segments\i@t}a}gspé.ren} torthe

{, S

application program. o6 e
R CE 0, e
4.2. Near (Local) Memory s

Near (local) memory is allocated from ,th;\{@slc’s automatic data (DS) seg-
ment. Near objects are sized in bytes, and\are- aligned on '-g‘;ﬁyte boundaries.
The maximum amount of memory that 6&?&1}6@@&4}5’85& In practice, the
limit is smaller than that because 0123/8 s;p(ace consymed-by static data and pro-
gram stacks. The key distinction bétween\far mens:%:%n’d near memory is that
a far memory object is a segmen and is adc
pointer. A near memory object is_£ section ol
ment, specifically the program’s automati
(when locked) via a 16-bitmrear—poi
segments are discussed i’ more-det

ed (when locked) via a 32-bit far
emory contained within a seg-
data segment, and it is addressed

Like far memor{;é
those terms refer to beimg fixed or no¥able with regards to their offset in the DS

s

segment, not with reg 'i:}&::gg\thyigcﬁne’s physical memory. A fixed or locked
near memory object wHiSmiove in-pliysical memory if the DS segment itself is
moved. The object is comsideredfixed if the offset within that DS segment is
always th/e/gime. Of course, if the programmer wishes to generate a far pointer

toa near\lngmo}y\object e’must lock (or declare fixed) both the near object and

the automa datz}sg ent itself.

Compac:%n\{s accoryp’lished by the use of handles and the LoekObject and
UnLockObject subroitines. Although intentionally similar in concept, far
memory and near merhory differ in three important ways:

1) LockObject returns a far pointer to the specified object. If this object is a
near object then both the object itself and the automatic data segment that
contains it are locked. Most frequently the programmer wants to generate a
near pointer to the local object, in that case LockLocalObject should be
used. LockLocalObject returns a near pointer and does not lock the
automatic data segment.

Sirie

2) It is important to keep far memory locked for as short a time as is feasible
to permit the DOS to shuffle memory freely. This restriction is relatively
unimportant for near memory objects because they are moved only when
the program itself requests memory; not in response to a request by some
other program. ¥

3) Near memory objects are not swapped.

Note that a fully conforming program’s automatic DS segment is globally
movable. In this case, an immovable near memory object has a fixed offset
within that DS segment, but the segment itself may be moved in physical
memory. Such moves of automatic segments are transparent to the program.

»/ 2

g

4.2.1. Handles =

Alloc() returns a handle for near objects as well as for far_objects. . Whthe
near object is of the fized type, the two low-order bits of thé\h‘aqd{e are zero;'and
the handle can be used directly as the offset (near poigter) of the tbject:” For a
movable near object, the handle contains informatié;nh)

ion td. allow Lgé?éb;iﬁ:t to
locate the pointer to the object and to mark it loc'kédij_'_im Un cObject is

N

called with that handle. ; R \

5. Automatic Segments s

5.1. Definitions
Frame

A frame is a section of memory on a process’s stack that contains informa-
tion used by the currently executing procedure. Each process has a stack
containing one or more frames. Stacks are only associated with processes,
pever with library routines or library segments.

Automatie Segments

An automatic segment is a segment that is implicitly. allocated by the
operating system to hold a program’s code and data values. These segments
are not explicitly allocated by the program, nor are they xiormhllfigeallo
cated by the program. These segments are usually -gi!dfésed;ﬂéf?g‘gluw
kept in the CS, DS, and SS registers throughout the Qéfp,ﬁon‘ of :thé pro-
gram. Middle-model programs may have mu},ti‘;)_%‘e\automatic code seginents;
only one of these segment values is in CS at ﬁn’x“'.pggi%iine. < s r

5.2. Moving Automatic Segments (\\ hh 2

T SN
e

xe. explicitly allocgted and must be

-

Unlike manual data segments th :
locked to be referenced, automatic d a ségments aré-autémafically allocated and

~—-

are automatically and transparently’ moyed, whens ~es‘smg&"

An automatic data segmen.t"‘canAbe'_
ences to the segment are con{qin,e'd‘in;‘c ~8S, DS and ES, or in CS and DS

images in the frame. This result§ in some festrictions on the use and passing of
natjc data segmientss” These restrictions will be dis-
[

