freeswitch/src/switch_ivr.c

4828 lines
150 KiB
C
Raw Normal View History

/*
* FreeSWITCH Modular Media Switching Software Library / Soft-Switch Application
* Copyright (C) 2005/2006, Anthony Minessale II <anthmct@yahoo.com>
*
* Version: MPL 1.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is FreeSWITCH Modular Media Switching Software Library / Soft-Switch Application
*
* The Initial Developer of the Original Code is
* Anthony Minessale II <anthmct@yahoo.com>
* Portions created by the Initial Developer are Copyright (C)
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Anthony Minessale II <anthmct@yahoo.com>
* Paul D. Tinsley <pdt at jackhammer.org>
* Neal Horman <neal at wanlink dot com>
* Matt Klein <mklein@nmedia.net>
* Michael Jerris <mike@jerris.com>
*
* switch_ivr.c -- IVR Library
*
*/
#include <switch.h>
#include <switch_ivr.h>
Ringback (sponsored by Front Logic) This addition lets you set artifical ringback on a channel that is waiting for an originated call to be answered. the syntax is <action application="set" data="ringback=[data]"/> where data is either the full path to an audio file or a teletone generation script.. syntax of teletone scripts LEGEND: 0-9,a-d,*,# (standard dtmf tones) variables: c,r,d,v,>,<,+,w,l,L,% c (channels) - Sets the number of channels. r (rate) - Sets the sample rate. d (duration) - Sets the default tone duration. v (volume) - Sets the default volume. > (decrease vol) - factor to decrease volume by per frame (0 for even decrease across duration). < (increase vol) - factor to increase volume by per frame (0 for even increase across duration). + (step) - factor to step by used by < and >. w (wait) - default silence after each tone. l (loops) - number of times to repeat each tone in the script. L (LOOPS) - number of times to repeat the the whole script. % (manual tone) - a generic tone specified by a duration, a wait and a list of frequencies. standard tones can have custom duration per use with the () modifier 7(1000, 500) to generate DTMF 7 for 1 second then pause .5 seconds EXAMPLES UK Ring Tone [400+450 hz on for 400ms off for 200ms then 400+450 hz on for 400ms off for 2200ms] %(400,200,400,450);%(400,2200,400,450) US Ring Tone [440+480 hz on for 2000ms off for 4000ms] %(2000,4000,440,480) ATT BONG [volume level 4000, even decay, step by 2, # key for 60ms with no wait, volume level 2000, 350+440hz {us dialtone} for 940ms v=4000;>=0;+=2;#(60,0);v=2000;%(940,0,350,440) SIT Tone 913.8 hz for 274 ms with no wait, 1370.6 hz for 274 ms with no wait, 1776.7 hz for 380ms with no wait %(274,0,913.8);%(274,0,1370.6);%(380,0,1776.7) ATTN TONE (phone's off the hook!) 1400+2060+2450+2600 hz for 100ms with 100ms wait %(100,100,1400,2060,2450,2600) git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3408 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-11-19 01:05:06 +00:00
#include <libteletone.h>
static const switch_state_handler_table_t noop_state_handler = {0};
static const switch_state_handler_table_t audio_bridge_peer_state_handlers;
typedef enum {
IDX_CANCEL = -2,
IDX_NADA = -1
} abort_t;
SWITCH_DECLARE(switch_status_t) switch_ivr_sleep(switch_core_session_t *session, uint32_t ms)
{
switch_channel_t *channel;
switch_status_t status = SWITCH_STATUS_SUCCESS;
switch_time_t start, now, done = switch_time_now() + (ms * 1000);
switch_frame_t *read_frame;
int32_t left, elapsed;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
start = switch_time_now();
for(;;) {
now = switch_time_now();
elapsed = (int32_t)((now - start) / 1000);
left = ms - elapsed;
if (!switch_channel_ready(channel)) {
status = SWITCH_STATUS_FALSE;
break;
}
if (now > done || left <= 0) {
break;
}
if (switch_channel_test_flag(channel, CF_SERVICE) ||
(!switch_channel_test_flag(channel, CF_ANSWERED) && !switch_channel_test_flag(channel, CF_EARLY_MEDIA))) {
switch_yield(1000);
} else {
status = switch_core_session_read_frame(session, &read_frame, left, 0);
if (!SWITCH_READ_ACCEPTABLE(status)) {
break;
}
}
}
return status;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_parse_event(switch_core_session_t *session, switch_event_t *event)
{
switch_channel_t *channel = switch_core_session_get_channel(session);
char *cmd = switch_event_get_header(event, "call-command");
unsigned long cmd_hash;
apr_ssize_t hlen = APR_HASH_KEY_STRING;
unsigned long CMD_EXECUTE = apr_hashfunc_default("execute", &hlen);
unsigned long CMD_HANGUP = apr_hashfunc_default("hangup", &hlen);
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
unsigned long CMD_NOMEDIA = apr_hashfunc_default("nomedia", &hlen);
assert(channel != NULL);
if (switch_strlen_zero(cmd)) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Invalid Command!\n");
return SWITCH_STATUS_FALSE;
}
hlen = (switch_size_t) strlen(cmd);
cmd_hash = apr_hashfunc_default(cmd, &hlen);
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
switch_channel_set_flag(channel, CF_EVENT_PARSE);
if (cmd_hash == CMD_EXECUTE) {
const switch_application_interface_t *application_interface;
char *app_name = switch_event_get_header(event, "execute-app-name");
char *app_arg = switch_event_get_header(event, "execute-app-arg");
if (app_name && app_arg) {
if ((application_interface = switch_loadable_module_get_application_interface(app_name))) {
if (application_interface->application_function) {
application_interface->application_function(session, app_arg);
}
}
}
} else if (cmd_hash == CMD_HANGUP) {
char *cause_name = switch_event_get_header(event, "hangup-cause");
switch_call_cause_t cause = SWITCH_CAUSE_NORMAL_CLEARING;
if (cause_name) {
cause = switch_channel_str2cause(cause_name);
}
switch_channel_hangup(channel, cause);
} else if (cmd_hash == CMD_NOMEDIA) {
char *uuid = switch_event_get_header(event, "nomedia-uuid");
switch_ivr_nomedia(uuid, SMF_REBRIDGE);
}
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
switch_channel_clear_flag(channel, CF_EVENT_PARSE);
return SWITCH_STATUS_SUCCESS;
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
}
SWITCH_DECLARE(switch_status_t) switch_ivr_park(switch_core_session_t *session)
{
switch_status_t status = SWITCH_STATUS_SUCCESS;
switch_channel_t *channel;
switch_frame_t *frame;
int stream_id = 0;
switch_event_t *event;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
switch_channel_answer(channel);
if (switch_event_create(&event, SWITCH_EVENT_CHANNEL_PARK) == SWITCH_STATUS_SUCCESS) {
switch_channel_event_set_data(channel, event);
switch_event_fire(&event);
}
switch_channel_set_flag(channel, CF_CONTROLLED);
while (switch_channel_ready(channel) && switch_channel_test_flag(channel, CF_CONTROLLED)) {
if ((status = switch_core_session_read_frame(session, &frame, -1, stream_id)) == SWITCH_STATUS_SUCCESS) {
if (!SWITCH_READ_ACCEPTABLE(status)) {
break;
}
if (switch_core_session_dequeue_private_event(session, &event) == SWITCH_STATUS_SUCCESS) {
switch_ivr_parse_event(session, event);
switch_event_destroy(&event);
}
if (switch_channel_has_dtmf(channel)) {
char dtmf[128];
switch_channel_dequeue_dtmf(channel, dtmf, sizeof(dtmf));
}
if (switch_core_session_dequeue_event(session, &event) == SWITCH_STATUS_SUCCESS) {
switch_channel_event_set_data(channel, event);
switch_event_fire(&event);
}
}
}
switch_channel_clear_flag(channel, CF_CONTROLLED);
if (switch_event_create(&event, SWITCH_EVENT_CHANNEL_UNPARK) == SWITCH_STATUS_SUCCESS) {
switch_channel_event_set_data(channel, event);
switch_event_fire(&event);
}
return status;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_collect_digits_callback(switch_core_session_t *session,
switch_input_args_t *args,
uint32_t timeout)
{
switch_channel_t *channel;
switch_status_t status = SWITCH_STATUS_SUCCESS;
switch_time_t started = 0;
uint32_t elapsed;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
if (!args->input_callback) {
return SWITCH_STATUS_GENERR;
}
if (timeout) {
started = switch_time_now();
}
while(switch_channel_ready(channel)) {
switch_frame_t *read_frame;
switch_event_t *event;
char dtmf[128];
if (timeout) {
elapsed = (uint32_t)((switch_time_now() - started) / 1000);
if (elapsed >= timeout) {
break;
}
}
if (switch_core_session_dequeue_private_event(session, &event) == SWITCH_STATUS_SUCCESS) {
switch_ivr_parse_event(session, event);
switch_event_destroy(&event);
}
if (switch_channel_has_dtmf(channel)) {
switch_channel_dequeue_dtmf(channel, dtmf, sizeof(dtmf));
status = args->input_callback(session, dtmf, SWITCH_INPUT_TYPE_DTMF, args->buf, args->buflen);
}
if (switch_core_session_dequeue_event(session, &event) == SWITCH_STATUS_SUCCESS) {
status = args->input_callback(session, event, SWITCH_INPUT_TYPE_EVENT, args->buf, args->buflen);
switch_event_destroy(&event);
}
if (status != SWITCH_STATUS_SUCCESS) {
break;
}
if (switch_channel_test_flag(channel, CF_SERVICE)) {
switch_yield(1000);
} else {
status = switch_core_session_read_frame(session, &read_frame, -1, 0);
}
if (!SWITCH_READ_ACCEPTABLE(status)) {
break;
}
}
return status;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_collect_digits_count(switch_core_session_t *session,
char *buf,
uint32_t buflen,
uint32_t maxdigits,
const char *terminators,
char *terminator,
uint32_t timeout)
{
uint32_t i = 0, x = (uint32_t) strlen(buf);
switch_channel_t *channel;
switch_status_t status = SWITCH_STATUS_FALSE;
switch_time_t started = 0;
uint32_t elapsed;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
if (terminator != NULL)
*terminator = '\0';
if (!switch_strlen_zero(terminators)) {
for (i = 0 ; i < x; i++) {
if (strchr(terminators, buf[i]) && terminator != NULL) {
*terminator = buf[i];
return SWITCH_STATUS_SUCCESS;
}
}
}
if (timeout) {
started = switch_time_now();
}
while(switch_channel_ready(channel)) {
switch_frame_t *read_frame;
switch_event_t *event;
if (timeout) {
elapsed = (uint32_t)((switch_time_now() - started) / 1000);
if (elapsed >= timeout) {
break;
}
}
if (switch_core_session_dequeue_private_event(session, &event) == SWITCH_STATUS_SUCCESS) {
switch_ivr_parse_event(session, event);
switch_event_destroy(&event);
}
if (switch_channel_has_dtmf(channel)) {
char dtmf[128];
switch_channel_dequeue_dtmf(channel, dtmf, maxdigits);
for(i =0 ; i < (uint32_t) strlen(dtmf); i++) {
if (!switch_strlen_zero(terminators) && strchr(terminators, dtmf[i]) && terminator != NULL) {
*terminator = dtmf[i];
return SWITCH_STATUS_SUCCESS;
}
buf[x++] = dtmf[i];
buf[x] = '\0';
if (x >= buflen || x >= maxdigits) {
return SWITCH_STATUS_SUCCESS;
}
}
}
if (switch_channel_test_flag(channel, CF_SERVICE)) {
switch_yield(1000);
} else {
status = switch_core_session_read_frame(session, &read_frame, -1, 0);
if (!SWITCH_READ_ACCEPTABLE(status)) {
break;
}
}
}
return status;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_record_file(switch_core_session_t *session,
switch_file_handle_t *fh,
char *file,
switch_input_args_t *args,
uint32_t limit)
{
switch_channel_t *channel;
char dtmf[128];
switch_file_handle_t lfh = {0};
switch_frame_t *read_frame;
switch_codec_t codec, *read_codec;
char *codec_name;
switch_status_t status = SWITCH_STATUS_SUCCESS;
char *p;
const char *vval;
time_t start = 0;
uint32_t org_silence_hits = 0;
if (!fh) {
fh = &lfh;
}
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
read_codec = switch_core_session_get_read_codec(session);
assert(read_codec != NULL);
fh->channels = read_codec->implementation->number_of_channels;
fh->samplerate = read_codec->implementation->samples_per_second;
if (switch_core_file_open(fh,
file,
SWITCH_FILE_FLAG_WRITE | SWITCH_FILE_DATA_SHORT,
switch_core_session_get_pool(session)) != SWITCH_STATUS_SUCCESS) {
switch_channel_hangup(channel, SWITCH_CAUSE_DESTINATION_OUT_OF_ORDER);
switch_core_session_reset(session);
return SWITCH_STATUS_GENERR;
}
switch_channel_answer(channel);
if ((p = switch_channel_get_variable(channel, "RECORD_TITLE"))) {
vval = (const char *) switch_core_session_strdup(session, p);
switch_core_file_set_string(fh, SWITCH_AUDIO_COL_STR_TITLE, vval);
switch_channel_set_variable(channel, "RECORD_TITLE", NULL);
}
if ((p = switch_channel_get_variable(channel, "RECORD_COPYRIGHT"))) {
vval = (const char *) switch_core_session_strdup(session, p);
switch_core_file_set_string(fh, SWITCH_AUDIO_COL_STR_COPYRIGHT, vval);
switch_channel_set_variable(channel, "RECORD_COPYRIGHT", NULL);
}
if ((p = switch_channel_get_variable(channel, "RECORD_SOFTWARE"))) {
vval = (const char *) switch_core_session_strdup(session, p);
switch_core_file_set_string(fh, SWITCH_AUDIO_COL_STR_SOFTWARE, vval);
switch_channel_set_variable(channel, "RECORD_SOFTWARE", NULL);
}
if ((p = switch_channel_get_variable(channel, "RECORD_ARTIST"))) {
vval = (const char *) switch_core_session_strdup(session, p);
switch_core_file_set_string(fh, SWITCH_AUDIO_COL_STR_ARTIST, vval);
switch_channel_set_variable(channel, "RECORD_ARTIST", NULL);
}
if ((p = switch_channel_get_variable(channel, "RECORD_COMMENT"))) {
vval = (const char *) switch_core_session_strdup(session, p);
switch_core_file_set_string(fh, SWITCH_AUDIO_COL_STR_COMMENT, vval);
switch_channel_set_variable(channel, "RECORD_COMMENT", NULL);
}
if ((p = switch_channel_get_variable(channel, "RECORD_DATE"))) {
vval = (const char *) switch_core_session_strdup(session, p);
switch_core_file_set_string(fh, SWITCH_AUDIO_COL_STR_DATE, vval);
switch_channel_set_variable(channel, "RECORD_DATE", NULL);
}
codec_name = "L16";
if (switch_core_codec_init(&codec,
codec_name,
NULL,
read_codec->implementation->samples_per_second,
read_codec->implementation->microseconds_per_frame / 1000,
read_codec->implementation->number_of_channels,
SWITCH_CODEC_FLAG_ENCODE | SWITCH_CODEC_FLAG_DECODE,
NULL, switch_core_session_get_pool(session)) == SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Raw Codec Activated\n");
switch_core_session_set_read_codec(session, &codec);
} else {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Raw Codec Activation Failed %s@%uhz %u channels %dms\n",
codec_name, fh->samplerate, fh->channels, read_codec->implementation->microseconds_per_frame / 1000);
switch_core_file_close(fh);
switch_core_session_reset(session);
return SWITCH_STATUS_GENERR;
}
if (limit) {
start = time(NULL);
}
if (fh->thresh) {
if (fh->silence_hits) {
fh->silence_hits = fh->samplerate * fh->silence_hits / read_codec->implementation->samples_per_frame;
} else {
fh->silence_hits = fh->samplerate * 3 / read_codec->implementation->samples_per_frame;
}
org_silence_hits = fh->silence_hits;
}
while(switch_channel_ready(channel)) {
switch_size_t len;
switch_event_t *event;
if (switch_core_session_dequeue_private_event(session, &event) == SWITCH_STATUS_SUCCESS) {
switch_ivr_parse_event(session, event);
switch_event_destroy(&event);
}
if (start && (time(NULL) - start) > limit) {
break;
}
if (args && (args->input_callback || args->buf || args->buflen)) {
/*
dtmf handler function you can hook up to be executed when a digit is dialed during playback
if you return anything but SWITCH_STATUS_SUCCESS the playback will stop.
