317 lines
10 KiB
C
317 lines
10 KiB
C
|
/*
|
||
|
---------------------------------------------------------------------------
|
||
|
Copyright (c) 1998-2006, Brian Gladman, Worcester, UK. All rights reserved.
|
||
|
|
||
|
LICENSE TERMS
|
||
|
|
||
|
The free distribution and use of this software in both source and binary
|
||
|
form is allowed (with or without changes) provided that:
|
||
|
|
||
|
1. distributions of this source code include the above copyright
|
||
|
notice, this list of conditions and the following disclaimer;
|
||
|
|
||
|
2. distributions in binary form include the above copyright
|
||
|
notice, this list of conditions and the following disclaimer
|
||
|
in the documentation and/or other associated materials;
|
||
|
|
||
|
3. the copyright holder's name is not used to endorse products
|
||
|
built using this software without specific written permission.
|
||
|
|
||
|
ALTERNATIVELY, provided that this notice is retained in full, this product
|
||
|
may be distributed under the terms of the GNU General Public License (GPL),
|
||
|
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
||
|
|
||
|
DISCLAIMER
|
||
|
|
||
|
This software is provided 'as is' with no explicit or implied warranties
|
||
|
in respect of its properties, including, but not limited to, correctness
|
||
|
and/or fitness for purpose.
|
||
|
---------------------------------------------------------------------------
|
||
|
Issue 09/09/2006
|
||
|
*/
|
||
|
|
||
|
#include "aesopt.h"
|
||
|
#include "aestab.h"
|
||
|
|
||
|
#if defined(__cplusplus)
|
||
|
extern "C"
|
||
|
{
|
||
|
#endif
|
||
|
|
||
|
#define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c])
|
||
|
#define so(y,x,c) word_out(y, c, s(x,c))
|
||
|
|
||
|
#if defined(ARRAYS)
|
||
|
#define locals(y,x) x[4],y[4]
|
||
|
#else
|
||
|
#define locals(y,x) x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3
|
||
|
#endif
|
||
|
|
||
|
#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \
|
||
|
s(y,2) = s(x,2); s(y,3) = s(x,3);
|
||
|
#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3)
|
||
|
#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3)
|
||
|
#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3)
|
||
|
|
||
|
#if ( FUNCS_IN_C & ENCRYPTION_IN_C )
|
||
|
|
||
|
/* Visual C++ .Net v7.1 provides the fastest encryption code when using
|
||
|
Pentium optimiation with small code but this is poor for decryption
|
||
|
so we need to control this with the following VC++ pragmas
|
||
|
*/
|
||
|
|
||
|
#if defined( _MSC_VER ) && !defined( _WIN64 )
|
||
|
#pragma optimize( "s", on )
|
||
|
#endif
|
||
|
|
||
|
/* Given the column (c) of the output state variable, the following
|
||
|
macros give the input state variables which are needed in its
|
||
|
computation for each row (r) of the state. All the alternative
|
||
|
macros give the same end values but expand into different ways
|
||
|
of calculating these values. In particular the complex macro
|
||
|
used for dynamically variable block sizes is designed to expand
|
||
|
to a compile time constant whenever possible but will expand to
|
||
|
conditional clauses on some branches (I am grateful to Frank
|
||
|
Yellin for this construction)
|
||
|
*/
|
||
|
|
||
|
#define fwd_var(x,r,c)\
|
||
|
( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
|
||
|
: r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\
|
||
|
: r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
|
||
|
: ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2)))
|
||
|
|
||
|
#if defined(FT4_SET)
|
||
|
#undef dec_fmvars
|
||
|
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c))
|
||
|
#elif defined(FT1_SET)
|
||
|
#undef dec_fmvars
|
||
|