{
H '3:3

5.2.1. Frame Foﬁfx_i%\ &5
d7data segments, the system must be able to

“walk” the stack of tRe-procéss;-dnd to find and edit any references to the seg-
ment being moved. The format of the process's stack, the frame format, makes

this p 4 sible‘.\'{‘he ?&md frame format is shown on the following page.
R >
_ s
£d
~. _’,
\\‘(_r o’

SAVED BP

+—4

Procedure Frame

SAVED CS8

SAVED IP

|
||
+——| SAVED BP S,

| SAVED Ds

B R . it St 2

oy

|
SAVED BP ey

Fram

When a far procedure is called, CS, &
The low-order bit of the savedBP Jra & is)
was a far call and that CS and DS<were pu:

When an automatic se;
DS, ES and SS registeps.
values are edited to m’cheﬁte‘t _~ 0
ter to locate and “walk{ the sts (fk;aEach of the pushed CS and DS values is
examined to see if it xrefés to the ;tegﬁxent being moved. If so, the value is edited
to indicate the new lovatxﬁﬁ\ _An :7”

Note that the sys‘;iem caxu)" find segment references that are in the seg-
ment regjsters themselves or that were pushed on the stack as part of the frame
format «@‘str&ed abovet. A segment value that is in some other register, else-

where on™the stmk elsewhere in memory will be overlooked with disastrous
consequences: /
Also note that it is not permissible for conforming programs to use segment

registers as “‘scratch’pads.” If the data value in a segment register happened to
be equal to a segment value being moved, that data value would be changed.

65.2.2. Segment Locking

As discussed in Section 5.2., the DOS can move an automatic data segment
in memory whenever it is necessary because it can check the program’s segment
registers and the places on the stack where the CS and DS register contents have
been saved as part of a far-procedure call. This last statement does not mean

-10-

that the DOS can find and update any CS and DS values on the stack, only those
that were pushed as part of a far-procedure’s preamble sequcnce. This special
sequence is generated by Microsoft's compilers; assembly language programmers
should use macros to produce the code necessary to generate this format.

Sometimes it is necessary to have other occurrences of the data segment’s
segment number. For example, it may be necessary to generate the long-address
(in C, a far-pointer, “farp”) of a data segment variable to pass to some library
routine. This can be done, but only after locking the automatic data segment so
that the DOS will not try to move it. The DOS cannot tell that this extra
pointer has been generated, nor can the DOS find the extra pointer. If the data
segment is not explicitly locked and if the DOS moves the segment, the extra far
pointer will now be pointing to some other program’s memory that could cause a
system crash. The rule is: R L W

' STk (3‘3\
The data segment must be locked befo; its\seg"fj;éht number’is put in any
register (other than DS), on the sta.ék_;,&m; in any pt‘hé?_; mory location.
The data segment must remain locked:unttl, that $ar petfiter is no longer
being used. (The few highly-spe&ialized\eig’c_épifgqs to this rule are discussed
in Section 5.2.4.2) e & e e

\’\- _— A ‘;\
Care must be taken be m&t\b{s

-

1y

Y

W EE

\\) = \j‘

N\ﬁk 7

s Tule is nb,t/fol]owed, the program will

usually run and may pass exhaustive testsy nfﬁhe«!{ay it will crash the system.
For example, the fql-Ibwing_%broutine, “dataout’, takes a far pointer and a

byte count. This show{\thgf rect-Jacking procedure:
3 -

“Ban® = GetDSHandle();
//‘\\ dataout((farp)static_bfr, 100);

\ xynLockObject(ds_hand);
\-\\ ‘:.y
o s
P
7

.~ LockObject(ds_hand);
LY dataout((farp)frame_bfr, 100);
UnLockObject(da_hand);

ject(ds_hand); /* lock for farp generation »/

char static_bfr[100];

SUBR()
{

char frame_bfr[100];
farp sfptr;
int ds_hand;

ds_hand = GetDSHandle() :

fptr ==(Iarp)atatic_bfr;

LockObject(ds_hand); /* lock for farp generation s/
dataout (fptr, 100);

UnLockObject(ds_hand);

This fragment is sncorrect because it generates the far pointer before it locks
the data segment. The DOS may move the data segment after the “fptr ="
statement but before the LockObjeet() call.