*/
if (switch_channel_has_dtmf(channel)) {
if (!args->input_callback && !args->buf) {
status = SWITCH_STATUS_BREAK;
break;
}
switch_channel_dequeue_dtmf(channel, dtmf, sizeof(dtmf));
if (args->input_callback) {
status = args->input_callback(session, dtmf, SWITCH_INPUT_TYPE_DTMF, args->buf, args->buflen);
} else {
switch_copy_string((char *)args->buf, dtmf, args->buflen);
status = SWITCH_STATUS_BREAK;
}
}
if (args->input_callback) {
if (switch_core_session_dequeue_event(session, &event) == SWITCH_STATUS_SUCCESS) {
status = args->input_callback(session, event, SWITCH_INPUT_TYPE_EVENT, args->buf, args->buflen);
switch_event_destroy(&event);
}
}
if (status != SWITCH_STATUS_SUCCESS) {
break;
}
}
status = switch_core_session_read_frame(session, &read_frame, -1, 0);
if (!SWITCH_READ_ACCEPTABLE(status)) {
break;
}
if (fh->thresh) {
int16_t *fdata = (int16_t *) read_frame->data;
uint32_t samples = read_frame->datalen / sizeof(*fdata);
uint32_t score, count = 0, j = 0;
double energy = 0;
for (count = 0; count < samples; count++) {
energy += abs(fdata[j]);
j += read_codec->implementation->number_of_channels;
}
score = (uint32_t)(energy / samples);
if (score < fh->thresh) {
if (!--fh->silence_hits) {
break;
}
} else {
fh->silence_hits = org_silence_hits;
}
}
if (!switch_test_flag(fh, SWITCH_FILE_PAUSE)) {
len = (switch_size_t) read_frame->datalen / 2;
switch_core_file_write(fh, read_frame->data, &len);
}
}
switch_core_session_set_read_codec(session, read_codec);
switch_core_file_close(fh);
switch_core_session_reset(session);
return status;
}
static void record_callback(switch_media_bug_t *bug, void *user_data, switch_abc_type_t type)
{
switch_file_handle_t *fh = (switch_file_handle_t *) user_data;
uint8_t data[SWITCH_RECCOMMENDED_BUFFER_SIZE];
switch_frame_t frame = {0};
frame.data = data;
frame.buflen = SWITCH_RECCOMMENDED_BUFFER_SIZE;
switch(type) {
case SWITCH_ABC_TYPE_INIT:
break;
case SWITCH_ABC_TYPE_CLOSE:
if (fh) {
switch_core_file_close(fh);
}
break;
case SWITCH_ABC_TYPE_READ:
if (fh) {
switch_size_t len;
if (switch_core_media_bug_read(bug, &frame) == SWITCH_STATUS_SUCCESS) {
len = (switch_size_t) frame.datalen / 2;
switch_core_file_write(fh, frame.data, &len);
}
}
break;
case SWITCH_ABC_TYPE_WRITE:
default:
break;
}
}
SWITCH_DECLARE(switch_status_t) switch_ivr_stop_record_session(switch_core_session_t *session, char *file)
{
switch_media_bug_t *bug;
switch_channel_t *channel = switch_core_session_get_channel(session);
assert(channel != NULL);
if ((bug = switch_channel_get_private(channel, file))) {
switch_channel_set_private(channel, file, NULL);
switch_core_media_bug_remove(session, &bug);
return SWITCH_STATUS_SUCCESS;
}
return SWITCH_STATUS_FALSE;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_record_session(switch_core_session_t *session, char *file, switch_file_handle_t *fh)
{
switch_channel_t *channel;
switch_codec_t *read_codec;
char *p;
const char *vval;
switch_media_bug_t *bug;
switch_status_t status;
if (!fh) {
if (!(fh = switch_core_session_alloc(session, sizeof(*fh)))) {
return SWITCH_STATUS_MEMERR;
}
}
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
read_codec = switch_core_session_get_read_codec(session);
assert(read_codec != NULL);
fh->channels = read_codec->implementation->number_of_channels;
fh->samplerate = read_codec->implementation->samples_per_second;
if (switch_core_file_open(fh,
file,
SWITCH_FILE_FLAG_WRITE | SWITCH_FILE_DATA_SHORT,
switch_core_session_get_pool(session)) != SWITCH_STATUS_SUCCESS) {
switch_channel_hangup(channel, SWITCH_CAUSE_DESTINATION_OUT_OF_ORDER);
switch_core_session_reset(session);
return SWITCH_STATUS_GENERR;
}
switch_channel_answer(channel);
if ((p = switch_channel_get_variable(channel, "RECORD_TITLE"))) {
vval = (const char *) switch_core_session_strdup(session, p);
switch_core_file_set_string(fh, SWITCH_AUDIO_COL_STR_TITLE, vval);
switch_channel_set_variable(channel, "RECORD_TITLE", NULL);
}
if ((p = switch_channel_get_variable(channel, "RECORD_COPYRIGHT"))) {
vval = (const char *) switch_core_session_strdup(session, p);
switch_core_file_set_string(fh, SWITCH_AUDIO_COL_STR_COPYRIGHT, vval);
switch_channel_set_variable(channel, "RECORD_COPYRIGHT", NULL);
}
if ((p = switch_channel_get_variable(channel, "RECORD_SOFTWARE"))) {
vval = (const char *) switch_core_session_strdup(session, p);
switch_core_file_set_string(fh, SWITCH_AUDIO_COL_STR_SOFTWARE, vval);
switch_channel_set_variable(channel, "RECORD_SOFTWARE", NULL);
}
if ((p = switch_channel_get_variable(channel, "RECORD_ARTIST"))) {
vval = (const char *) switch_core_session_strdup(session, p);
switch_core_file_set_string(fh, SWITCH_AUDIO_COL_STR_ARTIST, vval);
switch_channel_set_variable(channel, "RECORD_ARTIST", NULL);
}
if ((p = switch_channel_get_variable(channel, "RECORD_COMMENT"))) {
vval = (const char *) switch_core_session_strdup(session, p);
switch_core_file_set_string(fh, SWITCH_AUDIO_COL_STR_COMMENT, vval);
switch_channel_set_variable(channel, "RECORD_COMMENT", NULL);
}
if ((p = switch_channel_get_variable(channel, "RECORD_DATE"))) {
vval = (const char *) switch_core_session_strdup(session, p);
switch_core_file_set_string(fh, SWITCH_AUDIO_COL_STR_DATE, vval);
switch_channel_set_variable(channel, "RECORD_DATE", NULL);
}
if ((status = switch_core_media_bug_add(session,
record_callback,
fh,
SMBF_BOTH,
&bug)) != SWITCH_STATUS_SUCCESS) {
switch_core_file_close(fh);
return status;
}
switch_channel_set_private(channel, file, bug);
return SWITCH_STATUS_SUCCESS;
}
typedef struct {
switch_core_session_t *session;
teletone_dtmf_detect_state_t dtmf_detect;
} switch_inband_dtmf_t;
static void inband_dtmf_callback(switch_media_bug_t *bug, void *user_data, switch_abc_type_t type)
{
switch_inband_dtmf_t *pvt = (switch_inband_dtmf_t *) user_data;
uint8_t data[SWITCH_RECCOMMENDED_BUFFER_SIZE];
switch_frame_t frame = {0};
char digit_str[80];
switch_channel_t *channel = switch_core_session_get_channel(pvt->session);
assert(channel != NULL);
frame.data = data;
frame.buflen = SWITCH_RECCOMMENDED_BUFFER_SIZE;
switch(type) {
case SWITCH_ABC_TYPE_INIT:
break;
case SWITCH_ABC_TYPE_CLOSE:
break;
case SWITCH_ABC_TYPE_READ:
if (switch_core_media_bug_read(bug, &frame) == SWITCH_STATUS_SUCCESS) {
teletone_dtmf_detect(&pvt->dtmf_detect, frame.data, frame.samples);
teletone_dtmf_get(&pvt->dtmf_detect, digit_str, sizeof(digit_str));
if(digit_str[0]) {
switch_channel_queue_dtmf(channel, digit_str);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "DTMF DETECTED: [%s]\n", digit_str);
}
}
break;
case SWITCH_ABC_TYPE_WRITE:
default:
break;
}
}
SWITCH_DECLARE(switch_status_t) switch_ivr_stop_inband_dtmf_session(switch_core_session_t *session)
{
switch_media_bug_t *bug;
switch_channel_t *channel = switch_core_session_get_channel(session);
assert(channel != NULL);
if ((bug = switch_channel_get_private(channel, "dtmf"))) {
switch_channel_set_private(channel, "dtmf", NULL);
switch_core_media_bug_remove(session, &bug);
return SWITCH_STATUS_SUCCESS;
}
return SWITCH_STATUS_FALSE;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_inband_dtmf_session(switch_core_session_t *session)
{
switch_channel_t *channel;
switch_codec_t *read_codec;
switch_media_bug_t *bug;
switch_status_t status;
switch_inband_dtmf_t *pvt;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
read_codec = switch_core_session_get_read_codec(session);
assert(read_codec != NULL);
if (!(pvt = switch_core_session_alloc(session, sizeof(*pvt)))) {
return SWITCH_STATUS_MEMERR;
}
teletone_dtmf_detect_init(&pvt->dtmf_detect, read_codec->implementation->samples_per_second);
pvt->session = session;
switch_channel_answer(channel);
if ((status = switch_core_media_bug_add(session,
inband_dtmf_callback,
pvt,
SMBF_READ_STREAM,
&bug)) != SWITCH_STATUS_SUCCESS) {
return status;
}
switch_channel_set_private(channel, "dtmf", bug);
return SWITCH_STATUS_SUCCESS;
}
struct speech_thread_handle {
switch_core_session_t *session;
switch_asr_handle_t *ah;
switch_media_bug_t *bug;
switch_mutex_t *mutex;
switch_thread_cond_t *cond;
switch_memory_pool_t *pool;
};
static void *SWITCH_THREAD_FUNC speech_thread(switch_thread_t *thread, void *obj)
{
struct speech_thread_handle *sth = (struct speech_thread_handle *) obj;
switch_channel_t *channel = switch_core_session_get_channel(sth->session);
switch_asr_flag_t flags = SWITCH_ASR_FLAG_NONE;
switch_status_t status;
switch_thread_cond_create(&sth->cond, sth->pool);
switch_mutex_init(&sth->mutex, SWITCH_MUTEX_NESTED, sth->pool);
switch_core_session_read_lock(sth->session);
switch_mutex_lock(sth->mutex);
while (switch_channel_ready(channel) && !switch_test_flag(sth->ah, SWITCH_ASR_FLAG_CLOSED)) {
char *xmlstr = NULL;
switch_thread_cond_wait(sth->cond, sth->mutex);
if (switch_core_asr_check_results(sth->ah, &flags) == SWITCH_STATUS_SUCCESS) {
switch_event_t *event;
status = switch_core_asr_get_results(sth->ah, &xmlstr, &flags);
if (status != SWITCH_STATUS_SUCCESS && status != SWITCH_STATUS_BREAK) {
goto done;
}
if (switch_event_create(&event, SWITCH_EVENT_DETECTED_SPEECH) == SWITCH_STATUS_SUCCESS) {
if (status == SWITCH_STATUS_SUCCESS) {
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "Speech-Type", "detected-speech");
switch_event_add_body(event, xmlstr);
} else {
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "Speech-Type", "begin-speaking");
}
if (switch_test_flag(sth->ah, SWITCH_ASR_FLAG_FIRE_EVENTS)) {
switch_event_t *dup;
if (switch_event_dup(&dup, event) == SWITCH_STATUS_SUCCESS) {
switch_event_fire(&dup);
}
}
if (switch_core_session_queue_event(sth->session, &event) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Event queue failed!\n");
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "delivery-failure", "true");
switch_event_fire(&event);
}
}
switch_safe_free(xmlstr);
}
}
done:
switch_mutex_unlock(sth->mutex);
switch_core_session_rwunlock(sth->session);
return NULL;
}
static void speech_callback(switch_media_bug_t *bug, void *user_data, switch_abc_type_t type)
{
struct speech_thread_handle *sth = (struct speech_thread_handle *) user_data;
uint8_t data[SWITCH_RECCOMMENDED_BUFFER_SIZE];
switch_frame_t frame = {0};
switch_asr_flag_t flags = SWITCH_ASR_FLAG_NONE;
frame.data = data;
frame.buflen = SWITCH_RECCOMMENDED_BUFFER_SIZE;
switch(type) {
case SWITCH_ABC_TYPE_INIT: {
switch_thread_t *thread;
switch_threadattr_t *thd_attr = NULL;
switch_threadattr_create(&thd_attr, sth->pool);
switch_threadattr_detach_set(thd_attr, 1);
switch_threadattr_stacksize_set(thd_attr, SWITCH_THREAD_STACKSIZE);
switch_thread_create(&thread, thd_attr, speech_thread, sth, sth->pool);
}
break;
case SWITCH_ABC_TYPE_CLOSE: {
switch_core_asr_close(sth->ah, &flags);
switch_mutex_lock(sth->mutex);
switch_thread_cond_signal(sth->cond);
switch_mutex_unlock(sth->mutex);
}
break;
case SWITCH_ABC_TYPE_READ:
if (sth->ah) {
if (switch_core_media_bug_read(bug, &frame) == SWITCH_STATUS_SUCCESS) {
if (switch_core_asr_feed(sth->ah, frame.data, frame.datalen, &flags) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Error Feeding Data\n");
return;
}
if (switch_core_asr_check_results(sth->ah, &flags) == SWITCH_STATUS_SUCCESS) {
switch_mutex_lock(sth->mutex);
switch_thread_cond_signal(sth->cond);
switch_mutex_unlock(sth->mutex);
}
}
}
break;
case SWITCH_ABC_TYPE_WRITE:
default:
break;
}
}
SWITCH_DECLARE(switch_status_t) switch_ivr_stop_detect_speech(switch_core_session_t *session)
{
switch_channel_t *channel = switch_core_session_get_channel(session);
struct speech_thread_handle *sth;
assert(channel != NULL);
if ((sth = switch_channel_get_private(channel, SWITCH_SPEECH_KEY))) {
switch_channel_set_private(channel, SWITCH_SPEECH_KEY, NULL);
switch_core_media_bug_remove(session, &sth->bug);
return SWITCH_STATUS_SUCCESS;
}
return SWITCH_STATUS_FALSE;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_pause_detect_speech(switch_core_session_t *session)
{
switch_channel_t *channel = switch_core_session_get_channel(session);
struct speech_thread_handle *sth;
assert(channel != NULL);
if ((sth = switch_channel_get_private(channel, SWITCH_SPEECH_KEY))) {
switch_core_asr_pause(sth->ah);
return SWITCH_STATUS_SUCCESS;
}
return SWITCH_STATUS_FALSE;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_resume_detect_speech(switch_core_session_t *session)
{
switch_channel_t *channel = switch_core_session_get_channel(session);
struct speech_thread_handle *sth;
assert(channel != NULL);
if ((sth = switch_channel_get_private(channel, SWITCH_SPEECH_KEY))) {
switch_core_asr_resume(sth->ah);
return SWITCH_STATUS_SUCCESS;
}
return SWITCH_STATUS_FALSE;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_detect_speech_load_grammar(switch_core_session_t *session, char *grammar, char *path)
{
switch_channel_t *channel = switch_core_session_get_channel(session);
switch_asr_flag_t flags = SWITCH_ASR_FLAG_NONE;
struct speech_thread_handle *sth;
assert(channel != NULL);
if ((sth = switch_channel_get_private(channel, SWITCH_SPEECH_KEY))) {
if (switch_core_asr_load_grammar(sth->ah, grammar, path) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Error loading Grammar\n");
switch_core_asr_close(sth->ah, &flags);
switch_channel_hangup(channel, SWITCH_CAUSE_DESTINATION_OUT_OF_ORDER);
return SWITCH_STATUS_FALSE;
}
return SWITCH_STATUS_SUCCESS;
}
return SWITCH_STATUS_FALSE;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_detect_speech_unload_grammar(switch_core_session_t *session, char *grammar)
{
switch_channel_t *channel = switch_core_session_get_channel(session);
switch_asr_flag_t flags = SWITCH_ASR_FLAG_NONE;
struct speech_thread_handle *sth;
assert(channel != NULL);
if ((sth = switch_channel_get_private(channel, SWITCH_SPEECH_KEY))) {
if (switch_core_asr_unload_grammar(sth->ah, grammar) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Error unloading Grammar\n");
switch_core_asr_close(sth->ah, &flags);
switch_channel_hangup(channel, SWITCH_CAUSE_DESTINATION_OUT_OF_ORDER);
return SWITCH_STATUS_FALSE;
}
return SWITCH_STATUS_SUCCESS;
}
return SWITCH_STATUS_FALSE;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_detect_speech(switch_core_session_t *session,
char *mod_name,
char *grammar,
char *path,
char *dest,
switch_asr_handle_t *ah)
{
switch_channel_t *channel;
switch_codec_t *read_codec;
switch_status_t status;
switch_asr_flag_t flags = SWITCH_ASR_FLAG_NONE;
struct speech_thread_handle *sth;
char *val;
if (!ah) {
if (!(ah = switch_core_session_alloc(session, sizeof(*ah)))) {
return SWITCH_STATUS_MEMERR;
}
}
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
read_codec = switch_core_session_get_read_codec(session);
assert(read_codec != NULL);
if ((val = switch_channel_get_variable(channel, "fire_asr_events"))) {
switch_set_flag(ah, SWITCH_ASR_FLAG_FIRE_EVENTS);
}
if ((sth = switch_channel_get_private(channel, SWITCH_SPEECH_KEY))) {
if (switch_core_asr_load_grammar(sth->ah, grammar, path) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Error loading Grammar\n");
switch_core_asr_close(sth->ah, &flags);
return SWITCH_STATUS_FALSE;
}
return SWITCH_STATUS_SUCCESS;
}
if (switch_core_asr_open(ah,
mod_name,
"L16",
read_codec->implementation->samples_per_second,
dest,
&flags,
switch_core_session_get_pool(session)) == SWITCH_STATUS_SUCCESS) {
if (switch_core_asr_load_grammar(ah, grammar, path) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Error loading Grammar\n");
switch_core_asr_close(ah, &flags);
switch_channel_hangup(channel, SWITCH_CAUSE_DESTINATION_OUT_OF_ORDER);
return SWITCH_STATUS_FALSE;
}
} else {
switch_channel_hangup(channel, SWITCH_CAUSE_DESTINATION_OUT_OF_ORDER);
return SWITCH_STATUS_FALSE;
}
sth = switch_core_session_alloc(session, sizeof(*sth));
sth->pool = switch_core_session_get_pool(session);
sth->session = session;
sth->ah = ah;
if ((status = switch_core_media_bug_add(session,
speech_callback,
sth,
SMBF_READ_STREAM,
&sth->bug)) != SWITCH_STATUS_SUCCESS) {
switch_core_asr_close(ah, &flags);
switch_channel_hangup(channel, SWITCH_CAUSE_DESTINATION_OUT_OF_ORDER);
return status;
}
switch_channel_set_private(channel, SWITCH_SPEECH_KEY, sth);
return SWITCH_STATUS_SUCCESS;
}
#define FILE_STARTSAMPLES 1024 * 32
#define FILE_BLOCKSIZE 1024 * 8
#define FILE_BUFSIZE 1024 * 64
SWITCH_DECLARE(switch_status_t) switch_ivr_play_file(switch_core_session_t *session,
switch_file_handle_t *fh,
char *file,
switch_input_args_t *args)
{
switch_channel_t *channel;
int16_t abuf[FILE_STARTSAMPLES];
char dtmf[128];
uint32_t interval = 0, samples = 0, framelen, sample_start = 0;
uint32_t ilen = 0;
switch_size_t olen = 0, llen = 0;
switch_frame_t write_frame = {0};
switch_timer_t timer;
switch_core_thread_session_t thread_session;
switch_codec_t codec;
switch_memory_pool_t *pool = switch_core_session_get_pool(session);
char *codec_name;
int stream_id = 0;
switch_status_t status = SWITCH_STATUS_SUCCESS;
switch_file_handle_t lfh;
switch_codec_t *read_codec = switch_core_session_get_read_codec(session);
const char *p;
char *title = "", *copyright = "", *software = "", *artist = "", *comment = "", *date = "";
uint8_t asis = 0;
char *ext;
char *prefix;
char *timer_name;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
prefix = switch_channel_get_variable(channel, "sound_prefix");
timer_name = switch_channel_get_variable(channel, "timer_name");
if (file) {
if (prefix && *file != '/' && *file != '\\' && *(file+1) != ':') {
char *new_file;
uint32_t len;
len = (uint32_t)strlen(file) + (uint32_t)strlen(prefix) + 10;
new_file = switch_core_session_alloc(session, len);
snprintf(new_file, len, "%s/%s", prefix, file);
file = new_file;
}
if ((ext = strrchr(file, '.'))) {
ext++;
} else {
char *new_file;
uint32_t len;
ext = read_codec->implementation->iananame;
len = (uint32_t)strlen(file) + (uint32_t)strlen(ext) + 2;
new_file = switch_core_session_alloc(session, len);
snprintf(new_file, len, "%s.%s", file, ext);
file = new_file;
asis = 1;
}
}
if (!fh) {
fh = &lfh;
memset(fh, 0, sizeof(lfh));
}
if (fh->samples > 0) {
sample_start = fh->samples;
fh->samples = 0;
}
if (switch_core_file_open(fh,
file,
SWITCH_FILE_FLAG_READ | SWITCH_FILE_DATA_SHORT,
switch_core_session_get_pool(session)) != SWITCH_STATUS_SUCCESS) {
switch_core_session_reset(session);
return SWITCH_STATUS_NOTFOUND;
}
if (switch_test_flag(fh, SWITCH_FILE_NATIVE)) {
asis = 1;
}
write_frame.data = abuf;
write_frame.buflen = sizeof(abuf);
if (sample_start > 0) {
uint32_t pos = 0;
switch_core_file_seek(fh, &pos, sample_start, SEEK_CUR);
}
if (switch_core_file_get_string(fh, SWITCH_AUDIO_COL_STR_TITLE, &p) == SWITCH_STATUS_SUCCESS) {
title = (char *) switch_core_session_strdup(session, (char *)p);
switch_channel_set_variable(channel, "RECORD_TITLE", (char *)p);
}
if (switch_core_file_get_string(fh, SWITCH_AUDIO_COL_STR_COPYRIGHT, &p) == SWITCH_STATUS_SUCCESS) {
copyright = (char *) switch_core_session_strdup(session, (char *)p);
switch_channel_set_variable(channel, "RECORD_COPYRIGHT", (char *)p);
}
if (switch_core_file_get_string(fh, SWITCH_AUDIO_COL_STR_SOFTWARE, &p) == SWITCH_STATUS_SUCCESS) {
software = (char *) switch_core_session_strdup(session, (char *)p);
switch_channel_set_variable(channel, "RECORD_SOFTWARE", (char *)p);
}
if (switch_core_file_get_string(fh, SWITCH_AUDIO_COL_STR_ARTIST, &p) == SWITCH_STATUS_SUCCESS) {
artist = (char *) switch_core_session_strdup(session, (char *)p);
switch_channel_set_variable(channel, "RECORD_ARTIST", (char *)p);
}
if (switch_core_file_get_string(fh, SWITCH_AUDIO_COL_STR_COMMENT, &p) == SWITCH_STATUS_SUCCESS) {
comment = (char *) switch_core_session_strdup(session, (char *)p);
switch_channel_set_variable(channel, "RECORD_COMMENT", (char *)p);
}
if (switch_core_file_get_string(fh, SWITCH_AUDIO_COL_STR_DATE, &p) == SWITCH_STATUS_SUCCESS) {
date = (char *) switch_core_session_strdup(session, (char *)p);
switch_channel_set_variable(channel, "RECORD_DATE", (char *)p);
}
#if 0
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG,
"OPEN FILE %s %uhz %u channels\n"
"TITLE=%s\n"
"COPYRIGHT=%s\n"
"SOFTWARE=%s\n"
"ARTIST=%s\n"
"COMMENT=%s\n"
"DATE=%s\n", file, fh->samplerate, fh->channels,
title,
copyright,
software,
artist,
comment,
date);
#endif
assert(read_codec != NULL);
interval = read_codec->implementation->microseconds_per_frame / 1000;
if (!fh->audio_buffer) {
switch_buffer_create_dynamic(&fh->audio_buffer, FILE_BLOCKSIZE, FILE_BUFSIZE, 0);
}
if (asis) {
write_frame.codec = read_codec;
samples = read_codec->implementation->samples_per_frame;
framelen = read_codec->implementation->encoded_bytes_per_frame;
} else {
codec_name = "L16";
if (switch_core_codec_init(&codec,
codec_name,
NULL,
fh->samplerate,
interval,
fh->channels,
SWITCH_CODEC_FLAG_ENCODE | SWITCH_CODEC_FLAG_DECODE,
NULL, pool) == SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG,
SWITCH_LOG_DEBUG,
"Codec Activated %s@%uhz %u channels %dms\n",
codec_name,
fh->samplerate,
fh->channels,
interval);
write_frame.codec = &codec;
} else {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Raw Codec Activation Failed %s@%uhz %u channels %dms\n",
codec_name, fh->samplerate, fh->channels, interval);
switch_core_file_close(fh);
switch_core_session_reset(session);
return SWITCH_STATUS_GENERR;
}
samples = codec.implementation->samples_per_frame;
framelen = codec.implementation->bytes_per_frame;
}
if (timer_name) {
uint32_t len;
len = samples * 2;
if (switch_core_timer_init(&timer, timer_name, interval, samples, pool) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "setup timer failed!\n");
switch_core_codec_destroy(&codec);
switch_core_file_close(fh);
switch_core_session_reset(session);
return SWITCH_STATUS_GENERR;
}
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "setup timer success %u bytes per %d ms!\n", len, interval);
}
write_frame.rate = fh->samplerate;
if (timer_name) {
/* start a thread to absorb incoming audio */
for (stream_id = 0; stream_id < switch_core_session_get_stream_count(session); stream_id++) {
switch_core_service_session(session, &thread_session, stream_id);
}
}
ilen = samples;
while(switch_channel_ready(channel)) {
int done = 0;
int do_speed = 1;
int last_speed = -1;
switch_event_t *event;
if (switch_core_session_dequeue_private_event(session, &event) == SWITCH_STATUS_SUCCESS) {
switch_ivr_parse_event(session, event);
switch_event_destroy(&event);
}
if (args && (args->input_callback || args->buf || args->buflen)) {
/*
dtmf handler function you can hook up to be executed when a digit is dialed during playback
if you return anything but SWITCH_STATUS_SUCCESS the playback will stop.