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c))
|
||
|
#else
|
||
|
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c)))
|
||
|
#endif
|
||
|
|
||
|
#if defined(FL4_SET)
|
||
|
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c))
|
||
|
#elif defined(FL1_SET)
|
||
|
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c))
|
||
|
#else
|
||
|
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c))
|
||
|
#endif
|
||
|
|
||
|
AES_RETURN zrtp_bg_aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1])
|
||
|
{ uint_32t locals(b0, b1);
|
||
|
const uint_32t *kp;
|
||
|
#if defined( dec_fmvars )
|
||
|
dec_fmvars; /* declare variables for fwd_mcol() if needed */
|
||
|
#endif
|
||
|
|
||
|
#if defined( AES_ERR_CHK )
|
||
|
if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 )
|
||
|
return EXIT_FAILURE;
|
||
|
#endif
|
||
|
|
||
|
kp = cx->ks;
|
||
|
state_in(b0, in, kp);
|
||
|
|
||
|
#if (ENC_UNROLL == FULL)
|
||
|
|
||
|
switch(cx->inf.b[0])
|
||
|
{
|
||
|
case 14 * 16:
|
||
|
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
|
||
|
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
|
||
|
kp += 2 * N_COLS;
|
||
|
case 12 * 16:
|
||
|
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
|
||
|
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
|
||
|
kp += 2 * N_COLS;
|
||
|
case 10 * 16:
|
||
|
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
|
||
|
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
|
||
|
round(fwd_rnd, b1, b0, kp + 3 * N_COLS);
|
||
|
round(fwd_rnd, b0, b1, kp + 4 * N_COLS);
|
||
|
round(fwd_rnd, b1, b0, kp + 5 * N_COLS);
|
||
|
round(fwd_rnd, b0, b1, kp + 6 * N_COLS);
|
||
|
round(fwd_rnd, b1, b0, kp + 7 * N_COLS);
|
||
|
round(fwd_rnd, b0, b1, kp + 8 * N_COLS);
|
||
|
round(fwd_rnd, b1, b0, kp + 9 * N_COLS);
|
||
|
round(fwd_lrnd, b0, b1, kp +10 * N_COLS);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
#if (ENC_UNROLL == PARTIAL)
|
||
|
{ uint_32t rnd;
|
||
|
for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd)
|
||
|
{
|
||
|
kp += N_COLS;
|
||
|
round(fwd_rnd, b1, b0, kp);
|
||
|
kp += N_COLS;
|
||
|
round(fwd_rnd, b0, b1, kp);
|
||
|
}
|
||
|
kp += N_COLS;
|
||
|
round(fwd_rnd, b1, b0, kp);
|
||
|
#else
|
||
|
{ uint_32t rnd;
|
||
|
for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd)
|
||
|
{
|
||
|
kp += N_COLS;
|
||
|
round(fwd_rnd, b1, b0, kp);
|
||
|
l_copy(b0, b1);
|
||
|
}
|
||
|
#endif
|
||
|
kp += N_COLS;
|
||
|
round(fwd_lrnd, b0, b1, kp);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
state_out(out, b0);
|
||
|
|
||
|
#if defined( AES_ERR_CHK )
|
||
|
return EXIT_SUCCESS;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#if ( FUNCS_IN_C & DECRYPTION_IN_C)
|
||
|
|
||
|
/* Visual C++ .Net v7.1 provides the fastest encryption code when using
|
||
|
Pentium optimiation with small code but this is poor for decryption
|
||
|
so we need to control this with the following VC++ pragmas
|
||
|
*/
|
||
|
|
||
|
#if defined( _MSC_VER ) && !defined( _WIN64 )
|
||
|
#pragma optimize( "t", on )
|
||
|
#endif
|
||
|
|
||
|
/* Given the column (c) of the output state variable, the following
|
||
|
macros give the input state variables which are needed in its
|
||
|
computation for each row (r) of the state. All the alternative
|
||
|
macros give the same end values but expand into different ways
|
||
|
of calculating these values. In particular the complex macro
|
||
|
used for dynamically variable block sizes is designed to expand
|
||
|
to a compile time constant whenever possible but will expand to
|
||
|
conditional clauses on some branches (I am grateful to Frank
|
||
|
Yellin for this construction)
|
||
|
*/
|
||
|
|
||
|
#define inv_var(x,r,c)\
|
||
|
( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
|
||
|
: r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\
|
||
|
: r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
|
||
|
: ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0)))
|
||
|
|
||
|
#if defined(IT4_SET)
|
||
|
#undef dec_imvars
|
||
|
#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c))
|
||
|
#elif defined(IT1_SET)
|
||
|
#undef dec_imvars
|
||
|
#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c))
|
||
|
#else
|
||
|
#define inv_rnd(y,x,k,c) (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)))
|
||
|
#endif
|
||
|
|
||
|
#if defined(IL4_SET)
|
||
|
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c))
|
||
|
#elif defined(IL1_SET)
|
||
|
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c))
|
||
|
#else
|
||
|
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))
|
||
|
#endif
|
||
|
|
||
|
/* This code can work with the decryption key schedule in the */
|
||
|
/* order that is used for encrytpion (where the 1st decryption */
|
||
|
/* round key is at the high end ot the schedule) or with a key */
|
||
|
/* schedule that has been reversed to put the 1st decryption */
|
||
|
/* round key at the low end of the schedule in memory (when */
|
||
|
/* AES_REV_DKS is defined) */
|
||
|
|
||
|
#ifdef AES_REV_DKS
|
||
|
#define key_ofs 0
|
||
|
#define rnd_key(n) (kp + n * N_COLS)
|
||
|
#else
|
||
|
#define key_ofs 1
|
||
|
#define rnd_key(n) (kp - n * N_COLS)
|
||
|
#endif
|
||
|
|
||
|
AES_RETURN zrtp_bg_aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1])
|
||
|
{ uint_32t locals(b0, b1);
|
||
|
#if defined( dec_imvars )
|
||
|
dec_imvars; /* declare variables for inv_mcol() if needed */
|
||
|
#endif
|
||
|
const uint_32t *kp;
|
||
|
|
||
|
#if defined( AES_ERR_CHK )
|
||
|
if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 )
|
||
|
return EXIT_FAILURE;
|
||
|
#endif
|
||
|
|
||
|
kp = cx->ks + (key_ofs ? (cx->inf.b[0] >> 2) : 0);
|
||
|
state_in(b0, in, kp);
|
||
|
|
||
|
#if (DEC_UNROLL == FULL)
|
||
|
|
||
|
kp = cx->ks + (key_ofs ? 0 : (cx->inf.b[0] >> 2));
|
||
|
switch(cx->inf.b[0])
|
||
|
{
|
||
|
case 14 * 16:
|
||
|
round(inv_rnd, b1, b0, rnd_key(-13));
|
||
|
round(inv_rnd, b0, b1, rnd_key(-12));
|
||
|
case 12 * 16:
|
||
|
round(inv_rnd, b1, b0, rnd_key(-11));
|
||
|
round(inv_rnd, b0, b1, rnd_key(-10));
|
||
|
case 10 * 16:
|
||
|
round(inv_rnd, b1, b0, rnd_key(-9));
|
||
|
round(inv_rnd, b0, b1, rnd_key(-8));
|
||
|
round(inv_rnd, b1, b0, rnd_key(-7));
|
||
|
round(inv_rnd, b0, b1, rnd_key(-6));
|
||
|
round(inv_rnd, b1, b0, rnd_key(-5));
|
||
|
round(inv_rnd, b0, b1, rnd_key(-4));
|
||
|
round(inv_rnd, b1, b0, rnd_key(-3));
|
||
|
round(inv_rnd, b0, b1, rnd_key(-2));
|
||
|
round(inv_rnd, b1, b0, rnd_key(-1));
|
||
|
round(inv_lrnd, b0, b1, rnd_key( 0));
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
#if (DEC_UNROLL == PARTIAL)
|
||
|
{ uint_32t rnd;
|
||
|
for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd)
|
||
|
{
|
||
|
kp = rnd_key(1);
|
||
|
round(inv_rnd, b1, b0, kp);
|
||
|
kp = rnd_key(1);
|
||
|
round(inv_rnd, b0, b1, kp);
|
||
|
}
|
||
|
kp = rnd_key(1);
|
||
|
round(inv_rnd, b1, b0, kp);
|
||
|
#else
|
||
|
{ uint_32t rnd;
|
||
|
for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd)
|
||
|
{
|
||
|
kp = rnd_key(1);
|
||
|
round(inv_rnd, b1, b0, kp);
|
||
|
l_copy(b0, b1);
|
||
|
}
|
||
|
#endif
|
||
|
kp = rnd_key(1);
|
||
|
round(inv_lrnd, b0, b1, kp);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
state_out(out, b0);
|
||
|
|
||
|
#if defined( AES_ERR_CHK )
|
||
|
return EXIT_SUCCESS;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#if defined(__cplusplus)
|
||
|
}
|
||
|
#endif
|