Y

6.2.3. Usage Guidelines - General

6.2.3.1. Locking Automatie Data Segments

A conforming Program must lock its automatic data segment before any far
(long) pointer is generated. Most C programs are small or middle model and
they only have one data segment, so far pointers are rarely needed. (Large
model programs make such extensive use of long pointers that the linker forces
their data segments to be permanently fixed and thus they do not need to be

6.2.3.2. Using Handles Instead of Segments

Note that pPrograms written for the conforming environment need not forego
a multiple—data-segment capability to retain segment movability, A conforming

-12-

segments by saving the addresses as a handle:offset pair rather than a
segment.offset pair. Routines that use these ‘‘addresses” would use the
LockObject call to guarantee that the segment is locked before the data item is
referenced. There is no problem if some of these handles represent fixed objects;
LockObject works properly for all handle types. »

Similarly, a subroutine written exclusively for the conforming environment
could take a handle:offset pair instead of a far pointer, alleviating the need (in
the calling routine) for a LockObjeet call. Naturally the subroutine itself must

use LockObjeet, but it would presumably only do so immediately before
referencing the object. :

e -~
-

5.2.3.3. Minimising Duration of Locks ey

The DOS’s memory management performance is'_cgnSi’dex‘a.bl‘y}_hindered by a
locked data segment so the programmer must %mqm'ze the-length of time that
any movable segment is kept locked. The LockObject() and UnFockObject()
subroutines are fast and can be called freqiently. If it appears dcessary to keep
a far pointer valid for a more than a \Sﬁpit»_~{}egiod OLche programmer
should use a different technique. Fo, example;-if the items needing “long dura-
tion” far pointers are few and/or stall in Siié;’ﬂ}é could be allocated in a
separate, fixed segment. This would _‘gll_?_gg\‘:he progfam’s automatic data seg-
ment, containing the program’sht.:liﬁq}}he: bulk’of $he program data, to remain
movable. As a final alter atigg,/ the programmer’could instruct the linker to

indicate that the automatic datasegment is“notTnovable; it is to be permanently
fixed. i F B0

If a segment is to spend most or. all of its time being fixed, it is best that the
DOS understand this from the beginhi
special area of ory-te minimize the amount of fragmentation they cause. It’s
best for a segment=to:
worst of all forf
of memory,

Note:

it°to appear movable, be allocated in the movable area
'up being fixed most of the time via LockObject.

»_ & program reads-commands from the keyboard and if those commands are
7 | rapid, itswould be acceptable for the program to read a command, lock
\ the~data ségment, execute the command, and then unlock the data segment

efore i reads the next command. Such a program would spend most of its
time blockéd on keyboard input from the Read call; during that time the
data segrent would be unlocked. :

Since most interactive programs spend most of their real time blocked on
command input, it is especially valuable for them to have their movable seg-
ments unlocked at those times. This is also the time that the user will most
likely (via the session manager or a window package), attempt to start a
new program and thus call upon the DOS for more memory.

-13-

5.2.3.4. Far Pointers to Code Segments

The DOS treats automatic code segments in a special manner because every
far call into a segment contains a segment value as an operand of the instruction.
This means that a great number of copies of a code segment’s Segment number
may exist. For this reason the DOS inserts a data structure called a call thunk
between the far call instruction and the called address. Specifically, when the
DOS loads a conforming program, a call thunk is allocated in a fixed memory
location known to the DOS memory manager for every far entry address. The .
far call instructions that call these entry points are fixed to call to the entry
point’s thunk, the thunk in turn jumps to the true entry point. When the DOS
moves a code segment, it edits the thunk belonging to-each of the segment’s
entry points so that they point to the new memory loéation:

As a result, there is no restriction upon the genegéi:ién“and usage of pointers
to far (“global”) entry points because these Rointers actually-point to the
corresponding call thunk that is never moved.\ [t- is; nét necessary to lock
automatic code segments in order to genergtie'\lia\r poEtEfg to procedures.

o

65.2.4. Usage Guidelines - Assembly Lungnage\

When writing a conforming assg‘rhb.ly language-program, it must be remem-
bered that the DOS may move any.automatic, moyébi:e, or unlocked segment at
any time, and that the DOS m\oﬁlivup te_the-s¢ggment registers and those
registers stored in their pr'?{':)l e in flfegiﬁmal | frame format. Random disas-
ters will occur if a program kee segment Valies elsewhere without first locking
the segment. Of course, this only lies to programs that declare themselves to
be conforming. Progra s that\do-fiob\make such a declaration have their seg-
ments permanently fixed are ther re. frped from these requirements. However,
they will lose the ts of being mdvable, swappable, 286 compatible, and
ress greates than 640K of memory. :

This sectjorill Iis¢usssome considerations that make the writing of con-

forming assembly langua : ograms sufficiently easy that all new assembly
language prog "ams, should! beiconforming. A conforming program obeys three
conventions: Semoiw V3 '

—am—— Yy . - T 2

1) It maintains 3¢Q§[ming stack and frame format
2)” \&uses and places values in the segment registers in the proper manner.