*/
if (switch_channel_has_dtmf(channel)) {
if (!args->input_callback && !args->buf) {
status = SWITCH_STATUS_BREAK;
done = 1;
break;
}
switch_channel_dequeue_dtmf(channel, dtmf, sizeof(dtmf));
if (args->input_callback) {
status = args->input_callback(session, dtmf, SWITCH_INPUT_TYPE_DTMF, args->buf, args->buflen);
} else {
switch_copy_string((char *)args->buf, dtmf, args->buflen);
status = SWITCH_STATUS_BREAK;
}
}
if (args->input_callback) {
if (switch_core_session_dequeue_event(session, &event) == SWITCH_STATUS_SUCCESS) {
status = args->input_callback(session, event, SWITCH_INPUT_TYPE_EVENT, args->buf, args->buflen);
switch_event_destroy(&event);
}
}
if (status != SWITCH_STATUS_SUCCESS) {
done = 1;
break;
}
}
if (switch_test_flag(fh, SWITCH_FILE_PAUSE)) {
memset(abuf, 0, framelen);
olen = ilen;
do_speed = 0;
} else if (fh->audio_buffer && (switch_buffer_inuse(fh->audio_buffer) > (switch_size_t)(framelen))) {
switch_buffer_read(fh->audio_buffer, abuf, framelen);
olen = asis ? framelen : ilen;
do_speed = 0;
} else {
olen = 32 * framelen;
switch_core_file_read(fh, abuf, &olen);
switch_buffer_write(fh->audio_buffer, abuf, asis ? olen : olen * 2);
olen = switch_buffer_read(fh->audio_buffer, abuf, framelen);
if (!asis) {
olen /= 2;
}
}
if (done || olen <= 0) {
break;
}
if (!asis) {
if (fh->speed > 2) {
fh->speed = 2;
} else if (fh->speed < -2) {
fh->speed = -2;
}
}
if (!asis && fh->audio_buffer && last_speed > -1 && last_speed != fh->speed) {
switch_buffer_zero(fh->audio_buffer);
}
if (!asis && fh->speed && do_speed) {
float factor = 0.25f * abs(fh->speed);
switch_size_t newlen, supplement, step;
short *bp = write_frame.data;
switch_size_t wrote = 0;
supplement = (int) (factor * olen);
newlen = (fh->speed > 0) ? olen - supplement : olen + supplement;
step = (fh->speed > 0) ? (newlen / supplement) : (olen / supplement);
while ((wrote + step) < newlen) {
switch_buffer_write(fh->audio_buffer, bp, step * 2);
wrote += step;
bp += step;
if (fh->speed > 0) {
bp++;
} else {
float f;
short s;
f = (float)(*bp + *(bp+1) + *(bp-1));
f /= 3;
s = (short) f;
switch_buffer_write(fh->audio_buffer, &s, 2);
wrote++;
}
}
if (wrote < newlen) {
switch_size_t r = newlen - wrote;
switch_buffer_write(fh->audio_buffer, bp, r*2);
wrote += r;
}
last_speed = fh->speed;
continue;
}
if (olen < llen) {
uint8_t *dp = (uint8_t *) write_frame.data;
memset(dp + (int)olen, 0, (int)(llen - olen));
olen = llen;
}
write_frame.datalen = (uint32_t)(olen * (asis ? 1 : 2));
write_frame.samples = (uint32_t)olen;
llen = olen;
#ifndef WIN32
#if __BYTE_ORDER == __BIG_ENDIAN
if (!asis) {switch_swap_linear(write_frame.data, (int) write_frame.datalen / 2);}
#endif
#endif
stream_id = 0;
status = switch_core_session_write_frame(session, &write_frame, -1, stream_id);
if (status == SWITCH_STATUS_MORE_DATA) {
status = SWITCH_STATUS_SUCCESS;
continue;
} else if (status != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_WARNING, "Bad Write\n");
done = 1;
break;
}
if (done) {
break;
}
if (timer_name) {
if (switch_core_timer_next(&timer) < 0) {
break;
}
} else { /* time off the channel (if you must) */
switch_frame_t *read_frame;
switch_status_t status;
while (switch_channel_ready(channel) && switch_channel_test_flag(channel, CF_HOLD)) {
switch_yield(10000);
}
status = switch_core_session_read_frame(session, &read_frame, -1, 0);
if (!SWITCH_READ_ACCEPTABLE(status)) {
break;
}
}
}
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "done playing file\n");
switch_core_file_close(fh);
switch_buffer_destroy(&fh->audio_buffer);
if (!asis) {
switch_core_codec_destroy(&codec);
}
if (timer_name) {
/* End the audio absorbing thread */
switch_core_thread_session_end(&thread_session);
switch_core_timer_destroy(&timer);
}
switch_core_session_reset(session);
return status;
}
SWITCH_DECLARE(switch_status_t) switch_regex_match(char *target, char *expression) {
const char* error = NULL; //Used to hold any errors
int error_offset = 0; //Holds the offset of an error
pcre* pcre_prepared = NULL; //Holds the compiled regex
int match_count = 0; //Number of times the regex was matched
int offset_vectors[2]; //not used, but has to exist or pcre won't even try to find a match
//Compile the expression
pcre_prepared = pcre_compile(expression, 0, &error, &error_offset, NULL);
//See if there was an error in the expression
if (error != NULL) {
//Clean up after ourselves
if (pcre_prepared) {
pcre_free(pcre_prepared);
pcre_prepared = NULL;
}
//Note our error
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Regular Expression Error expression[%s] error[%s] location[%d]\n", expression, error, error_offset);
//We definitely didn't match anything
return SWITCH_STATUS_FALSE;
}
//So far so good, run the regex
match_count = pcre_exec(pcre_prepared, NULL, target, (int) strlen(target), 0, 0, offset_vectors, sizeof(offset_vectors) / sizeof(offset_vectors[0]));
//Clean up
if (pcre_prepared) {
pcre_free(pcre_prepared);
pcre_prepared = NULL;
}
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "number of matches: %d\n", match_count);
//Was it a match made in heaven?
if (match_count > 0) {
return SWITCH_STATUS_SUCCESS;
} else {
return SWITCH_STATUS_FALSE;
}
}
SWITCH_DECLARE(switch_status_t) switch_play_and_get_digits(switch_core_session_t *session,
uint32_t min_digits,
uint32_t max_digits,
uint32_t max_tries,
uint32_t timeout,
char* valid_terminators,
char* prompt_audio_file,
char* bad_input_audio_file,
void* digit_buffer,
uint32_t digit_buffer_length,
char* digits_regex)
{
char terminator; //used to hold terminator recieved from
switch_channel_t *channel; //the channel contained in session
switch_status_t status; //used to recieve state out of called functions
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "switch_play_and_get_digits(session, %d, %d, %d, %d, %s, %s, %s, digit_buffer, %d, %s)\n", min_digits, max_digits, max_tries, timeout, valid_terminators, prompt_audio_file, bad_input_audio_file, digit_buffer_length, digits_regex);
//Get the channel
channel = switch_core_session_get_channel(session);
//Make sure somebody is home
assert(channel != NULL);
//Answer the channel if it hasn't already been answered
switch_channel_answer(channel);
//Start pestering the user for input
for(;(switch_channel_get_state(channel) == CS_EXECUTE) && max_tries > 0; max_tries--) {
switch_input_args_t args = {0};
//make the buffer so fresh and so clean clean
memset(digit_buffer, 0, digit_buffer_length);
args.buf = digit_buffer;
args.buflen = digit_buffer_length;
//Play the file
status = switch_ivr_play_file(session, NULL, prompt_audio_file, &args);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "play gave up %s", digit_buffer);
//Make sure we made it out alive
if (status != SWITCH_STATUS_SUCCESS && status != SWITCH_STATUS_BREAK) {
switch_channel_hangup(channel, SWITCH_CAUSE_NORMAL_CLEARING);
break;
}
//we only get one digit out of playback, see if thats all we needed and what we got
if (max_digits == 1 && status == SWITCH_STATUS_BREAK) {
//Check the digit if we have a regex
if (digits_regex != NULL) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Checking regex [%s] on [%s]\n", digits_regex, digit_buffer);
//Make sure the digit is allowed
if (switch_regex_match(digit_buffer, digits_regex) == SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Match found!\n");
//jobs done
break;
} else {
//See if a bad input prompt was specified, if so, play it
if (strlen(bad_input_audio_file) > 0) {
status = switch_ivr_play_file(session, NULL, bad_input_audio_file, NULL);
//Make sure we made it out alive
if (status != SWITCH_STATUS_SUCCESS && status != SWITCH_STATUS_BREAK) {
switch_channel_hangup(channel, SWITCH_CAUSE_NORMAL_CLEARING);
break;
}
}
}
} else {
//jobs done
break;
}
}
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Calling more digits try %d\n", max_tries);
//Try to grab some more digits for the timeout period
status = switch_ivr_collect_digits_count(session, digit_buffer, digit_buffer_length, max_digits, valid_terminators, &terminator, timeout);
//Make sure we made it out alive
if (status != SWITCH_STATUS_SUCCESS) {
//Bail
switch_channel_hangup(channel, SWITCH_CAUSE_NORMAL_CLEARING);
break;
}
//see if we got enough
if (min_digits <= strlen(digit_buffer)) {
//See if we need to test a regex
if (digits_regex != NULL) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Checking regex [%s] on [%s]\n", digits_regex, digit_buffer);
//Test the regex
if (switch_regex_match(digit_buffer, digits_regex) == SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Match found!\n");
//Jobs done
return SWITCH_STATUS_SUCCESS;
} else {
//See if a bad input prompt was specified, if so, play it
if (strlen(bad_input_audio_file) > 0) {
status = switch_ivr_play_file(session, NULL, bad_input_audio_file, NULL);
//Make sure we made it out alive
if (status != SWITCH_STATUS_SUCCESS && status != SWITCH_STATUS_BREAK) {
switch_channel_hangup(channel, SWITCH_CAUSE_NORMAL_CLEARING);
break;
}
}
}
} else {
//Jobs done
return SWITCH_STATUS_SUCCESS;
}
}
}
//if we got here, we got no digits or lost the channel
digit_buffer = "\0";
return SWITCH_STATUS_FALSE;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_speak_text_handle(switch_core_session_t *session,
switch_speech_handle_t *sh,
switch_codec_t *codec,
switch_timer_t *timer,
char *text,
switch_input_args_t *args)
{
switch_channel_t *channel;
short abuf[960];
char dtmf[128];
uint32_t len = 0;
switch_size_t ilen = 0;
switch_frame_t write_frame = {0};
int x;
int stream_id = 0;
int done = 0;
int lead_in_out = 10;
switch_status_t status = SWITCH_STATUS_SUCCESS;
switch_speech_flag_t flags = SWITCH_SPEECH_FLAG_NONE;
uint32_t rate = 0, samples = 0;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
if (!sh) {
return SWITCH_STATUS_FALSE;
}
switch_channel_answer(channel);
write_frame.data = abuf;
write_frame.buflen = sizeof(abuf);
samples = (uint32_t)(sh->rate / 50);
len = samples * 2;
flags = 0;
switch_sleep(200000);
switch_core_speech_feed_tts(sh, text, &flags);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Speaking text: %s\n", text);
write_frame.rate = sh->rate;
memset(write_frame.data, 0, len);
write_frame.datalen = len;
write_frame.samples = len / 2;
write_frame.codec = codec;
for( x = 0; !done && x < lead_in_out; x++) {
if (switch_core_session_write_frame(session, &write_frame, -1, stream_id) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_WARNING, "Bad Write\n");
done = 1;
break;
}
}
ilen = len;
while(switch_channel_ready(channel)) {
switch_event_t *event;
if (switch_core_session_dequeue_private_event(session, &event) == SWITCH_STATUS_SUCCESS) {
switch_ivr_parse_event(session, event);
switch_event_destroy(&event);
}
if (args && (args->input_callback || args->buf || args->buflen)) {
/*
dtmf handler function you can hook up to be executed when a digit is dialed during playback
if you return anything but SWITCH_STATUS_SUCCESS the playback will stop.