I It bcks ay/unkcks segments as necessary.
SR p ,
5.2'4‘1.

o
Calling Sequences

The frame format shown earlier is the “full strength’ version used for far
calls to a procedure. Most or all of the calls in an assembly language program
are near calls and can use a simpler format. The stacks of all conforming pro-
grams have two things in common: they are word aligned and the BP register
always points to the bottom-most frame. The saved BP value in that frame links
upwards until a 0 value is found in the “saved BP” cell in a frame. When a task
is initiated DOS will have zeroed the BP register so that a just-starting program
has a legal, null-length frame chain. :

-14-

5.2.4.1.1. Near Calls Without BP
The simplest form of near-call is to just use the eall and ret instructions:

CALLER CALLEE

call SUBR
SUBR: . ~

ret

This form is used when the called subroutme does not- change or store the
corutents of SS, CS, DS, ES, or BP. In this case, BP is “still pointing to an earlier
valid frame, the return offset pushed by the call and any other “data pushed by
SUBR is seen by the DOS as just the private workmg storggeml the frame
pointed to by the BP register. Note that a small lﬁode} program .tha‘i never uses
BP maintains a conforming frame format.

5.2.4.1.2. Near Calls With BP

If the called subroutine is to useﬁP to addras xts‘ frame then it must save
BP in the proper manner so that DOS canstill travarsa‘the stack. The sequence

is: \ \‘; :
CALLER
call SUBR

; BP unchanged

mov SP,BP
pPop BP
ret

Since the pus :d BPjalue was EVEN when the DOS scanned up the stack,
no CS\or DS value was saved at this spot.

Y
5.&«1.3,\5_ Ce)ls Without DS

The. far call sequence differs from the near call sequence in two ways. First,
the BP value is- incremented before it is pushed. This alerts the DOS to the fact
that this frarfe contains saved CS and DS values. Second, the DS register must
be pushed. This is done even in the case shown where the called routine will not
change the contents of DS. This is necessary because if it were omitted, the DOS

might erroneously edit the first data value pushed after BP in the mistaken belief
that it represents a segment value.

As previously noted, the far-call instruction contains a segment specification
within it. If the called segment is movable the DOS causes the call instruction

-15-

to point to a long-jump instruction. The memory manager routines maintain
this jump instruction so that it points to the movable segment at all times. This
insertion of 2 “jump thunk” is done at load time 2nd is transparent to the pro-
grammer. r

CALLER CALLEE
call SUBR . far call

SUBR: ine bp

push bp

mov bp,sp

push ds__

»/ j.‘
A st BP unchanged

ﬁov{__i-sﬁ;bp. ﬁgﬁ

POP\ bp . T

dee ~hp”

2 y far return

§.2.4.1.4. Far Calls With DS . '\

"I

This form of the far call sequenve s uded for § Bgi}utinu that have their
own automatic data segments. is yituation:id-not’ copfmon, it comes up when
using certain forms of dyna 'call‘knked sgbroutings. Refer to the Microsoft
Multitasking MS-DOS Produét Spedification DYNAMIC LINKING document for
details. As in the previoug’example, the DOS inserts a jump thunk. In addition,
the thunk loads AX with thecalled.subréutine’s automatic DS value, so AX can-
not be preserved when calling “extern

(X3

CALLER CALLEE
call
SUBR: inc bp
push bp
y mov bp,sp
/’\\\ push ds
LS mov ds,ax
. _ : BP unchanged
;ub bp,2
mov sp,bp
pop ds
pop bp
dec bp %

ret ; far return

= 1B

5.2.4.2. Segment Register Manipulation

The preceding text emphasizes that an assembly language program must not
manipulate the contents of CS, SS, DS, ES, and BP. This was done for the pur-
pose of simplification; in actuality a program may manipulate the contents of DS
and ES if the proper conventions are observed.

SS must never be changed; the DOS uses SS:BP to traverse the stack and it
assumes that the stack is wholly contained within the SS segment. CS may only
be changed via far calls, far jumps, and far returns. These can only be done in
the exact form shown in the previous example. It is not sufficient to substitute
an “equivalent” code sequence, because the DOS may move a segment while the
program is in the process of executing the frame setup/takedown sequences. At
these times the frame format is invalid because it is incomplete. . Tmmediately
before scanning the stack, the DOS examines the next instructions to beexe-
cuted. If they are part of the code sequences shown, the DOS understands that
the frame information is incomplete and handles the situation properly. Th& use
of a different instruction sequence to build or tear down the frame, .or-the Use of
those specific instruction sequences elsewhere lhaﬁ\?::_bf_'é\l_{t;ﬂc enfry and’ ezit is
forbidden. o e 6

The restrictions on the use of DS and_,ES\a(e more ﬂeaable Two different

cases will be considered: the loading of gb “ES-with the;ségf;xent number of a
g of DS

-~

fixed or locked segment, and the lo:;yx{ with thé segment number

of an automatic code or data segmer

¢ Loading DS/ES With a Fixéd opTig

Since there are no restrictions on the use of
ment number (or on the creation or use &{
segment); the progfamimetsc

ent

fixed or locked segment’s seg-
ar pointer to an item in such a
pocap use any method desired to load the value
into DS or ES. However,~& problem does arise if the programmer wants to
save the previous ¢sntents of ’&ﬁé}e registers. If a segment register contains
the segment nui@ﬁl\of an unlogked automatic segment, then its contents
may not be stored’or pushéd: To do so would create an unfindable (and
therefore unfixable)¥eference 46 the segment.

Mos/t,/é‘f\g‘he time the \pr\ev'ious DS or ES value is that of the automatic data
seginent. “This v/a;u{*is usually also in SS, so the programmer can avoid the

problem by Peloa g/lj'S or ES from SS, instead of by saving and restoring
it. i '

7
7
Vs
Y

e Loading DS/E\S"W ith an Automatic Segment Number

The loading of DS/ES with an automatic segment number presents some
special problems. Once the value is in DS or ES, then everything is fine.
The problem is, that since there are no ‘‘move segreg-to-segreg’' instruc-
tions, the automatic segment value must be staged through a memory loca-
tion or a general-purpose register. The presence of an unlocked automatic
segment number in a general register or memory cell is illegal, even if only
for a very short time. A correct interpretation of the DOS segment register

/

- 17 -

restrictions will show that the sequence:

PUSH sS
POP DS

is improper, because the automatic data segment’s number is momentarily
present on the stack.

The fact that this sequence is forbidden is burdensome to the assembly
language programmer, so the DOS has special provisions to recognize and
properly handle the following code sequences:

PUSH SS i
POP DS e
PUSH SS aELSy a
POP ES \\:’/ s L -§
PUSH CsS = Y
POP DS i\ \\ S
RUSH ©8 .~ <%
POP DS - > X\ I

\ % ‘:\) :,:;:;:;:‘/' S j

PUSH 8BS / s

that load the CS value into DS or ES should only

a:items from the CS segment. Programs that write into
rﬁz? 286 compatible.

e ':S._-‘
' ﬁ\ngi}gﬁerrnpts
+"__There exists one additional technique that the assembly language program-

2LE

\’Sixgc thg,DOS cannot take control away from the program while inter-
are disabled, a program can:

mer ‘ean use wheq manipulating segment registers: temporarily disabling inter-
ts.

™\ Disable interrupts. '
Do something non-conforming with segment register values.
Become conforming again.
Enable interrupts.

Note: Interrupts may be disabled only for a very short time; no more than 100
microseconds. The disabling of interrupts for a longer interval will prevent the
DOS from servicing interrupts and scheduling tasks at its specified rate. This can
can cause network and communications programs to lose data and fail.

-18-

5.2.4.4. System Calls

Many system calls require an address to be passed in a segment-register
offset-register pair, typically DS:DX. The DOS is written so that if the DS seg-
ment is moved during the system call the system call will proceed properly.
Upon exit from the system call the DS register will contain the new value.

-19 -

6. Advanced Features

6.1. Swap Advisory

When a far memory object is allocated, a flag bit can be set to indicate
whether that object is a good candidate for swapping; that is, the information
that it contains will probably not be used for a while. However, the setting or
clearing of this bit does not guarantee or prevent the swapping of the object.
_ This bit is strictly advisory.