*/
if (switch_channel_has_dtmf(channel)) {
if (!args->input_callback && !args->buf) {
status = SWITCH_STATUS_BREAK;
done = 1;
break;
}
if (args->buf && !strcasecmp(args->buf, "_break_")) {
status = SWITCH_STATUS_BREAK;
} else {
switch_channel_dequeue_dtmf(channel, dtmf, sizeof(dtmf));
if (args->input_callback) {
status = args->input_callback(session, dtmf, SWITCH_INPUT_TYPE_DTMF, args->buf, args->buflen);
} else {
switch_copy_string((char *)args->buf, dtmf, args->buflen);
status = SWITCH_STATUS_BREAK;
}
}
}
if (args->input_callback) {
if (switch_core_session_dequeue_event(session, &event) == SWITCH_STATUS_SUCCESS) {
status = args->input_callback(session, event, SWITCH_INPUT_TYPE_EVENT, args->buf, args->buflen);
switch_event_destroy(&event);
}
}
if (status != SWITCH_STATUS_SUCCESS) {
done = 1;
break;
}
}
if (switch_test_flag(sh, SWITCH_SPEECH_FLAG_PAUSE)) {
if (timer) {
if ((x = switch_core_timer_next(timer)) < 0) {
break;
}
} else {
switch_frame_t *read_frame;
switch_status_t status = switch_core_session_read_frame(session, &read_frame, -1, 0);
while (switch_channel_ready(channel) && switch_channel_test_flag(channel, CF_HOLD)) {
switch_yield(10000);
}
if (!SWITCH_READ_ACCEPTABLE(status)) {
break;
}
}
continue;
}
flags = SWITCH_SPEECH_FLAG_BLOCKING;
status = switch_core_speech_read_tts(sh,
abuf,
&ilen,
&rate,
&flags);
if (status != SWITCH_STATUS_SUCCESS) {
for( x = 0; !done && x < lead_in_out; x++) {
if (switch_core_session_write_frame(session, &write_frame, -1, stream_id) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_WARNING, "Bad Write\n");
done = 1;
break;
}
}
if (status == SWITCH_STATUS_BREAK) {
status = SWITCH_STATUS_SUCCESS;
}
done = 1;
}
if (done) {
break;
}
write_frame.datalen = (uint32_t)ilen;
write_frame.samples = (uint32_t)(ilen / 2);
if (switch_core_session_write_frame(session, &write_frame, -1, stream_id) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_WARNING, "Bad Write\n");
done = 1;
break;
}
if (done) {
break;
}
if (timer) {
if ((x = switch_core_timer_next(timer)) < 0) {
break;
}
} else { /* time off the channel (if you must) */
switch_frame_t *read_frame;
switch_status_t status = switch_core_session_read_frame(session, &read_frame, -1, 0);
while (switch_channel_ready(channel) && switch_channel_test_flag(channel, CF_HOLD)) {
switch_yield(10000);
}
if (!SWITCH_READ_ACCEPTABLE(status)) {
break;
}
}
}
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "done speaking text\n");
flags = 0;
switch_core_speech_flush_tts(sh);
return status;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_speak_text(switch_core_session_t *session,
char *tts_name,
char *voice_name,
uint32_t rate,
char *text,
switch_input_args_t *args)
{
switch_channel_t *channel;
int interval = 0;
uint32_t samples = 0;
uint32_t len = 0;
switch_frame_t write_frame = {0};
switch_timer_t timer;
switch_core_thread_session_t thread_session;
switch_codec_t codec;
switch_memory_pool_t *pool = switch_core_session_get_pool(session);
char *codec_name;
int stream_id = 0;
switch_status_t status = SWITCH_STATUS_SUCCESS;
switch_speech_handle_t sh;
switch_speech_flag_t flags = SWITCH_SPEECH_FLAG_NONE;
switch_codec_t *read_codec;
char *timer_name;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
timer_name = switch_channel_get_variable(channel, "timer_name");
if (rate == 0) {
read_codec = switch_core_session_get_read_codec(session);
rate = read_codec->implementation->samples_per_second;
}
memset(&sh, 0, sizeof(sh));
if (switch_core_speech_open(&sh,
tts_name,
voice_name,
(uint32_t)rate,
&flags,
switch_core_session_get_pool(session)) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Invalid TTS module!\n");
switch_core_session_reset(session);
return SWITCH_STATUS_FALSE;
}
switch_channel_answer(channel);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "OPEN TTS %s\n", tts_name);
interval = 20;
samples = (uint32_t)(rate / 50);
len = samples * 2;
codec_name = "L16";
if (switch_core_codec_init(&codec,
codec_name,
NULL,
(int)rate,
interval,
1,
SWITCH_CODEC_FLAG_ENCODE | SWITCH_CODEC_FLAG_DECODE,
NULL, pool) == SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Raw Codec Activated\n");
write_frame.codec = &codec;
} else {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Raw Codec Activation Failed %s@%uhz 1 channel %dms\n",
codec_name, rate, interval);
flags = 0;
switch_core_speech_close(&sh, &flags);
switch_core_session_reset(session);
return SWITCH_STATUS_GENERR;
}
if (timer_name) {
if (switch_core_timer_init(&timer, timer_name, interval, (int)samples, pool) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "setup timer failed!\n");
switch_core_codec_destroy(&codec);
flags = 0;
switch_core_speech_close(&sh, &flags);
switch_core_session_reset(session);
return SWITCH_STATUS_GENERR;
}
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "setup timer success %u bytes per %d ms!\n", len, interval);
/* start a thread to absorb incoming audio */
for (stream_id = 0; stream_id < switch_core_session_get_stream_count(session); stream_id++) {
switch_core_service_session(session, &thread_session, stream_id);
}
}
status = switch_ivr_speak_text_handle(session, &sh, &codec, timer_name ? &timer : NULL, text, args);
flags = 0;
switch_core_speech_close(&sh, &flags);
switch_core_codec_destroy(&codec);
if (timer_name) {
/* End the audio absorbing thread */
switch_core_thread_session_end(&thread_session);
switch_core_timer_destroy(&timer);
}
switch_core_session_reset(session);
return status;
}
/* Bridge Related Stuff*/
/*********************************************************************************/
struct audio_bridge_data {
switch_core_session_t *session_a;
switch_core_session_t *session_b;
int running;
};
static void *audio_bridge_thread(switch_thread_t *thread, void *obj)
{
switch_core_thread_session_t *his_thread, *data = obj;
int *stream_id_p;
int stream_id = 0, pre_b = 0, ans_a = 0, ans_b = 0, originator = 0;
switch_input_callback_function_t input_callback;
switch_core_session_message_t *message, msg = {0};
void *user_data;
switch_channel_t *chan_a, *chan_b;
switch_frame_t *read_frame;
switch_core_session_t *session_a, *session_b;
assert(!thread || thread);
session_a = data->objs[0];
session_b = data->objs[1];
stream_id_p = data->objs[2];
input_callback = data->input_callback;
user_data = data->objs[4];
his_thread = data->objs[5];
if (stream_id_p) {
stream_id = *stream_id_p;
}
chan_a = switch_core_session_get_channel(session_a);
chan_b = switch_core_session_get_channel(session_b);
ans_a = switch_channel_test_flag(chan_a, CF_ANSWERED);
if ((originator = switch_channel_test_flag(chan_a, CF_ORIGINATOR))) {
pre_b = switch_channel_test_flag(chan_a, CF_EARLY_MEDIA);
ans_b = switch_channel_test_flag(chan_b, CF_ANSWERED);
}
switch_channel_set_flag(chan_a, CF_BRIDGED);
while (switch_channel_ready(chan_a) && data->running > 0 && his_thread->running > 0) {
switch_channel_state_t b_state = switch_channel_get_state(chan_b);
switch_status_t status;
switch_event_t *event;
switch (b_state) {
case CS_HANGUP:
case CS_DONE:
switch_mutex_lock(data->mutex);
data->running = -1;
switch_mutex_unlock(data->mutex);
continue;
default:
break;
}
if (switch_channel_test_flag(chan_a, CF_TRANSFER)) {
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
switch_channel_clear_flag(chan_a, CF_HOLD);
switch_channel_clear_flag(chan_a, CF_SUSPEND);
break;
}
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
if (switch_core_session_dequeue_private_event(session_a, &event) == SWITCH_STATUS_SUCCESS) {
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
switch_channel_set_flag(chan_b, CF_SUSPEND);
switch_ivr_parse_event(session_a, event);
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
switch_channel_clear_flag(chan_b, CF_SUSPEND);
switch_event_destroy(&event);
}
/* if 1 channel has DTMF pass it to the other */
if (switch_channel_has_dtmf(chan_a)) {
char dtmf[128];
switch_channel_dequeue_dtmf(chan_a, dtmf, sizeof(dtmf));
switch_core_session_send_dtmf(session_b, dtmf);
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
if (input_callback) {
if (input_callback(session_a, dtmf, SWITCH_INPUT_TYPE_DTMF, user_data, 0) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "%s ended call via DTMF\n", switch_channel_get_name(chan_a));
switch_mutex_lock(data->mutex);
data->running = -1;
switch_mutex_unlock(data->mutex);
break;
}
}
}
if (switch_core_session_dequeue_event(session_a, &event) == SWITCH_STATUS_SUCCESS) {
if (input_callback) {
status = input_callback(session_a, event, SWITCH_INPUT_TYPE_EVENT, user_data, 0);
}
if (event->event_id != SWITCH_EVENT_MESSAGE || switch_core_session_receive_event(session_b, &event) != SWITCH_STATUS_SUCCESS) {
switch_event_destroy(&event);
}
}
if (switch_core_session_dequeue_message(session_b, &message) == SWITCH_STATUS_SUCCESS) {
switch_core_session_receive_message(session_a, message);
if (switch_test_flag(message, SCSMF_DYNAMIC)) {
switch_safe_free(message);
} else {
message = NULL;
}
}
if (!ans_a && originator) {
if (!ans_b && switch_channel_test_flag(chan_b, CF_ANSWERED)) {
switch_channel_answer(chan_a);
ans_a++;
} else if (!pre_b && switch_channel_test_flag(chan_b, CF_EARLY_MEDIA)) {
if (switch_channel_pre_answer(chan_a) == SWITCH_STATUS_SUCCESS) {
pre_b++;
}
}
if (!pre_b) {
switch_yield(10000);
continue;
}
}
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
if (switch_channel_test_flag(chan_a, CF_SUSPEND) || switch_channel_test_flag(chan_b, CF_SUSPEND)) {
switch_yield(10000);
continue;
}
/* read audio from 1 channel and write it to the other */
status = switch_core_session_read_frame(session_a, &read_frame, -1, stream_id);
if (SWITCH_READ_ACCEPTABLE(status)) {
if (status != SWITCH_STATUS_BREAK && !switch_channel_test_flag(chan_a, CF_HOLD)) {
if (switch_core_session_write_frame(session_b, read_frame, -1, stream_id) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "write: %s Bad Frame....[%u] Bubye!\n",
switch_channel_get_name(chan_b), read_frame->datalen);
switch_mutex_lock(data->mutex);
data->running = -1;
switch_mutex_unlock(data->mutex);
}
}
} else {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "read: %s Bad Frame.... Bubye!\n", switch_channel_get_name(chan_a));
switch_mutex_lock(data->mutex);
data->running = -1;
switch_mutex_unlock(data->mutex);
}
}
switch_core_session_kill_channel(session_b, SWITCH_SIG_BREAK);
msg.message_id = SWITCH_MESSAGE_INDICATE_UNBRIDGE;
msg.from = __FILE__;
switch_core_session_receive_message(session_a, &msg);
switch_channel_set_variable(chan_a, SWITCH_BRIDGE_VARIABLE, NULL);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "BRIDGE THREAD DONE [%s]\n", switch_channel_get_name(chan_a));
switch_channel_clear_flag(chan_a, CF_BRIDGED);
switch_mutex_lock(data->mutex);
data->running = 0;
switch_mutex_unlock(data->mutex);
return NULL;
}
static switch_status_t audio_bridge_on_loopback(switch_core_session_t *session)
{
switch_channel_t *channel = NULL;
void *arg;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
if ((arg = switch_channel_get_private(channel, "_bridge_"))) {
switch_channel_set_private(channel, "_bridge_", NULL);
audio_bridge_thread(NULL, (void *) arg);
} else {
switch_channel_hangup(channel, SWITCH_CAUSE_DESTINATION_OUT_OF_ORDER);
}
switch_channel_clear_state_handler(channel, &audio_bridge_peer_state_handlers);
if (!switch_channel_test_flag(channel, CF_TRANSFER)) {
switch_channel_hangup(channel, SWITCH_CAUSE_NORMAL_CLEARING);
}
return SWITCH_STATUS_FALSE;
}
static switch_status_t audio_bridge_on_ring(switch_core_session_t *session)
{
switch_channel_t *channel = NULL;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "CUSTOM RING\n");
/* put the channel in a passive state so we can loop audio to it */
switch_channel_set_state(channel, CS_HOLD);
return SWITCH_STATUS_FALSE;
}
static switch_status_t audio_bridge_on_hold(switch_core_session_t *session)
{
switch_channel_t *channel = NULL;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "CUSTOM HOLD\n");
/* put the channel in a passive state so we can loop audio to it */
return SWITCH_STATUS_FALSE;
}
static const switch_state_handler_table_t audio_bridge_peer_state_handlers = {
/*.on_init */ NULL,
/*.on_ring */ audio_bridge_on_ring,
/*.on_execute */ NULL,
/*.on_hangup */ NULL,
/*.on_loopback */ audio_bridge_on_loopback,
/*.on_transmit */ NULL,
/*.on_hold */ audio_bridge_on_hold,
};
static switch_status_t uuid_bridge_on_transmit(switch_core_session_t *session)
{
switch_channel_t *channel = NULL;
switch_core_session_t *other_session;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "CUSTOM TRANSMIT\n");
switch_channel_clear_state_handler(channel, NULL);
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
if (!switch_channel_test_flag(channel, CF_ORIGINATOR)) {
return SWITCH_STATUS_FALSE;
}
if ((other_session = switch_channel_get_private(channel, SWITCH_UUID_BRIDGE))) {
switch_channel_t *other_channel = switch_core_session_get_channel(other_session);
switch_channel_state_t state = switch_channel_get_state(other_channel);
switch_channel_state_t mystate = switch_channel_get_state(channel);
switch_event_t *event;
uint8_t ready_a, ready_b;
switch_caller_profile_t *profile, *new_profile;
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
switch_channel_clear_flag(channel, CF_TRANSFER);
switch_channel_set_private(channel, SWITCH_UUID_BRIDGE, NULL);
while (mystate <= CS_HANGUP && state <= CS_HANGUP && !switch_channel_test_flag(other_channel, CF_TAGGED)) {
switch_yield(1000);
state = switch_channel_get_state(other_channel);
mystate = switch_channel_get_state(channel);
}
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
switch_channel_clear_flag(other_channel, CF_TRANSFER);
switch_channel_clear_flag(other_channel, CF_TAGGED);
switch_core_session_reset(session);
switch_core_session_reset(other_session);
ready_a = switch_channel_ready(channel);
ready_b = switch_channel_ready(other_channel);
if (!ready_a || !ready_b) {
if (!ready_a) {
switch_channel_hangup(other_channel, SWITCH_CAUSE_DESTINATION_OUT_OF_ORDER);
}
if (!ready_b) {
switch_channel_hangup(channel, SWITCH_CAUSE_DESTINATION_OUT_OF_ORDER);
}
return SWITCH_STATUS_FALSE;
}
/* add another profile to both sessions for CDR's sake */
if ((profile = switch_channel_get_caller_profile(channel))) {
new_profile = switch_caller_profile_clone(session, profile);
new_profile->destination_number = switch_core_session_strdup(session, switch_core_session_get_uuid(other_session));
switch_channel_set_caller_profile(channel, new_profile);
}
if ((profile = switch_channel_get_caller_profile(other_channel))) {
new_profile = switch_caller_profile_clone(other_session, profile);
new_profile->destination_number = switch_core_session_strdup(other_session, switch_core_session_get_uuid(session));
switch_channel_set_caller_profile(other_channel, new_profile);
}
/* fire events that will change the data table from "show channels" */
if (switch_event_create(&event, SWITCH_EVENT_CHANNEL_EXECUTE) == SWITCH_STATUS_SUCCESS) {
switch_channel_event_set_data(channel, event);
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "Application", "uuid_bridge");
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "Application-Data", "%s", switch_core_session_get_uuid(other_session));
switch_event_fire(&event);
}
if (switch_event_create(&event, SWITCH_EVENT_CHANNEL_EXECUTE) == SWITCH_STATUS_SUCCESS) {
switch_channel_event_set_data(other_channel, event);
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "Application", "uuid_bridge");
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "Application-Data", "%s", switch_core_session_get_uuid(session));
switch_event_fire(&event);
}
switch_ivr_multi_threaded_bridge(session, other_session, NULL, NULL, NULL);
} else {
switch_channel_hangup(channel, SWITCH_CAUSE_DESTINATION_OUT_OF_ORDER);
}
return SWITCH_STATUS_FALSE;
}
static const switch_state_handler_table_t uuid_bridge_state_handlers = {
/*.on_init */ NULL,
/*.on_ring */ NULL,
/*.on_execute */ NULL,
/*.on_hangup */ NULL,
/*.on_loopback */ NULL,
/*.on_transmit */ uuid_bridge_on_transmit,
/*.on_hold */ NULL
};
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
struct key_collect {
char *key;
char *file;
switch_core_session_t *session;
};
static void *SWITCH_THREAD_FUNC collect_thread_run(switch_thread_t *thread, void *obj)
{
struct key_collect *collect = (struct key_collect *) obj;
switch_channel_t *channel = switch_core_session_get_channel(collect->session);
char buf[10] = "";
char *p, term;
if (!strcasecmp(collect->key, "exec")) {
char *data;
const switch_application_interface_t *application_interface;
char *app_name, *app_data;
if (!(data = collect->file)) {
goto wbreak;
}
app_name = data;
if ((app_data = strchr(app_name, ' '))) {
*app_data++ = '\0';
}
if ((application_interface = switch_loadable_module_get_application_interface(app_name)) == 0) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Invalid Application %s\n", app_name);
switch_channel_hangup(channel, SWITCH_CAUSE_DESTINATION_OUT_OF_ORDER);
goto wbreak;
}
if (!application_interface->application_function) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "No Function for %s\n", app_name);
switch_channel_hangup(channel, SWITCH_CAUSE_DESTINATION_OUT_OF_ORDER);
goto wbreak;
}
application_interface->application_function(collect->session, app_data);
if (switch_channel_get_state(channel) < CS_HANGUP) {
switch_channel_set_flag(channel, CF_WINNER);
}
goto wbreak;
}
if (!switch_channel_ready(channel)) {
switch_channel_hangup(channel, SWITCH_CAUSE_DESTINATION_OUT_OF_ORDER);
goto wbreak;
}
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
while(switch_channel_ready(channel)) {
memset(buf, 0, sizeof(buf));
if (collect->file) {
switch_input_args_t args = {0};
args.buf = buf;
args.buflen = sizeof(buf);
switch_ivr_play_file(collect->session, NULL, collect->file, &args);