6.2. Discard

Memory scgments can be marked discardable and given a” urgency level.
The system defines *“‘urgency’ levels (skown below) as a range from 0 to 15, in
increasing levels of importance. A segment marked ‘‘discard level 2™ will beg, dis-

]

carded when level 0 and level 1 actions are not yielding theimemory negdgdj_‘;‘f;

At each urgency level the DOS takes the apprqpxi:.sx&ﬁnﬁvfb; th&t;},ével.
If this does not free the necessary space, the DOS ad¥antes to the qu'ﬂéyelf

N e

N

S

N

The applicable urgency levels are:

Level 2:

Level 3: Fd _
Data that requires some CPQ ti’x,né‘ o e}
Level 5: N

Data that requires so
Level 7: =

The DOS discardté_d;gt

e

th

-920-

Appendiz A

Subroutine Calls

1. Handles

The handle is a 16-bit pointer to an object that contains sufficient informa-
tion to allow a client program to access the object. The low-order bit (bit 0) of a
handle is zero for local objects and one for global objects. The next t Jow-order bit
of a handle (bit 1) is zero for fixed objects and one for movable objects, The
remaining 14 bits (bits 2-15) contain a pointer. Local objects are allocxthd in
bytes. Global objects are allocated in blocks of 16 bytes (parso'raphs) —Since the
low-order two bits of a handle are used to encode type mfonnat’ion 8503;{ the
object to which it points, this forces certain ahgn,m restrictions... Fof local
objects, it means that they must be aligned on 4-byte %oundam.,. or global
objects, it means they must be aligned on 64-b{te boundana\The two type bits
are the minimum information needed by the m‘emory alloca.teg to dereference a

The 14 pointer bits in a handl;é i

Fixed, local object

Pomter is an offsebowithin: the ontaining global object that the local object
ocated in. The-poinfer points to a two-word block. The first word

contams he ¢ xjn)tj the number of outstanding copies of the pointer (i.e.,
re

urce Semap)>. The second word contains the actual pointer to the
object

Fixed, global obj ect\ f

Pointer is a “‘paragraph” address of an object in physical memory. ‘The

object can be accessed by masking out the low-order bit, and loading the
result into a segment register.

-921-

Movable, global object

Pointer is an offset within the memory allocator’s data segment of a two-
word block of memory. The first word contains the count of the number of
outstanding copies of the pointer (i.e., it is a resource semaphore). The
second word contains the actual “‘paragraph’ address of the object in physi-

cal memory.
2. Calls
Alloc (Flags, Size) P
Purpose P At —~
This routine allocates an object from memory of the type spgctﬁed ,:&
Parameters ' ,\ \\"’ » W ';v

Flags defines several flags that determine Low the ob) ot wﬂl«Qe alloc’ated as
described below. Note that flags other th) d ﬁxed/movable
are subject to change at any time. All otlgt

use and must be zero.

local/global ﬂag

dle points dxrectlr 67 a

discard flag

If set indicates thatx Ee segme is to be discarded when the system runs out

of memory, rather thamswapped. This bit may be set and cleared dynami-
n\ﬂ{z ReAllog call.

cally’via
\ . /\
N
swap candidate flag " /

If set mdlc\t@ that’ the segment is infrequently used and is a good candidate
for swapping if+the DOS finds that it must swap. The setting of this flag

does not guarantee that a segment will be swapped; nor does the absence of
this bit guarantee that a segment will not be swapped.

Size is the total number of bytes to allocate. The actual number of bytes
allocated may be larger due to alignment constraints.

Result

If successful, this routine returns the handle of the requested segment, other-
wise, it returns zero.

LocalAlloe (Flags, nBytes)
Purpose
This routine is a simpler version of Alloc used to allocate local objects only.

o

Parameters P

Flags defines several flags that determine how the object ‘will bé alloeated as
described below. All undefined bits are reserved for Microsof; use and must
be zero. \ S S o

> N EDT Az

.’-{ ¥

L"«llu

fixed/movable flag

Determines whether the object is movable or not \If \?l- the returned han-
dle points directly to the allocated object, b

,_\r\ A

< 2
nBytes is the total number of by tw \aJlo\éate?\jjhe ,actugnamber of bytes
allocated may be larger due to myﬂt consti a.mts» S

Result

If successful, this routine returns the Y nﬂle f the memory object. Other-
wise, it returns zero. =

ReAlloc (Handle, Sm{ %
Purpose DEA

i :::\ T:'-s' |
This routine chang ‘lr/;t size and/or flags of an object.