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
} else {
switch_ivr_collect_digits_count(collect->session, buf, sizeof(buf), 1, "", &term, 0);
}
for(p = buf; *p; p++) {
if (*collect->key == *p) {
switch_channel_set_flag(channel, CF_WINNER);
goto wbreak;
}
}
}
wbreak:
return NULL;
}
static void launch_collect_thread(struct key_collect *collect)
{
switch_thread_t *thread;
switch_threadattr_t *thd_attr = NULL;
switch_threadattr_create(&thd_attr, switch_core_session_get_pool(collect->session));
switch_threadattr_detach_set(thd_attr, 1);
switch_threadattr_stacksize_set(thd_attr, SWITCH_THREAD_STACKSIZE);
switch_thread_create(&thread, thd_attr, collect_thread_run, collect, switch_core_session_get_pool(collect->session));
}
static uint8_t check_channel_status(switch_channel_t **peer_channels,
switch_core_session_t **peer_sessions,
uint32_t len,
int32_t *idx,
uint32_t *hups,
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
char *file,
char *key,
uint8_t early_ok)
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
{
uint32_t i;
*hups = 0;
*idx = IDX_NADA;
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
for (i = 0; i < len; i++) {
if (!peer_channels[i]) {
continue;
}
if (switch_channel_get_state(peer_channels[i]) >= CS_HANGUP) {
(*hups)++;
} else if ((switch_channel_test_flag(peer_channels[i], CF_ANSWERED) ||
(early_ok && len == 1 && switch_channel_test_flag(peer_channels[i], CF_EARLY_MEDIA))) &&
!switch_channel_test_flag(peer_channels[i], CF_TAGGED)) {
if (key) {
struct key_collect *collect;
if ((collect = switch_core_session_alloc(peer_sessions[i], sizeof(*collect)))) {
switch_channel_set_flag(peer_channels[i], CF_TAGGED);
collect->key = key;
if (file) {
collect->file = switch_core_session_strdup(peer_sessions[i], file);
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
}
collect->session = peer_sessions[i];
launch_collect_thread(collect);
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
}
} else {
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
*idx = i;
return 0;
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
}
} else if (switch_channel_test_flag(peer_channels[i], CF_WINNER)) {
*idx = i;
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
return 0;
}
}
if (*hups == len) {
return 0;
} else {
return 1;
}
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
}
Ringback (sponsored by Front Logic) This addition lets you set artifical ringback on a channel that is waiting for an originated call to be answered. the syntax is <action application="set" data="ringback=[data]"/> where data is either the full path to an audio file or a teletone generation script.. syntax of teletone scripts LEGEND: 0-9,a-d,*,# (standard dtmf tones) variables: c,r,d,v,>,<,+,w,l,L,% c (channels) - Sets the number of channels. r (rate) - Sets the sample rate. d (duration) - Sets the default tone duration. v (volume) - Sets the default volume. > (decrease vol) - factor to decrease volume by per frame (0 for even decrease across duration). < (increase vol) - factor to increase volume by per frame (0 for even increase across duration). + (step) - factor to step by used by < and >. w (wait) - default silence after each tone. l (loops) - number of times to repeat each tone in the script. L (LOOPS) - number of times to repeat the the whole script. % (manual tone) - a generic tone specified by a duration, a wait and a list of frequencies. standard tones can have custom duration per use with the () modifier 7(1000, 500) to generate DTMF 7 for 1 second then pause .5 seconds EXAMPLES UK Ring Tone [400+450 hz on for 400ms off for 200ms then 400+450 hz on for 400ms off for 2200ms] %(400,200,400,450);%(400,2200,400,450) US Ring Tone [440+480 hz on for 2000ms off for 4000ms] %(2000,4000,440,480) ATT BONG [volume level 4000, even decay, step by 2, # key for 60ms with no wait, volume level 2000, 350+440hz {us dialtone} for 940ms v=4000;>=0;+=2;#(60,0);v=2000;%(940,0,350,440) SIT Tone 913.8 hz for 274 ms with no wait, 1370.6 hz for 274 ms with no wait, 1776.7 hz for 380ms with no wait %(274,0,913.8);%(274,0,1370.6);%(380,0,1776.7) ATTN TONE (phone's off the hook!) 1400+2060+2450+2600 hz for 100ms with 100ms wait %(100,100,1400,2060,2450,2600) git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3408 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-11-19 01:05:06 +00:00
struct ringback {
switch_buffer_t *audio_buffer;
switch_buffer_t *loop_buffer;
teletone_generation_session_t ts;
switch_file_handle_t fhb;
switch_file_handle_t *fh;
uint8_t asis;
};
typedef struct ringback ringback_t;
static int teletone_handler(teletone_generation_session_t *ts, teletone_tone_map_t *map)
{
ringback_t *tto = ts->user_data;
int wrote;
if (!tto) {
return -1;
}
wrote = teletone_mux_tones(ts, map);
switch_buffer_write(tto->audio_buffer, ts->buffer, wrote * 2);
return 0;
}
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
#define MAX_PEERS 256
SWITCH_DECLARE(switch_status_t) switch_ivr_originate(switch_core_session_t *session,
switch_core_session_t **bleg,
switch_call_cause_t *cause,
char *bridgeto,
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
uint32_t timelimit_sec,
const switch_state_handler_table_t *table,
char *cid_name_override,
char *cid_num_override,
switch_caller_profile_t *caller_profile_override
)
{
char *pipe_names[MAX_PEERS] = {0};
char *data = NULL;
switch_status_t status = SWITCH_STATUS_SUCCESS;
switch_channel_t *caller_channel = NULL;
char *peer_names[MAX_PEERS] = {0};
switch_core_session_t *peer_session, *peer_sessions[MAX_PEERS] = {0};
switch_caller_profile_t *caller_profiles[MAX_PEERS] = {0}, *caller_caller_profile;
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
char *chan_type = NULL, *chan_data;
switch_channel_t *peer_channel = NULL, *peer_channels[MAX_PEERS] = {0};
Ringback (sponsored by Front Logic) This addition lets you set artifical ringback on a channel that is waiting for an originated call to be answered. the syntax is <action application="set" data="ringback=[data]"/> where data is either the full path to an audio file or a teletone generation script.. syntax of teletone scripts LEGEND: 0-9,a-d,*,# (standard dtmf tones) variables: c,r,d,v,>,<,+,w,l,L,% c (channels) - Sets the number of channels. r (rate) - Sets the sample rate. d (duration) - Sets the default tone duration. v (volume) - Sets the default volume. > (decrease vol) - factor to decrease volume by per frame (0 for even decrease across duration). < (increase vol) - factor to increase volume by per frame (0 for even increase across duration). + (step) - factor to step by used by < and >. w (wait) - default silence after each tone. l (loops) - number of times to repeat each tone in the script. L (LOOPS) - number of times to repeat the the whole script. % (manual tone) - a generic tone specified by a duration, a wait and a list of frequencies. standard tones can have custom duration per use with the () modifier 7(1000, 500) to generate DTMF 7 for 1 second then pause .5 seconds EXAMPLES UK Ring Tone [400+450 hz on for 400ms off for 200ms then 400+450 hz on for 400ms off for 2200ms] %(400,200,400,450);%(400,2200,400,450) US Ring Tone [440+480 hz on for 2000ms off for 4000ms] %(2000,4000,440,480) ATT BONG [volume level 4000, even decay, step by 2, # key for 60ms with no wait, volume level 2000, 350+440hz {us dialtone} for 940ms v=4000;>=0;+=2;#(60,0);v=2000;%(940,0,350,440) SIT Tone 913.8 hz for 274 ms with no wait, 1370.6 hz for 274 ms with no wait, 1776.7 hz for 380ms with no wait %(274,0,913.8);%(274,0,1370.6);%(380,0,1776.7) ATTN TONE (phone's off the hook!) 1400+2060+2450+2600 hz for 100ms with 100ms wait %(100,100,1400,2060,2450,2600) git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3408 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-11-19 01:05:06 +00:00
ringback_t ringback = {0};
time_t start;
switch_frame_t *read_frame = NULL;
switch_memory_pool_t *pool = NULL;
int r = 0, i, and_argc = 0, or_argc = 0;
int32_t idx = IDX_NADA;
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
switch_codec_t write_codec = {0};
switch_frame_t write_frame = {0};
uint8_t fdata[1024], pass = 0;
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
char *file = NULL, *key = NULL, *odata, *var;
switch_call_cause_t reason = SWITCH_CAUSE_UNALLOCATED;
uint8_t to = 0;
char *var_val, *vars = NULL, *ringback_data = NULL;
Ringback (sponsored by Front Logic) This addition lets you set artifical ringback on a channel that is waiting for an originated call to be answered. the syntax is <action application="set" data="ringback=[data]"/> where data is either the full path to an audio file or a teletone generation script.. syntax of teletone scripts LEGEND: 0-9,a-d,*,# (standard dtmf tones) variables: c,r,d,v,>,<,+,w,l,L,% c (channels) - Sets the number of channels. r (rate) - Sets the sample rate. d (duration) - Sets the default tone duration. v (volume) - Sets the default volume. > (decrease vol) - factor to decrease volume by per frame (0 for even decrease across duration). < (increase vol) - factor to increase volume by per frame (0 for even increase across duration). + (step) - factor to step by used by < and >. w (wait) - default silence after each tone. l (loops) - number of times to repeat each tone in the script. L (LOOPS) - number of times to repeat the the whole script. % (manual tone) - a generic tone specified by a duration, a wait and a list of frequencies. standard tones can have custom duration per use with the () modifier 7(1000, 500) to generate DTMF 7 for 1 second then pause .5 seconds EXAMPLES UK Ring Tone [400+450 hz on for 400ms off for 200ms then 400+450 hz on for 400ms off for 2200ms] %(400,200,400,450);%(400,2200,400,450) US Ring Tone [440+480 hz on for 2000ms off for 4000ms] %(2000,4000,440,480) ATT BONG [volume level 4000, even decay, step by 2, # key for 60ms with no wait, volume level 2000, 350+440hz {us dialtone} for 940ms v=4000;>=0;+=2;#(60,0);v=2000;%(940,0,350,440) SIT Tone 913.8 hz for 274 ms with no wait, 1370.6 hz for 274 ms with no wait, 1776.7 hz for 380ms with no wait %(274,0,913.8);%(274,0,1370.6);%(380,0,1776.7) ATTN TONE (phone's off the hook!) 1400+2060+2450+2600 hz for 100ms with 100ms wait %(100,100,1400,2060,2450,2600) git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3408 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-11-19 01:05:06 +00:00
switch_codec_t *read_codec = NULL;
uint8_t sent_ring = 0, early_ok = 1;
switch_core_session_message_t *message = NULL;
switch_event_t *var_event = NULL;
uint8_t fail_on_single_reject = 0;
Ringback (sponsored by Front Logic) This addition lets you set artifical ringback on a channel that is waiting for an originated call to be answered. the syntax is <action application="set" data="ringback=[data]"/> where data is either the full path to an audio file or a teletone generation script.. syntax of teletone scripts LEGEND: 0-9,a-d,*,# (standard dtmf tones) variables: c,r,d,v,>,<,+,w,l,L,% c (channels) - Sets the number of channels. r (rate) - Sets the sample rate. d (duration) - Sets the default tone duration. v (volume) - Sets the default volume. > (decrease vol) - factor to decrease volume by per frame (0 for even decrease across duration). < (increase vol) - factor to increase volume by per frame (0 for even increase across duration). + (step) - factor to step by used by < and >. w (wait) - default silence after each tone. l (loops) - number of times to repeat each tone in the script. L (LOOPS) - number of times to repeat the the whole script. % (manual tone) - a generic tone specified by a duration, a wait and a list of frequencies. standard tones can have custom duration per use with the () modifier 7(1000, 500) to generate DTMF 7 for 1 second then pause .5 seconds EXAMPLES UK Ring Tone [400+450 hz on for 400ms off for 200ms then 400+450 hz on for 400ms off for 2200ms] %(400,200,400,450);%(400,2200,400,450) US Ring Tone [440+480 hz on for 2000ms off for 4000ms] %(2000,4000,440,480) ATT BONG [volume level 4000, even decay, step by 2, # key for 60ms with no wait, volume level 2000, 350+440hz {us dialtone} for 940ms v=4000;>=0;+=2;#(60,0);v=2000;%(940,0,350,440) SIT Tone 913.8 hz for 274 ms with no wait, 1370.6 hz for 274 ms with no wait, 1776.7 hz for 380ms with no wait %(274,0,913.8);%(274,0,1370.6);%(380,0,1776.7) ATTN TONE (phone's off the hook!) 1400+2060+2450+2600 hz for 100ms with 100ms wait %(100,100,1400,2060,2450,2600) git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3408 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-11-19 01:05:06 +00:00
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
write_frame.data = fdata;
*bleg = NULL;
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
odata = strdup(bridgeto);
data = odata;
/* strip leading spaces */
while (data && *data && *data == ' ') {
data++;
}
if (*data == '{') {
vars = data + 1;
if (!(data = strchr(data, '}'))) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Parse Error!\n");
status = SWITCH_STATUS_GENERR;
goto done;
}
*data++ = '\0';
}
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
/* strip leading spaces (again)*/
while (data && *data && *data == ' ') {
data++;
}
if (switch_strlen_zero(data)) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Parse Error!\n");
status = SWITCH_STATUS_GENERR;
goto done;
}
/* Some channel are created from an originating channel and some aren't so not all outgoing calls have a way to get params
so we will normalize dialstring params and channel variables (when there is an originator) into an event that we
will use as a pseudo hash to consult for params as needed.
*/
if (switch_event_create(&var_event, SWITCH_EVENT_MESSAGE) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Memory Error!\n");
status = SWITCH_STATUS_MEMERR;
goto done;
}
if (session) {
switch_hash_index_t *hi;
void *vval;
const void *vvar;
caller_channel = switch_core_session_get_channel(session);
assert(caller_channel != NULL);
/* Copy all the channel variables into the event */
for (hi = switch_channel_variable_first(caller_channel, switch_core_session_get_pool(session)); hi; hi = switch_hash_next(hi)) {
switch_hash_this(hi, &vvar, NULL, &vval);
if (vvar && vval) {
switch_event_add_header(var_event, SWITCH_STACK_BOTTOM, (void *)vvar, vval);
}
}
}
if (vars) { /* Parse parameters specified from the dialstring */
char *var_array[1024] = {0};
int var_count = 0;
if ((var_count = switch_separate_string(vars, ',', var_array, (sizeof(var_array) / sizeof(var_array[0]))))) {
int x = 0;
for (x = 0; x < var_count; x++) {
char *inner_var_array[2];
int inner_var_count;
if ((inner_var_count =
switch_separate_string(var_array[x], '=', inner_var_array, (sizeof(inner_var_array) / sizeof(inner_var_array[0])))) == 2) {
switch_event_add_header(var_event, SWITCH_STACK_BOTTOM, inner_var_array[0], inner_var_array[1]);
if (caller_channel) {
switch_channel_set_variable(caller_channel, inner_var_array[0], inner_var_array[1]);
}
}
}
}
}
if (caller_channel) { /* ringback is only useful when there is an originator */
Ringback (sponsored by Front Logic) This addition lets you set artifical ringback on a channel that is waiting for an originated call to be answered. the syntax is <action application="set" data="ringback=[data]"/> where data is either the full path to an audio file or a teletone generation script.. syntax of teletone scripts LEGEND: 0-9,a-d,*,# (standard dtmf tones) variables: c,r,d,v,>,<,+,w,l,L,% c (channels) - Sets the number of channels. r (rate) - Sets the sample rate. d (duration) - Sets the default tone duration. v (volume) - Sets the default volume. > (decrease vol) - factor to decrease volume by per frame (0 for even decrease across duration). < (increase vol) - factor to increase volume by per frame (0 for even increase across duration). + (step) - factor to step by used by < and >. w (wait) - default silence after each tone. l (loops) - number of times to repeat each tone in the script. L (LOOPS) - number of times to repeat the the whole script. % (manual tone) - a generic tone specified by a duration, a wait and a list of frequencies. standard tones can have custom duration per use with the () modifier 7(1000, 500) to generate DTMF 7 for 1 second then pause .5 seconds EXAMPLES UK Ring Tone [400+450 hz on for 400ms off for 200ms then 400+450 hz on for 400ms off for 2200ms] %(400,200,400,450);%(400,2200,400,450) US Ring Tone [440+480 hz on for 2000ms off for 4000ms] %(2000,4000,440,480) ATT BONG [volume level 4000, even decay, step by 2, # key for 60ms with no wait, volume level 2000, 350+440hz {us dialtone} for 940ms v=4000;>=0;+=2;#(60,0);v=2000;%(940,0,350,440) SIT Tone 913.8 hz for 274 ms with no wait, 1370.6 hz for 274 ms with no wait, 1776.7 hz for 380ms with no wait %(274,0,913.8);%(274,0,1370.6);%(380,0,1776.7) ATTN TONE (phone's off the hook!) 1400+2060+2450+2600 hz for 100ms with 100ms wait %(100,100,1400,2060,2450,2600) git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3408 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-11-19 01:05:06 +00:00
ringback_data = switch_channel_get_variable(caller_channel, "ringback");
switch_channel_set_variable(caller_channel, "originate_disposition", "failure");
}
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
if ((var = switch_event_get_header(var_event, "group_confirm_key"))) {
key = switch_core_session_strdup(session, var);
if ((var = switch_event_get_header(var_event, "group_confirm_file"))) {
file = switch_core_session_strdup(session, var);
}
}
// When using the AND operator, the fail_on_single_reject flage may be set in order to indicate that a single
// rejections should terminate the attempt rather than a timeout, answer, or rejection by all.
if ((var = switch_event_get_header(var_event, "fail_on_single_reject")) && switch_true(var)) {
fail_on_single_reject = 1;
}
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
if (file && !strcmp(file, "undef")) {
file = NULL;
}
if ((var_val = switch_event_get_header(var_event, "ignore_early_media")) && switch_true(var_val)) {
early_ok = 0;
}
if (!cid_name_override) {
cid_name_override = switch_event_get_header(var_event, "origination_caller_id_name");
}
if (!cid_num_override) {
cid_num_override = switch_event_get_header(var_event, "origination_caller_id_number");
}
or_argc = switch_separate_string(data, '|', pipe_names, (sizeof(pipe_names) / sizeof(pipe_names[0])));
if (caller_channel && or_argc > 1 && !ringback_data) {
switch_channel_ringback(caller_channel);
sent_ring = 1;
}
for (r = 0; r < or_argc; r++) {
uint32_t hups;
reason = SWITCH_CAUSE_UNALLOCATED;
memset(peer_names, 0, sizeof(peer_names));
peer_session = NULL;
memset(peer_sessions, 0, sizeof(peer_sessions));
memset(peer_channels, 0, sizeof(peer_channels));
memset(caller_profiles, 0, sizeof(caller_profiles));
chan_type = NULL;
chan_data = NULL;
peer_channel = NULL;
start = 0;
read_frame = NULL;
pool = NULL;
pass = 0;
file = NULL;
key = NULL;
var = NULL;
to = 0;
and_argc = switch_separate_string(pipe_names[r], ',', peer_names, (sizeof(peer_names) / sizeof(peer_names[0])));
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
if (caller_channel && !sent_ring && and_argc > 1 && !ringback_data) {
switch_channel_ringback(caller_channel);
sent_ring = 1;
}
for (i = 0; i < and_argc; i++) {
chan_type = peer_names[i];
if ((chan_data = strchr(chan_type, '/')) != 0) {
*chan_data = '\0';
chan_data++;
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
}
if (session) {
if (!switch_channel_ready(caller_channel)) {
status = SWITCH_STATUS_FALSE;
goto done;
}
caller_caller_profile = caller_profile_override ? caller_profile_override : switch_channel_get_caller_profile(caller_channel);
if (!cid_name_override) {
cid_name_override = caller_caller_profile->caller_id_name;
}
if (!cid_num_override) {
cid_num_override = caller_caller_profile->caller_id_number;
}
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
caller_profiles[i] = switch_caller_profile_new(switch_core_session_get_pool(session),
caller_caller_profile->username,
caller_caller_profile->dialplan,
cid_name_override,
cid_num_override,
caller_caller_profile->network_addr,
NULL,
NULL,
caller_caller_profile->rdnis,
caller_caller_profile->source,
caller_caller_profile->context,
chan_data);
caller_profiles[i]->flags = caller_caller_profile->flags;
pool = NULL;
} else {
if (!cid_name_override) {
cid_name_override = "FreeSWITCH";
}
if (!cid_num_override) {
cid_num_override = "0000000000";
}
if (switch_core_new_memory_pool(&pool) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_CRIT, "OH OH no pool\n");
status = SWITCH_STATUS_TERM;
goto done;
}
if (caller_profile_override) {
caller_profiles[i] = switch_caller_profile_new(pool,
caller_profile_override->username,
caller_profile_override->dialplan,
caller_profile_override->caller_id_name,
caller_profile_override->caller_id_number,
caller_profile_override->network_addr,
caller_profile_override->ani,
caller_profile_override->aniii,
caller_profile_override->rdnis,
caller_profile_override->source,
caller_profile_override->context,
chan_data);
} else {
caller_profiles[i] = switch_caller_profile_new(pool,
NULL,
NULL,
cid_name_override,
cid_num_override,
NULL,
NULL,
NULL,
NULL,
__FILE__,
NULL,
chan_data);
}
}
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
if ((reason = switch_core_session_outgoing_channel(session, chan_type, caller_profiles[i], &peer_sessions[i], pool)) != SWITCH_CAUSE_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Cannot Create Outgoing Channel! cause: %s\n", switch_channel_cause2str(reason));
if (pool) {
switch_core_destroy_memory_pool(&pool);
}
caller_profiles[i] = NULL;
peer_channels[i] = NULL;
peer_sessions[i] = NULL;
continue;
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
}
switch_core_session_read_lock(peer_sessions[i]);
pool = NULL;
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
peer_channels[i] = switch_core_session_get_channel(peer_sessions[i]);
assert(peer_channels[i] != NULL);
//switch_channel_set_flag(peer_channels[i], CF_NO_INDICATE);
if (table == &noop_state_handler) {
table = NULL;
} else if (!table) {
table = &audio_bridge_peer_state_handlers;
}
if (table) {
switch_channel_add_state_handler(peer_channels[i], table);
}
if (switch_core_session_running(peer_sessions[i])) {
switch_channel_set_state(peer_channels[i], CS_RING);
} else {
switch_core_session_thread_launch(peer_sessions[i]);
}
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
}
time(&start);
for (;;) {
uint32_t valid_channels = 0;
for (i = 0; i < and_argc; i++) {
int state;
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
if (!peer_channels[i]) {
continue;
}
valid_channels++;
state = switch_channel_get_state(peer_channels[i]);
if (state >= CS_RING) {
goto endfor1;
}
if (caller_channel && !switch_channel_ready(caller_channel)) {
goto notready;
}
if ((time(NULL) - start) > (time_t)timelimit_sec) {
to++;
idx = IDX_CANCEL;
goto notready;
}
switch_yield(1000);
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
}
if (valid_channels == 0) {
status = SWITCH_STATUS_GENERR;
goto done;
}
}
endfor1:
Ringback (sponsored by Front Logic) This addition lets you set artifical ringback on a channel that is waiting for an originated call to be answered. the syntax is <action application="set" data="ringback=[data]"/> where data is either the full path to an audio file or a teletone generation script.. syntax of teletone scripts LEGEND: 0-9,a-d,*,# (standard dtmf tones) variables: c,r,d,v,>,<,+,w,l,L,% c (channels) - Sets the number of channels. r (rate) - Sets the sample rate. d (duration) - Sets the default tone duration. v (volume) - Sets the default volume. > (decrease vol) - factor to decrease volume by per frame (0 for even decrease across duration). < (increase vol) - factor to increase volume by per frame (0 for even increase across duration). + (step) - factor to step by used by < and >. w (wait) - default silence after each tone. l (loops) - number of times to repeat each tone in the script. L (LOOPS) - number of times to repeat the the whole script. % (manual tone) - a generic tone specified by a duration, a wait and a list of frequencies. standard tones can have custom duration per use with the () modifier 7(1000, 500) to generate DTMF 7 for 1 second then pause .5 seconds EXAMPLES UK Ring Tone [400+450 hz on for 400ms off for 200ms then 400+450 hz on for 400ms off for 2200ms] %(400,200,400,450);%(400,2200,400,450) US Ring Tone [440+480 hz on for 2000ms off for 4000ms] %(2000,4000,440,480) ATT BONG [volume level 4000, even decay, step by 2, # key for 60ms with no wait, volume level 2000, 350+440hz {us dialtone} for 940ms v=4000;>=0;+=2;#(60,0);v=2000;%(940,0,350,440) SIT Tone 913.8 hz for 274 ms with no wait, 1370.6 hz for 274 ms with no wait, 1776.7 hz for 380ms with no wait %(274,0,913.8);%(274,0,1370.6);%(380,0,1776.7) ATTN TONE (phone's off the hook!) 1400+2060+2450+2600 hz for 100ms with 100ms wait %(100,100,1400,2060,2450,2600) git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3408 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-11-19 01:05:06 +00:00
if (ringback_data && !switch_channel_test_flag(caller_channel, CF_ANSWERED) && !switch_channel_test_flag(caller_channel, CF_EARLY_MEDIA)) {
switch_channel_pre_answer(caller_channel);
}
if (session && (read_codec = switch_core_session_get_read_codec(session)) &&
(ringback_data || !switch_channel_test_flag(caller_channel, CF_NOMEDIA))) {
Ringback (sponsored by Front Logic) This addition lets you set artifical ringback on a channel that is waiting for an originated call to be answered. the syntax is <action application="set" data="ringback=[data]"/> where data is either the full path to an audio file or a teletone generation script.. syntax of teletone scripts LEGEND: 0-9,a-d,*,# (standard dtmf tones) variables: c,r,d,v,>,<,+,w,l,L,% c (channels) - Sets the number of channels. r (rate) - Sets the sample rate. d (duration) - Sets the default tone duration. v (volume) - Sets the default volume. > (decrease vol) - factor to decrease volume by per frame (0 for even decrease across duration). < (increase vol) - factor to increase volume by per frame (0 for even increase across duration). + (step) - factor to step by used by < and >. w (wait) - default silence after each tone. l (loops) - number of times to repeat each tone in the script. L (LOOPS) - number of times to repeat the the whole script. % (manual tone) - a generic tone specified by a duration, a wait and a list of frequencies. standard tones can have custom duration per use with the () modifier 7(1000, 500) to generate DTMF 7 for 1 second then pause .5 seconds EXAMPLES UK Ring Tone [400+450 hz on for 400ms off for 200ms then 400+450 hz on for 400ms off for 2200ms] %(400,200,400,450);%(400,2200,400,450) US Ring Tone [440+480 hz on for 2000ms off for 4000ms] %(2000,4000,440,480) ATT BONG [volume level 4000, even decay, step by 2, # key for 60ms with no wait, volume level 2000, 350+440hz {us dialtone} for 940ms v=4000;>=0;+=2;#(60,0);v=2000;%(940,0,350,440) SIT Tone 913.8 hz for 274 ms with no wait, 1370.6 hz for 274 ms with no wait, 1776.7 hz for 380ms with no wait %(274,0,913.8);%(274,0,1370.6);%(380,0,1776.7) ATTN TONE (phone's off the hook!) 1400+2060+2450+2600 hz for 100ms with 100ms wait %(100,100,1400,2060,2450,2600) git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3408 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-11-19 01:05:06 +00:00
if (!(pass = (uint8_t)switch_test_flag(read_codec, SWITCH_CODEC_FLAG_PASSTHROUGH))) {
if (switch_core_codec_init(&write_codec,
"L16",
NULL,
read_codec->implementation->samples_per_second,
read_codec->implementation->microseconds_per_frame / 1000,
1,
SWITCH_CODEC_FLAG_ENCODE | SWITCH_CODEC_FLAG_DECODE,
NULL,
pool) == SWITCH_STATUS_SUCCESS) {
Ringback (sponsored by Front Logic) This addition lets you set artifical ringback on a channel that is waiting for an originated call to be answered. the syntax is <action application="set" data="ringback=[data]"/> where data is either the full path to an audio file or a teletone generation script.. syntax of teletone scripts LEGEND: 0-9,a-d,*,# (standard dtmf tones) variables: c,r,d,v,>,<,+,w,l,L,% c (channels) - Sets the number of channels. r (rate) - Sets the sample rate. d (duration) - Sets the default tone duration. v (volume) - Sets the default volume. > (decrease vol) - factor to decrease volume by per frame (0 for even decrease across duration). < (increase vol) - factor to increase volume by per frame (0 for even increase across duration). + (step) - factor to step by used by < and >. w (wait) - default silence after each tone. l (loops) - number of times to repeat each tone in the script. L (LOOPS) - number of times to repeat the the whole script. % (manual tone) - a generic tone specified by a duration, a wait and a list of frequencies. standard tones can have custom duration per use with the () modifier 7(1000, 500) to generate DTMF 7 for 1 second then pause .5 seconds EXAMPLES UK Ring Tone [400+450 hz on for 400ms off for 200ms then 400+450 hz on for 400ms off for 2200ms] %(400,200,400,450);%(400,2200,400,450) US Ring Tone [440+480 hz on for 2000ms off for 4000ms] %(2000,4000,440,480) ATT BONG [volume level 4000, even decay, step by 2, # key for 60ms with no wait, volume level 2000, 350+440hz {us dialtone} for 940ms v=4000;>=0;+=2;#(60,0);v=2000;%(940,0,350,440) SIT Tone 913.8 hz for 274 ms with no wait, 1370.6 hz for 274 ms with no wait, 1776.7 hz for 380ms with no wait %(274,0,913.8);%(274,0,1370.6);%(380,0,1776.7) ATTN TONE (phone's off the hook!) 1400+2060+2450+2600 hz for 100ms with 100ms wait %(100,100,1400,2060,2450,2600) git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3408 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-11-19 01:05:06 +00:00
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Raw Codec Activation Success L16@%uhz 1 channel %dms\n",
read_codec->implementation->samples_per_second,
read_codec->implementation->microseconds_per_frame / 1000);
write_frame.codec = &write_codec;
write_frame.datalen = read_codec->implementation->bytes_per_frame;
write_frame.samples = write_frame.datalen / 2;
memset(write_frame.data, 255, write_frame.datalen);
Ringback (sponsored by Front Logic) This addition lets you set artifical ringback on a channel that is waiting for an originated call to be answered. the syntax is <action application="set" data="ringback=[data]"/> where data is either the full path to an audio file or a teletone generation script.. syntax of teletone scripts LEGEND: 0-9,a-d,*,# (standard dtmf tones) variables: c,r,d,v,>,<,+,w,l,L,% c (channels) - Sets the number of channels. r (rate) - Sets the sample rate. d (duration) - Sets the default tone duration. v (volume) - Sets the default volume. > (decrease vol) - factor to decrease volume by per frame (0 for even decrease across duration). < (increase vol) - factor to increase volume by per frame (0 for even increase across duration). + (step) - factor to step by used by < and >. w (wait) - default silence after each tone. l (loops) - number of times to repeat each tone in the script. L (LOOPS) - number of times to repeat the the whole script. % (manual tone) - a generic tone specified by a duration, a wait and a list of frequencies. standard tones can have custom duration per use with the () modifier 7(1000, 500) to generate DTMF 7 for 1 second then pause .5 seconds EXAMPLES UK Ring Tone [400+450 hz on for 400ms off for 200ms then 400+450 hz on for 400ms off for 2200ms] %(400,200,400,450);%(400,2200,400,450) US Ring Tone [440+480 hz on for 2000ms off for 4000ms] %(2000,4000,440,480) ATT BONG [volume level 4000, even decay, step by 2, # key for 60ms with no wait, volume level 2000, 350+440hz {us dialtone} for 940ms v=4000;>=0;+=2;#(60,0);v=2000;%(940,0,350,440) SIT Tone 913.8 hz for 274 ms with no wait, 1370.6 hz for 274 ms with no wait, 1776.7 hz for 380ms with no wait %(274,0,913.8);%(274,0,1370.6);%(380,0,1776.7) ATTN TONE (phone's off the hook!) 1400+2060+2450+2600 hz for 100ms with 100ms wait %(100,100,1400,2060,2450,2600) git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3408 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-11-19 01:05:06 +00:00
if (ringback_data) {
char *tmp_data = NULL;
Ringback (sponsored by Front Logic) This addition lets you set artifical ringback on a channel that is waiting for an originated call to be answered. the syntax is <action application="set" data="ringback=[data]"/> where data is either the full path to an audio file or a teletone generation script.. syntax of teletone scripts LEGEND: 0-9,a-d,*,# (standard dtmf tones) variables: c,r,d,v,>,<,+,w,l,L,% c (channels) - Sets the number of channels. r (rate) - Sets the sample rate. d (duration) - Sets the default tone duration. v (volume) - Sets the default volume. > (decrease vol) - factor to decrease volume by per frame (0 for even decrease across duration). < (increase vol) - factor to increase volume by per frame (0 for even increase across duration). + (step) - factor to step by used by < and >. w (wait) - default silence after each tone. l (loops) - number of times to repeat each tone in the script. L (LOOPS) - number of times to repeat the the whole script. % (manual tone) - a generic tone specified by a duration, a wait and a list of frequencies. standard tones can have custom duration per use with the () modifier 7(1000, 500) to generate DTMF 7 for 1 second then pause .5 seconds EXAMPLES UK Ring Tone [400+450 hz on for 400ms off for 200ms then 400+450 hz on for 400ms off for 2200ms] %(400,200,400,450);%(400,2200,400,450) US Ring Tone [440+480 hz on for 2000ms off for 4000ms] %(2000,4000,440,480) ATT BONG [volume level 4000, even decay, step by 2, # key for 60ms with no wait, volume level 2000, 350+440hz {us dialtone} for 940ms v=4000;>=0;+=2;#(60,0);v=2000;%(940,0,350,440) SIT Tone 913.8 hz for 274 ms with no wait, 1370.6 hz for 274 ms with no wait, 1776.7 hz for 380ms with no wait %(274,0,913.8);%(274,0,1370.6);%(380,0,1776.7) ATTN TONE (phone's off the hook!) 1400+2060+2450+2600 hz for 100ms with 100ms wait %(100,100,1400,2060,2450,2600) git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3408 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-11-19 01:05:06 +00:00
switch_buffer_create_dynamic(&ringback.audio_buffer, 512, 1024, 0);
switch_buffer_create_dynamic(&ringback.loop_buffer, 512, 1024, 0);
if (*ringback_data == '/') {
char *ext;
if ((ext = strrchr(ringback_data, '.'))) {
switch_core_session_set_read_codec(session, &write_codec);
ext++;
} else {
ringback.asis++;
write_frame.codec = read_codec;
ext = read_codec->implementation->iananame;
tmp_data = switch_mprintf("%s.%s", ringback_data, ext);
ringback_data = tmp_data;
}
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Play Ringback File [%s]\n", ringback_data);
ringback.fhb.channels = read_codec->implementation->number_of_channels;
ringback.fhb.samplerate = read_codec->implementation->samples_per_second;
if (switch_core_file_open(&ringback.fhb,
ringback_data,
SWITCH_FILE_FLAG_READ | SWITCH_FILE_DATA_SHORT,
switch_core_session_get_pool(session)) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Error Playing File\n");
switch_safe_free(tmp_data);
goto notready;
}
ringback.fh = &ringback.fhb;
} else {
teletone_init_session(&ringback.ts, 0, teletone_handler, &ringback);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Play Ringback Tone [%s]\n", ringback_data);
//ringback.ts.debug = 1;
//ringback.ts.debug_stream = switch_core_get_console();
if (teletone_run(&ringback.ts, ringback_data)) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Error Playing Tone\n");
teletone_destroy_session(&ringback.ts);
switch_buffer_destroy(&ringback.audio_buffer);
switch_buffer_destroy(&ringback.loop_buffer);
ringback_data = NULL;
}
}
switch_safe_free(tmp_data);
}
} else {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Codec Error!");
switch_channel_hangup(caller_channel, SWITCH_CAUSE_NORMAL_TEMPORARY_FAILURE);
Ringback (sponsored by Front Logic) This addition lets you set artifical ringback on a channel that is waiting for an originated call to be answered. the syntax is <action application="set" data="ringback=[data]"/> where data is either the full path to an audio file or a teletone generation script.. syntax of teletone scripts LEGEND: 0-9,a-d,*,# (standard dtmf tones) variables: c,r,d,v,>,<,+,w,l,L,% c (channels) - Sets the number of channels. r (rate) - Sets the sample rate. d (duration) - Sets the default tone duration. v (volume) - Sets the default volume. > (decrease vol) - factor to decrease volume by per frame (0 for even decrease across duration). < (increase vol) - factor to increase volume by per frame (0 for even increase across duration). + (step) - factor to step by used by < and >. w (wait) - default silence after each tone. l (loops) - number of times to repeat each tone in the script. L (LOOPS) - number of times to repeat the the whole script. % (manual tone) - a generic tone specified by a duration, a wait and a list of frequencies. standard tones can have custom duration per use with the () modifier 7(1000, 500) to generate DTMF 7 for 1 second then pause .5 seconds EXAMPLES UK Ring Tone [400+450 hz on for 400ms off for 200ms then 400+450 hz on for 400ms off for 2200ms] %(400,200,400,450);%(400,2200,400,450) US Ring Tone [440+480 hz on for 2000ms off for 4000ms] %(2000,4000,440,480) ATT BONG [volume level 4000, even decay, step by 2, # key for 60ms with no wait, volume level 2000, 350+440hz {us dialtone} for 940ms v=4000;>=0;+=2;#(60,0);v=2000;%(940,0,350,440) SIT Tone 913.8 hz for 274 ms with no wait, 1370.6 hz for 274 ms with no wait, 1776.7 hz for 380ms with no wait %(274,0,913.8);%(274,0,1370.6);%(380,0,1776.7) ATTN TONE (phone's off the hook!) 1400+2060+2450+2600 hz for 100ms with 100ms wait %(100,100,1400,2060,2450,2600) git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3408 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-11-19 01:05:06 +00:00
read_codec = NULL;
}
}
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
}
if (ringback_data) {
early_ok = 0;
}
while ((!caller_channel || switch_channel_ready(caller_channel)) &&
check_channel_status(peer_channels, peer_sessions, and_argc, &idx, &hups, file, key, early_ok)) {
// When the AND operator is being used, and fail_on_single_reject is set, a hangup indicates that the call should fail.