Parameters
Hanw‘e\xdent"ﬁes %)Wt to be changed.
Size specifies the new, size of the object. .

FlagMask an J:?Valuca are used to optionally change the settmg of some
of the object desériptor flags. The value of every flag specified in flagMask
is changed to the value of the flag set in FlagValues.. A zero value for Flag-
Mask indicates no change in flag state. The only flags that may be changed
are:

swap candidate flag

keep/discard flag

-923-

Result

If successful, this routine returns the handle to the reallocated object; other-
wise, it returns zero.

Notes

A fixed memory object may not be extendible; there may be another fixed -
object adjacent to it in memory. If so, the user may want to allocate a new
fixed area of the larger size, copy the contents of the old area, and then
release the old area. In effect, this involves the moving of a fixed segment,
so the DOS will not perform this process automatically. The movement

must be done by the application program to guarantee the appropnatenm
of the procedure. -

Commonly the DOS may be unable to extend the size; of Mable segm::\nts

that are currently locked. It is strongly recommended th\t_/ll_m’ovable seg-
ments be unlocked before their size is extended :

.7

-

LocalReAlloc (Handle, Size)
Purpose

This routine is a high speed, si
local objects only.

Parameters

GetDS dle
Purpose
This routine-returns’t he handle of the calling process’s automatic data seg-

ment. Since ths alue is a handle it will remain valid throughout the execu-

tion of the program This handle can be used to lock and unlock the
automatic data segment.

GetSize (Handle)
Purpose

-24-
This routine returns the current size of the object specified by Handle.

Parameters
Handle identifies the object.

Result

If successful, this routine returns the size of the object specified by Handle.
If an invalid object is specified, it returns zero.

LockObject (Handle) _ ,. -
Purpose i A X
This routine dereferences the handle of the object 1denhﬁed by Han?le igto

a physical address. If Handle specifies a local mqv*ab\le ijvct’ihen,bothaihe
object itself and the automatic data segment contaim g.it are locked /

- P

Parameters

table entry.

For fixed ob]ects,- ;
dle into a physical &

Invocatxons of Loc*

mswap
LockLocalk}ect (Pun/ll‘
Purpose

This routine is a"‘rersxon of LockObject used to dereference local objects
only. Its use is advantageous because it returns -a 16-bit near pointer
(“offset”) and does not cause the automatic data segment 1tself to be locked.

Parameters
Handle identifies the object to be dereferenced.

- 95 .

Result

If successful, this routine returns a 16-bit near pointer. If an invalid object
is specified, it returns zero.

UnLockObject (Handle)
Purpose

This routine decrements the lock count for the object specified by Handle,
undoing the effect of a LockObject call. The programmer must insure that
no far pointers obtained while the object was locked are every used again.
Future references to the segment must be made by relod:mg vthe segment

and obtaining new far pointers to objects within it. e
Parameters _
Handle identifies the object. ’”\
\;'3\:.'_‘ .
Result »

If successful, this routine returns a Boolcih value of 'IRUE If the lock
count of the object was already zerogit ?et{trns SE:

FETN 77
Notes / =T

If LockObject is used to lock -a Jqcal object, it is important that
UnLockObject be used correspondi
then the automatic data segment will

Purpose

This routine decr&g e
dle.

Paramet<ri ¥
Handle dentfﬁes

Result L4

N\

If successful, th{s routine returns a Boolean value of TRUE. If the lock
count of the object was already zero, it returns FALSE. 3

lo;fal object.

Notes

- 26 -
If LockObject is used to lock a local object it is important that
If UnLockLoealObject is used

UnLockObject be used correspondingly.
then the automatic data segment would be left locked.

Free (Handle)
This routine destroys the object identified by Handle and returns its

Purpose
memory to the system. .
Parameters ra ,
Handle identifies the object. S & \\
N
Han-

1, it returixs t e
//

eturns zero. If unsucc;\ﬁeh

Result
If successful, this routine r

dle.

IsSwapped (Handle)
Purpose
This routme determines whet er h global ob

Parameters
Handle identifies the-globals

Result 223
If the global ob)éet;i ntified 'by‘;iandle is currently swapped out to secon-
ret‘ﬁ'i'g a Boolean value of TRUE.

=

& et v
~