if ((to = (uint8_t)((time(NULL) - start) >= (time_t)timelimit_sec)) || (fail_on_single_reject && hups)) {
idx = IDX_CANCEL;
goto notready;
}
if (peer_sessions[0] && switch_core_session_dequeue_message(peer_sessions[0], &message) == SWITCH_STATUS_SUCCESS) {
if (session && !ringback_data && or_argc == 1 && and_argc == 1) { /* when there is only 1 channel to call and bridge and no ringback */
switch_core_session_receive_message(session, message);
}
if (switch_test_flag(message, SCSMF_DYNAMIC)) {
switch_safe_free(message);
} else {
message = NULL;
}
}
/* read from the channel while we wait if the audio is up on it */
if (session && (ringback_data || !switch_channel_test_flag(caller_channel, CF_NOMEDIA)) &&
(switch_channel_test_flag(caller_channel, CF_ANSWERED) || switch_channel_test_flag(caller_channel, CF_EARLY_MEDIA))) {
switch_status_t status = switch_core_session_read_frame(session, &read_frame, 1000, 0);
if (!SWITCH_READ_ACCEPTABLE(status)) {
break;
}
Ringback (sponsored by Front Logic) This addition lets you set artifical ringback on a channel that is waiting for an originated call to be answered. the syntax is <action application="set" data="ringback=[data]"/> where data is either the full path to an audio file or a teletone generation script.. syntax of teletone scripts LEGEND: 0-9,a-d,*,# (standard dtmf tones) variables: c,r,d,v,>,<,+,w,l,L,% c (channels) - Sets the number of channels. r (rate) - Sets the sample rate. d (duration) - Sets the default tone duration. v (volume) - Sets the default volume. > (decrease vol) - factor to decrease volume by per frame (0 for even decrease across duration). < (increase vol) - factor to increase volume by per frame (0 for even increase across duration). + (step) - factor to step by used by < and >. w (wait) - default silence after each tone. l (loops) - number of times to repeat each tone in the script. L (LOOPS) - number of times to repeat the the whole script. % (manual tone) - a generic tone specified by a duration, a wait and a list of frequencies. standard tones can have custom duration per use with the () modifier 7(1000, 500) to generate DTMF 7 for 1 second then pause .5 seconds EXAMPLES UK Ring Tone [400+450 hz on for 400ms off for 200ms then 400+450 hz on for 400ms off for 2200ms] %(400,200,400,450);%(400,2200,400,450) US Ring Tone [440+480 hz on for 2000ms off for 4000ms] %(2000,4000,440,480) ATT BONG [volume level 4000, even decay, step by 2, # key for 60ms with no wait, volume level 2000, 350+440hz {us dialtone} for 940ms v=4000;>=0;+=2;#(60,0);v=2000;%(940,0,350,440) SIT Tone 913.8 hz for 274 ms with no wait, 1370.6 hz for 274 ms with no wait, 1776.7 hz for 380ms with no wait %(274,0,913.8);%(274,0,1370.6);%(380,0,1776.7) ATTN TONE (phone's off the hook!) 1400+2060+2450+2600 hz for 100ms with 100ms wait %(100,100,1400,2060,2450,2600) git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3408 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-11-19 01:05:06 +00:00
if (read_frame && !pass && !switch_test_flag(read_frame, SFF_CNG) && read_frame->datalen > 1) {
if (ringback.fh) {
uint8_t abuf[1024];
switch_size_t mlen, olen;
unsigned int pos = 0;
if (ringback.asis) {
mlen = read_frame->datalen;
} else {
mlen = read_frame->datalen / 2;
}
olen = mlen;
switch_core_file_read(ringback.fh, abuf, &olen);
if (olen == 0) {
olen = mlen;
ringback.fh->speed = 0;
switch_core_file_seek(ringback.fh, &pos, 0, SEEK_SET);
switch_core_file_read(ringback.fh, abuf, &olen);
if (olen == 0) {
break;
}
}
write_frame.data = abuf;
write_frame.datalen = (uint32_t) (ringback.asis ? olen : olen * 2);
Ringback (sponsored by Front Logic) This addition lets you set artifical ringback on a channel that is waiting for an originated call to be answered. the syntax is <action application="set" data="ringback=[data]"/> where data is either the full path to an audio file or a teletone generation script.. syntax of teletone scripts LEGEND: 0-9,a-d,*,# (standard dtmf tones) variables: c,r,d,v,>,<,+,w,l,L,% c (channels) - Sets the number of channels. r (rate) - Sets the sample rate. d (duration) - Sets the default tone duration. v (volume) - Sets the default volume. > (decrease vol) - factor to decrease volume by per frame (0 for even decrease across duration). < (increase vol) - factor to increase volume by per frame (0 for even increase across duration). + (step) - factor to step by used by < and >. w (wait) - default silence after each tone. l (loops) - number of times to repeat each tone in the script. L (LOOPS) - number of times to repeat the the whole script. % (manual tone) - a generic tone specified by a duration, a wait and a list of frequencies. standard tones can have custom duration per use with the () modifier 7(1000, 500) to generate DTMF 7 for 1 second then pause .5 seconds EXAMPLES UK Ring Tone [400+450 hz on for 400ms off for 200ms then 400+450 hz on for 400ms off for 2200ms] %(400,200,400,450);%(400,2200,400,450) US Ring Tone [440+480 hz on for 2000ms off for 4000ms] %(2000,4000,440,480) ATT BONG [volume level 4000, even decay, step by 2, # key for 60ms with no wait, volume level 2000, 350+440hz {us dialtone} for 940ms v=4000;>=0;+=2;#(60,0);v=2000;%(940,0,350,440) SIT Tone 913.8 hz for 274 ms with no wait, 1370.6 hz for 274 ms with no wait, 1776.7 hz for 380ms with no wait %(274,0,913.8);%(274,0,1370.6);%(380,0,1776.7) ATTN TONE (phone's off the hook!) 1400+2060+2450+2600 hz for 100ms with 100ms wait %(100,100,1400,2060,2450,2600) git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3408 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-11-19 01:05:06 +00:00
if (switch_core_session_write_frame(session, &write_frame, 1000, 0) != SWITCH_STATUS_SUCCESS) {
break;
}
} else if (ringback.audio_buffer) {
if ((write_frame.datalen = (uint32_t)switch_buffer_read(ringback.audio_buffer,
write_frame.data,
write_frame.codec->implementation->bytes_per_frame)) <= 0) {
switch_buffer_t *tmp;
tmp = ringback.audio_buffer;
ringback.audio_buffer = ringback.loop_buffer;
ringback.loop_buffer = tmp;
if ((write_frame.datalen = (uint32_t)switch_buffer_read(ringback.audio_buffer,
write_frame.data,
write_frame.codec->implementation->bytes_per_frame)) <= 0) {
break;
}
}
}
if (switch_core_session_write_frame(session, &write_frame, 1000, 0) != SWITCH_STATUS_SUCCESS) {
break;
}
Ringback (sponsored by Front Logic) This addition lets you set artifical ringback on a channel that is waiting for an originated call to be answered. the syntax is <action application="set" data="ringback=[data]"/> where data is either the full path to an audio file or a teletone generation script.. syntax of teletone scripts LEGEND: 0-9,a-d,*,# (standard dtmf tones) variables: c,r,d,v,>,<,+,w,l,L,% c (channels) - Sets the number of channels. r (rate) - Sets the sample rate. d (duration) - Sets the default tone duration. v (volume) - Sets the default volume. > (decrease vol) - factor to decrease volume by per frame (0 for even decrease across duration). < (increase vol) - factor to increase volume by per frame (0 for even increase across duration). + (step) - factor to step by used by < and >. w (wait) - default silence after each tone. l (loops) - number of times to repeat each tone in the script. L (LOOPS) - number of times to repeat the the whole script. % (manual tone) - a generic tone specified by a duration, a wait and a list of frequencies. standard tones can have custom duration per use with the () modifier 7(1000, 500) to generate DTMF 7 for 1 second then pause .5 seconds EXAMPLES UK Ring Tone [400+450 hz on for 400ms off for 200ms then 400+450 hz on for 400ms off for 2200ms] %(400,200,400,450);%(400,2200,400,450) US Ring Tone [440+480 hz on for 2000ms off for 4000ms] %(2000,4000,440,480) ATT BONG [volume level 4000, even decay, step by 2, # key for 60ms with no wait, volume level 2000, 350+440hz {us dialtone} for 940ms v=4000;>=0;+=2;#(60,0);v=2000;%(940,0,350,440) SIT Tone 913.8 hz for 274 ms with no wait, 1370.6 hz for 274 ms with no wait, 1776.7 hz for 380ms with no wait %(274,0,913.8);%(274,0,1370.6);%(380,0,1776.7) ATTN TONE (phone's off the hook!) 1400+2060+2450+2600 hz for 100ms with 100ms wait %(100,100,1400,2060,2450,2600) git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3408 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-11-19 01:05:06 +00:00
if (ringback.loop_buffer) {
switch_buffer_write(ringback.loop_buffer, write_frame.data, write_frame.datalen);
}
}
} else {
switch_yield(1000);
}
}
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
notready:
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
if (caller_channel && !switch_channel_ready(caller_channel)) {
idx = IDX_CANCEL;
}
if (session && (ringback_data || !switch_channel_test_flag(caller_channel, CF_NOMEDIA))) {
switch_core_session_reset(session);
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
}
for (i = 0; i < and_argc; i++) {
if (!peer_channels[i]) {
continue;
}
if (i != idx) {
if (idx == IDX_CANCEL) {
if (to) {
reason = SWITCH_CAUSE_NO_ANSWER;
} else {
reason = SWITCH_CAUSE_ORIGINATOR_CANCEL;
}
} else {
if (to) {
reason = SWITCH_CAUSE_NO_ANSWER;
} else if (and_argc > 1) {
reason = SWITCH_CAUSE_LOSE_RACE;
} else {
reason = SWITCH_CAUSE_NO_ANSWER;
}
}
switch_channel_hangup(peer_channels[i], reason);
}
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
}
if (idx > IDX_NADA) {
peer_session = peer_sessions[idx];
peer_channel = peer_channels[idx];
} else {
status = SWITCH_STATUS_FALSE;
goto done;
}
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
if (caller_channel) {
if (switch_channel_test_flag(peer_channel, CF_ANSWERED)) {
switch_channel_answer(caller_channel);
} else if (switch_channel_test_flag(peer_channel, CF_EARLY_MEDIA)) {
switch_channel_pre_answer(caller_channel);
}
}
if (switch_channel_test_flag(peer_channel, CF_ANSWERED) || switch_channel_test_flag(peer_channel, CF_EARLY_MEDIA)) {
*bleg = peer_session;
status = SWITCH_STATUS_SUCCESS;
} else {
status = SWITCH_STATUS_FALSE;
}
done:
*cause = SWITCH_CAUSE_UNALLOCATED;
if (var_event) {
if (peer_channel && !caller_channel) { /* install the vars from the {} params */
switch_event_header_t *header;
for (header = var_event->headers; header; header = header->next) {
switch_channel_set_variable(peer_channel, header->name, header->value);
}
}
switch_event_destroy(&var_event);
}
if (status == SWITCH_STATUS_SUCCESS) {
if (caller_channel) {
switch_channel_set_variable(caller_channel, "originate_disposition", "call accepted");
}
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Originate Resulted in Success: [%s]\n", switch_channel_get_name(peer_channel));
*cause = SWITCH_CAUSE_SUCCESS;
} else {
if (peer_channel) {
*cause = switch_channel_get_cause(peer_channel);
} else {
for (i = 0; i < and_argc; i++) {
if (!peer_channels[i]) {
continue;
}
*cause = switch_channel_get_cause(peer_channels[i]);
break;
}
}
if (!*cause) {
if (reason) {
*cause = reason;
} else if (caller_channel) {
*cause = switch_channel_get_cause(caller_channel);
} else {
*cause = SWITCH_CAUSE_DESTINATION_OUT_OF_ORDER;
}
}
if (idx == IDX_CANCEL) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Originate Cancelled by originator termination Cause: %d [%s]\n",
*cause, switch_channel_cause2str(*cause));
} else {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Originate Resulted in Error Cause: %d [%s]\n",
*cause, switch_channel_cause2str(*cause));
}
}
if (caller_channel) {
switch_channel_set_variable(caller_channel, "originate_disposition", switch_channel_cause2str(*cause));
}
if (!pass && write_codec.implementation) {
switch_core_codec_destroy(&write_codec);
}
Ringback (sponsored by Front Logic) This addition lets you set artifical ringback on a channel that is waiting for an originated call to be answered. the syntax is <action application="set" data="ringback=[data]"/> where data is either the full path to an audio file or a teletone generation script.. syntax of teletone scripts LEGEND: 0-9,a-d,*,# (standard dtmf tones) variables: c,r,d,v,>,<,+,w,l,L,% c (channels) - Sets the number of channels. r (rate) - Sets the sample rate. d (duration) - Sets the default tone duration. v (volume) - Sets the default volume. > (decrease vol) - factor to decrease volume by per frame (0 for even decrease across duration). < (increase vol) - factor to increase volume by per frame (0 for even increase across duration). + (step) - factor to step by used by < and >. w (wait) - default silence after each tone. l (loops) - number of times to repeat each tone in the script. L (LOOPS) - number of times to repeat the the whole script. % (manual tone) - a generic tone specified by a duration, a wait and a list of frequencies. standard tones can have custom duration per use with the () modifier 7(1000, 500) to generate DTMF 7 for 1 second then pause .5 seconds EXAMPLES UK Ring Tone [400+450 hz on for 400ms off for 200ms then 400+450 hz on for 400ms off for 2200ms] %(400,200,400,450);%(400,2200,400,450) US Ring Tone [440+480 hz on for 2000ms off for 4000ms] %(2000,4000,440,480) ATT BONG [volume level 4000, even decay, step by 2, # key for 60ms with no wait, volume level 2000, 350+440hz {us dialtone} for 940ms v=4000;>=0;+=2;#(60,0);v=2000;%(940,0,350,440) SIT Tone 913.8 hz for 274 ms with no wait, 1370.6 hz for 274 ms with no wait, 1776.7 hz for 380ms with no wait %(274,0,913.8);%(274,0,1370.6);%(380,0,1776.7) ATTN TONE (phone's off the hook!) 1400+2060+2450+2600 hz for 100ms with 100ms wait %(100,100,1400,2060,2450,2600) git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3408 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-11-19 01:05:06 +00:00
if (ringback.fh) {
switch_core_file_close(ringback.fh);
ringback.fh = NULL;
if (read_codec && !ringback.asis) {
switch_core_session_set_read_codec(session, read_codec);
switch_core_session_reset(session);
}
} else if (ringback.audio_buffer) {
teletone_destroy_session(&ringback.ts);
switch_buffer_destroy(&ringback.audio_buffer);
switch_buffer_destroy(&ringback.loop_buffer);
}
for (i = 0; i < and_argc; i++) {
if (!peer_channels[i]) {
continue;
}
switch_core_session_rwunlock(peer_sessions[i]);
}
if (status == SWITCH_STATUS_SUCCESS) {
break;
}
}
switch_safe_free(odata);
return status;
}
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
SWITCH_DECLARE(switch_status_t) switch_ivr_hold(switch_core_session_t *session)
{
switch_core_session_message_t msg = {0};
switch_channel_t *channel;
msg.message_id = SWITCH_MESSAGE_INDICATE_HOLD;
msg.from = __FILE__;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
switch_channel_set_flag(channel, CF_HOLD);
switch_channel_set_flag(channel, CF_SUSPEND);
switch_core_session_receive_message(session, &msg);
return SWITCH_STATUS_SUCCESS;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_hold_uuid(char *uuid)
{
switch_core_session_t *session;
if ((session = switch_core_session_locate(uuid))) {
switch_ivr_hold(session);
switch_core_session_rwunlock(session);
}
return SWITCH_STATUS_SUCCESS;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_unhold(switch_core_session_t *session)
{
switch_core_session_message_t msg = {0};
switch_channel_t *channel;
msg.message_id = SWITCH_MESSAGE_INDICATE_UNHOLD;
msg.from = __FILE__;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
switch_channel_clear_flag(channel, CF_HOLD);
switch_channel_clear_flag(channel, CF_SUSPEND);
switch_core_session_receive_message(session, &msg);
return SWITCH_STATUS_SUCCESS;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_unhold_uuid(char *uuid)
{
switch_core_session_t *session;
if ((session = switch_core_session_locate(uuid))) {
switch_ivr_unhold(session);
switch_core_session_rwunlock(session);
}
return SWITCH_STATUS_SUCCESS;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_broadcast(char *uuid, char *path, switch_media_flag_t flags)
{
switch_channel_t *channel;
int nomedia;
switch_core_session_t *session, *master;
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
switch_event_t *event;
switch_core_session_t *other_session = NULL;
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
char *other_uuid = NULL;
if ((session = switch_core_session_locate(uuid))) {
char *app;
master = session;
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
if ((nomedia = switch_channel_test_flag(channel, CF_NOMEDIA))) {
switch_ivr_media(uuid, SMF_REBRIDGE);
}
if (!strncasecmp(path, "speak:", 6)) {
path += 6;
app = "speak";
} else {
app = "playback";
}
if ((flags & SMF_ECHO_BLEG) && (other_uuid = switch_channel_get_variable(channel, SWITCH_BRIDGE_VARIABLE))
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
&& (other_session = switch_core_session_locate(other_uuid))) {
if (switch_event_create(&event, SWITCH_EVENT_MESSAGE) == SWITCH_STATUS_SUCCESS) {
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "call-command", "execute");
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "execute-app-name", app);
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "execute-app-arg", "%s", path);
switch_core_session_queue_private_event(other_session, &event);
}
switch_core_session_rwunlock(other_session);
master = other_session;
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
other_session = NULL;
}
if ((flags & SMF_ECHO_ALEG)) {
if (switch_event_create(&event, SWITCH_EVENT_MESSAGE) == SWITCH_STATUS_SUCCESS) {
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "call-command", "execute");
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "execute-app-name", app);
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "execute-app-arg", "%s", path);
switch_core_session_queue_private_event(session, &event);
}
master = session;
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
}
if (nomedia) {
if (switch_event_create(&event, SWITCH_EVENT_MESSAGE) == SWITCH_STATUS_SUCCESS) {
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "call-command", "nomedia");
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "nomedia-uuid", "%s", uuid);
switch_core_session_queue_private_event(master, &event);
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
}
}
switch_core_session_rwunlock(session);
}
return SWITCH_STATUS_SUCCESS;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_media(char *uuid, switch_media_flag_t flags)
{
char *other_uuid = NULL;
switch_channel_t *channel, *other_channel = NULL;
switch_core_session_t *session, *other_session;
switch_core_session_message_t msg = {0};
switch_status_t status = SWITCH_STATUS_GENERR;
uint8_t swap = 0;
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
msg.message_id = SWITCH_MESSAGE_INDICATE_MEDIA;
msg.from = __FILE__;
if ((session = switch_core_session_locate(uuid))) {
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
if ((flags & SMF_REBRIDGE) && !switch_channel_test_flag(channel, CF_ORIGINATOR)) {
swap = 1;
}
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
if (switch_channel_test_flag(channel, CF_NOMEDIA)) {
status = SWITCH_STATUS_SUCCESS;
switch_channel_clear_flag(channel, CF_NOMEDIA);
switch_core_session_receive_message(session, &msg);
if ((flags & SMF_REBRIDGE) && (other_uuid = switch_channel_get_variable(channel, SWITCH_SIGNAL_BRIDGE_VARIABLE))
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
&& (other_session = switch_core_session_locate(other_uuid))) {
other_channel = switch_core_session_get_channel(other_session);
assert(other_channel != NULL);
switch_core_session_receive_message(other_session, &msg);
switch_channel_clear_state_handler(other_channel, NULL);
switch_core_session_rwunlock(other_session);
}
if (other_channel) {
switch_channel_clear_state_handler(channel, NULL);
}
}
switch_core_session_rwunlock(session);
if (other_channel) {
if (swap) {
switch_ivr_uuid_bridge(other_uuid, uuid);
} else {
switch_ivr_uuid_bridge(uuid, other_uuid);
}
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
}
}
return status;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_nomedia(char *uuid, switch_media_flag_t flags)
{
char *other_uuid;
switch_channel_t *channel, *other_channel = NULL;
switch_core_session_t *session, *other_session = NULL;
switch_core_session_message_t msg = {0};
switch_status_t status = SWITCH_STATUS_GENERR;
uint8_t swap = 0;
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
msg.message_id = SWITCH_MESSAGE_INDICATE_NOMEDIA;
msg.from = __FILE__;
if ((session = switch_core_session_locate(uuid))) {
status = SWITCH_STATUS_SUCCESS;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
if ((flags & SMF_REBRIDGE) && !switch_channel_test_flag(channel, CF_ORIGINATOR)) {
swap = 1;
}
if ((flags & SMF_FORCE) || !switch_channel_test_flag(channel, CF_NOMEDIA)) {
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
switch_channel_set_flag(channel, CF_NOMEDIA);
switch_core_session_receive_message(session, &msg);
if ((flags & SMF_REBRIDGE) && (other_uuid = switch_channel_get_variable(channel, SWITCH_BRIDGE_VARIABLE)) &&
(other_session = switch_core_session_locate(other_uuid))) {
other_channel = switch_core_session_get_channel(other_session);
assert(other_channel != NULL);
switch_core_session_receive_message(other_session, &msg);
switch_channel_clear_state_handler(other_channel, NULL);
}
if (other_channel) {
switch_channel_clear_state_handler(channel, NULL);
if (swap) {
switch_ivr_signal_bridge(other_session, session);
} else {
switch_ivr_signal_bridge(session, other_session);
}
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
switch_core_session_rwunlock(other_session);
}
}
switch_core_session_rwunlock(session);
}
return status;
}
static switch_status_t signal_bridge_on_hibernate(switch_core_session_t *session)
{
switch_channel_t *channel = NULL;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
switch_channel_clear_flag(channel, CF_TRANSFER);
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
switch_channel_set_variable(channel, SWITCH_BRIDGE_VARIABLE, switch_channel_get_variable(channel, SWITCH_SIGNAL_BRIDGE_VARIABLE));
return SWITCH_STATUS_SUCCESS;
}
static switch_status_t signal_bridge_on_hangup(switch_core_session_t *session)
{
char *uuid;
switch_channel_t *channel = NULL;
switch_core_session_t *other_session;
switch_event_t *event;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
if (switch_channel_test_flag(channel, CF_ORIGINATOR)) {
switch_channel_clear_flag(channel, CF_ORIGINATOR);
if (switch_event_create(&event, SWITCH_EVENT_CHANNEL_UNBRIDGE) == SWITCH_STATUS_SUCCESS) {
switch_channel_event_set_data(channel, event);
switch_event_fire(&event);
}
}
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
if ((uuid = switch_channel_get_variable(channel, SWITCH_BRIDGE_VARIABLE)) && (other_session = switch_core_session_locate(uuid))) {
switch_channel_t *other_channel = NULL;
other_channel = switch_core_session_get_channel(other_session);
assert(other_channel != NULL);
switch_channel_hangup(other_channel, switch_channel_get_cause(channel));
switch_core_session_rwunlock(other_session);
}
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
return SWITCH_STATUS_SUCCESS;
}
static const switch_state_handler_table_t signal_bridge_state_handlers = {
/*.on_init */ NULL,
/*.on_ring */ NULL,
/*.on_execute */ NULL,
/*.on_hangup */ signal_bridge_on_hangup,
/*.on_loopback */ NULL,
/*.on_transmit */ NULL,
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
/*.on_hold */ NULL,
/*.on_hibernate*/ signal_bridge_on_hibernate
};
SWITCH_DECLARE(switch_status_t) switch_ivr_signal_bridge(switch_core_session_t *session, switch_core_session_t *peer_session)
{
switch_channel_t *caller_channel, *peer_channel;
switch_event_t *event;
caller_channel = switch_core_session_get_channel(session);
assert(caller_channel != NULL);
peer_channel = switch_core_session_get_channel(peer_session);
assert(peer_channel != NULL);
switch_channel_set_flag(caller_channel, CF_ORIGINATOR);
switch_channel_clear_state_handler(caller_channel, NULL);
switch_channel_clear_state_handler(peer_channel, NULL);
switch_channel_add_state_handler(caller_channel, &signal_bridge_state_handlers);
switch_channel_add_state_handler(peer_channel, &signal_bridge_state_handlers);
/* fire events that will change the data table from "show channels" */
if (switch_event_create(&event, SWITCH_EVENT_CHANNEL_EXECUTE) == SWITCH_STATUS_SUCCESS) {
switch_channel_event_set_data(caller_channel, event);
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "Application", "signal_bridge");
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "Application-Data", "%s", switch_core_session_get_uuid(peer_session));
switch_event_fire(&event);
}
if (switch_event_create(&event, SWITCH_EVENT_CHANNEL_EXECUTE) == SWITCH_STATUS_SUCCESS) {
switch_channel_event_set_data(peer_channel, event);
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "Application", "signal_bridge");
switch_event_add_header(event, SWITCH_STACK_BOTTOM, "Application-Data", "%s", switch_core_session_get_uuid(session));
switch_event_fire(&event);
}
if (switch_event_create(&event, SWITCH_EVENT_CHANNEL_BRIDGE) == SWITCH_STATUS_SUCCESS) {
switch_channel_event_set_data(caller_channel, event);
switch_event_fire(&event);
}
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
switch_channel_set_state_flag(caller_channel, CF_TRANSFER);
switch_channel_set_state_flag(peer_channel, CF_TRANSFER);
switch_channel_set_variable(caller_channel, SWITCH_SIGNAL_BRIDGE_VARIABLE, switch_core_session_get_uuid(peer_session));
switch_channel_set_variable(peer_channel, SWITCH_SIGNAL_BRIDGE_VARIABLE, switch_core_session_get_uuid(session));
switch_channel_set_state(caller_channel, CS_HIBERNATE);
switch_channel_set_state(peer_channel, CS_HIBERNATE);
return SWITCH_STATUS_SUCCESS;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_multi_threaded_bridge(switch_core_session_t *session,
*deep breath* Ok, This one adds a bunch of stuff on top of the framework restructuring from yesterday. 1) originate api function: Usage: originate <call url> <exten> [<dialplan>] [<context>] [<cid_name>] [<cid_num>] [<timeout_sec>] This will call the specified url then transfer the call to the specified extension example: originate exosip/1000@somehost 1000 XML default 2) mutiple destinations in outbound calls: This means any dialstring may contain an '&' separated list of call urls When using mutiple urls in this manner it is possible to map a certian key as required indication of an accepted call. You may also supply a filename to play possibly instructing the call recipiant to press the desired key etc... The example below will call 2 locations playing prompt.wav to any who answer and completing the call to the first offhook recipiant to dial "4" <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="set" data="call_timeout=60"/> <action application="set" data="group_confirm_file=/path/to/prompt.wav"/> <action application="set" data="group_confirm_key=4"/> <action application="bridge" data="iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> The following is the equivilant but the confirm data is passed vial the bridge parameters (This is for situations where there is no originating channel to set variables to) <extension name="3002"> <condition field="destination_number" expression="^3002$"> <action application="bridge" data=/path/to/prompt.wav:4"confirm=iax/guest@somebox/1234&exosip/1000@somehost"/> </condition> </extension> Omitting the file and key stuff will simply comeplete the call to whoever answers first. (this is similar to how other less fortunate software handles the situation with thier best effort.) This logic should be permitted in anything that establishes an outgoing call with switch_ivr_originate() Yes! That means even in this new originate api command you can call mutiple targets and send whoever answers first to an extension that calls more mutiple targets. (better test it though!) Oh, and you should be able to do the same in the mod_conference dial and dynamic conference features please report any behaviour contrary to this account to me ASAP cos i would not be terribly suprised if I forgot some scenerio that causes an explosion I did all this in 1 afternoon so it probably needs tuning still. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@2311 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-08-17 00:53:09 +00:00
switch_core_session_t *peer_session,
switch_input_callback_function_t input_callback,
void *session_data,
void *peer_session_data)
{
switch_core_thread_session_t *this_audio_thread, *other_audio_thread;
switch_channel_t *caller_channel, *peer_channel;
int stream_id = 0;
switch_status_t status = SWITCH_STATUS_SUCCESS;
caller_channel = switch_core_session_get_channel(session);
assert(caller_channel != NULL);
switch_channel_set_flag(caller_channel, CF_ORIGINATOR);
peer_channel = switch_core_session_get_channel(peer_session);
assert(peer_channel != NULL);
other_audio_thread = switch_core_session_alloc(peer_session, sizeof(switch_core_thread_session_t));
this_audio_thread = switch_core_session_alloc(peer_session, sizeof(switch_core_thread_session_t));
other_audio_thread->objs[0] = session;
other_audio_thread->objs[1] = peer_session;
other_audio_thread->objs[2] = &stream_id;
other_audio_thread->input_callback = input_callback;
other_audio_thread->objs[4] = session_data;
other_audio_thread->objs[5] = this_audio_thread;
other_audio_thread->running = 5;
switch_mutex_init(&other_audio_thread->mutex, SWITCH_MUTEX_NESTED, switch_core_session_get_pool(session));
this_audio_thread->objs[0] = peer_session;
this_audio_thread->objs[1] = session;
this_audio_thread->objs[2] = &stream_id;
this_audio_thread->input_callback = input_callback;
this_audio_thread->objs[4] = peer_session_data;
this_audio_thread->objs[5] = other_audio_thread;
this_audio_thread->running = 2;
switch_mutex_init(&this_audio_thread->mutex, SWITCH_MUTEX_NESTED, switch_core_session_get_pool(peer_session));
switch_channel_add_state_handler(peer_channel, &audio_bridge_peer_state_handlers);
if (switch_channel_test_flag(peer_channel, CF_ANSWERED) && !switch_channel_test_flag(caller_channel, CF_ANSWERED)) {
switch_channel_answer(caller_channel);
}
if (switch_channel_test_flag(peer_channel, CF_ANSWERED) || switch_channel_test_flag(peer_channel, CF_EARLY_MEDIA)) {
switch_event_t *event;
switch_core_session_message_t msg = {0};
switch_channel_set_state(peer_channel, CS_HOLD);
if (switch_event_create(&event, SWITCH_EVENT_CHANNEL_BRIDGE) == SWITCH_STATUS_SUCCESS) {
switch_channel_event_set_data(caller_channel, event);
switch_event_fire(&event);
}
if (switch_core_session_read_lock(peer_session) == SWITCH_STATUS_SUCCESS) {
switch_channel_set_variable(caller_channel, SWITCH_BRIDGE_VARIABLE, switch_core_session_get_uuid(peer_session));
switch_channel_set_variable(peer_channel, SWITCH_BRIDGE_VARIABLE, switch_core_session_get_uuid(session));
msg.message_id = SWITCH_MESSAGE_INDICATE_BRIDGE;
msg.from = __FILE__;
msg.pointer_arg = session;
switch_core_session_receive_message(peer_session, &msg);
if (!msg.pointer_arg) {
status = SWITCH_STATUS_FALSE;
switch_core_session_rwunlock(peer_session);
goto done;
}
msg.pointer_arg = peer_session;
switch_core_session_receive_message(session, &msg);
if (!msg.pointer_arg) {
status = SWITCH_STATUS_FALSE;
switch_core_session_rwunlock(peer_session);
goto done;
}
switch_channel_set_private(peer_channel, "_bridge_", other_audio_thread);
switch_channel_set_state(peer_channel, CS_LOOPBACK);
audio_bridge_thread(NULL, (void *) this_audio_thread);
if (switch_event_create(&event, SWITCH_EVENT_CHANNEL_UNBRIDGE) == SWITCH_STATUS_SUCCESS) {
switch_channel_event_set_data(caller_channel, event);
switch_event_fire(&event);
}
this_audio_thread->objs[0] = NULL;
this_audio_thread->objs[1] = NULL;
this_audio_thread->objs[2] = NULL;
this_audio_thread->input_callback = NULL;
this_audio_thread->objs[4] = NULL;
this_audio_thread->objs[5] = NULL;
switch_mutex_lock(this_audio_thread->mutex);
this_audio_thread->running = 0;
switch_mutex_unlock(this_audio_thread->mutex);
switch_channel_clear_flag(caller_channel, CF_ORIGINATOR);
if (other_audio_thread->running > 0) {
switch_mutex_lock(other_audio_thread->mutex);
other_audio_thread->running = -1;
switch_mutex_unlock(other_audio_thread->mutex);
while (other_audio_thread->running) {
switch_yield(1000);
}
}
switch_core_session_rwunlock(peer_session);
} else {
status = SWITCH_STATUS_FALSE;
}
} else {
status = SWITCH_STATUS_FALSE;
}
if (status != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_WARNING, "Bridge Failed %s->%s\n",
switch_channel_get_name(caller_channel),
switch_channel_get_name(peer_channel)
);
switch_channel_hangup(peer_channel, SWITCH_CAUSE_NO_ANSWER);
}
done:
if (switch_channel_get_state(caller_channel) < CS_HANGUP &&
switch_true(switch_channel_get_variable(caller_channel, SWITCH_HANGUP_AFTER_BRIDGE_VARIABLE))) {
switch_channel_hangup(caller_channel, switch_channel_get_cause(peer_channel));
}
return status;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_uuid_bridge(char *originator_uuid, char *originatee_uuid)
{
switch_core_session_t *originator_session, *originatee_session;
switch_channel_t *originator_channel, *originatee_channel;
switch_status_t status = SWITCH_STATUS_FALSE;
if ((originator_session = switch_core_session_locate(originator_uuid))) {
if ((originatee_session = switch_core_session_locate(originatee_uuid))) {
originator_channel = switch_core_session_get_channel(originator_session);
originatee_channel = switch_core_session_get_channel(originatee_session);
/* override transmit state for originator_channel to bridge to originatee_channel
* install pointer to originatee_session into originator_channel
* set CF_TRANSFER on both channels and change state to CS_TRANSMIT to
* inturrupt anything they are already doing.
* originatee_session will fall asleep and originator_session will bridge to it
*/
switch_channel_clear_state_handler(originator_channel, NULL);
switch_channel_clear_state_handler(originatee_channel, NULL);
switch_channel_set_flag(originator_channel, CF_ORIGINATOR);
switch_channel_add_state_handler(originator_channel, &uuid_bridge_state_handlers);
switch_channel_add_state_handler(originatee_channel, &uuid_bridge_state_handlers);
switch_channel_set_flag(originatee_channel, CF_TAGGED);
switch_channel_set_private(originator_channel, SWITCH_UUID_BRIDGE, originatee_session);
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
/* switch_channel_set_state_flag sets flags you want to be set when the next state change happens */
switch_channel_set_state_flag(originator_channel, CF_TRANSFER);
switch_channel_set_state_flag(originatee_channel, CF_TRANSFER);
/* release the read locks we have on the channels */
switch_core_session_rwunlock(originator_session);
switch_core_session_rwunlock(originatee_session);
/* change the states and let the chips fall where they may */
switch_channel_set_state(originator_channel, CS_TRANSMIT);
switch_channel_set_state(originatee_channel, CS_TRANSMIT);
status = SWITCH_STATUS_SUCCESS;
while(switch_channel_get_state(originatee_channel) < CS_HANGUP && switch_channel_test_flag(originatee_channel, CF_TAGGED)) {
switch_yield(20000);
}
} else {
switch_core_session_rwunlock(originator_session);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_WARNING, "no channel for originatee uuid %s\n", originatee_uuid);
}
} else {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_WARNING, "no channel for originator uuid %s\n", originator_uuid);
}
return status;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_session_transfer(switch_core_session_t *session, char *extension, char *dialplan, char *context)
{
switch_channel_t *channel;
switch_caller_profile_t *profile, *new_profile;
switch_core_session_message_t msg = {0};
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
switch_core_session_t *other_session;
char *uuid = NULL;
assert(session != NULL);
assert(extension != NULL);
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
if ((profile = switch_channel_get_caller_profile(channel))) {
new_profile = switch_caller_profile_clone(session, profile);
new_profile->destination_number = switch_core_session_strdup(session, extension);
if (!switch_strlen_zero(dialplan)) {
new_profile->dialplan = switch_core_session_strdup(session, dialplan);
} else {
dialplan = new_profile->dialplan;
}
if (!switch_strlen_zero(context)) {
new_profile->context = switch_core_session_strdup(session, context);
} else {
context = new_profile->context;
}
Media Management (Sponsored By Front Logic) This modification makes it possible to change the media path of session in the switch on-the-fly and from the dialplan. It adds some API interface calls usable from a remote client such as mod_event_socket or the test console. 1) media [off] <uuid> Turns on/off the media on the call described by <uuid> The media will be redirected as desiered either into the switch or point to point. 2) hold [off] <uuid> Turns on/off endpoint specific hold state on the session described by <uuid> 3) broadcast <uuid> "<path>[ <timer_name>]" or "speak:<tts_engine>|<tts_voice>|<text>[|<timer_name>]" [both] A message will be sent to the call described by uuid instructing it to play the file or speak the text indicated. If the 'both' option is specified both ends of the call will hear the message otherwise just the uuid specified will hear the message. During playback when only one side is hearing the message the other end will hear silence. If media is not flowing across the switch when the message is broadcasted, the media will be directed to the switch for the duration of the call and then returned to it's previous state. Also the no_media=true option in the dialplan before a bridge makes it possible to place a call while proxying the session description from one endpoint to the other and establishing an immidiate point-to-point media connection with no media on the switch. <action application="set" data="no_media=true"/> <action application="bridge" data="sofia/mydomain.com/myid@myhost.com"/> *NOTE* when connecting two outbound legs by using the "originate" api command with an extension that has no_media=true enabled, the media for the first leg will be engaged with the switch until the second leg has answered and the other session description is available to establish a point to point connection at which time point-to-point mode will be enabled. *NOTE* it is reccommended you rebuild FreeSWITCH with "make sure" as there have been some changes to the core. git-svn-id: http://svn.freeswitch.org/svn/freeswitch/trunk@3245 d0543943-73ff-0310-b7d9-9358b9ac24b2
2006-10-31 21:38:06 +00:00
if ((uuid = switch_channel_get_variable(channel, SWITCH_SIGNAL_BRIDGE_VARIABLE)) && (other_session = switch_core_session_locate(uuid))) {
switch_channel_t *other_channel = NULL;
other_channel = switch_core_session_get_channel(other_session);
assert(other_channel != NULL);
switch_channel_set_variable(channel, SWITCH_SIGNAL_BRIDGE_VARIABLE, NULL);
switch_channel_set_variable(other_channel, SWITCH_SIGNAL_BRIDGE_VARIABLE, NULL);
switch_channel_hangup(other_channel, SWITCH_CAUSE_BLIND_TRANSFER);
switch_ivr_media(uuid, SMF_NONE);
switch_core_session_rwunlock(other_session);
}
switch_channel_set_caller_profile(channel, new_profile);
switch_channel_set_flag(channel, CF_TRANSFER);
switch_channel_set_state(channel, CS_RING);
msg.message_id = SWITCH_MESSAGE_INDICATE_TRANSFER;
msg.from = __FILE__;
switch_core_session_receive_message(session, &msg);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_NOTICE, "Transfer %s to %s[%s@%s]\n",
switch_channel_get_name(channel), dialplan, extension, context);
return SWITCH_STATUS_SUCCESS;
}
return SWITCH_STATUS_FALSE;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_transfer_variable(switch_core_session_t *sessa, switch_core_session_t *sessb, char *var)
{
switch_channel_t *chana = switch_core_session_get_channel(sessa);
switch_channel_t *chanb = switch_core_session_get_channel(sessb);
char *val = NULL;
uint8_t prefix = 0;
if (var && *var == '~') {
var++;
prefix = 1;
}
if (var && !prefix) {
if ((val = switch_channel_get_variable(chana, var))) {
switch_channel_set_variable(chanb, var, val);
}
} else {
switch_hash_index_t *hi;
void *vval;
const void *vvar;
for (hi = switch_channel_variable_first(chana, switch_core_session_get_pool(sessa)); hi; hi = switch_hash_next(hi)) {
switch_hash_this(hi, &vvar, NULL, &vval);
if (vvar && vval && (!prefix || (var && !strncmp((char *)vvar, var, strlen(var))))) {
switch_channel_set_variable(chanb, (char *) vvar, (char *) vval);
}
}
}
return SWITCH_STATUS_SUCCESS;
}
/******************************************************************************************************/
struct switch_ivr_digit_stream_parser {
int pool_auto_created;
switch_memory_pool_t *pool;
switch_hash_t *hash;
switch_size_t maxlen;
switch_size_t minlen;
char terminator;
unsigned int digit_timeout_ms;
};
struct switch_ivr_digit_stream {
char *digits;
switch_time_t last_digit_time;
};
SWITCH_DECLARE(switch_status_t) switch_ivr_digit_stream_parser_new(switch_memory_pool_t *pool, switch_ivr_digit_stream_parser_t **parser)
{ switch_status_t status = SWITCH_STATUS_FALSE;
if(parser != NULL) {
int pool_auto_created = 0;
// if the caller didn't provide a pool, make one
if (pool == NULL) {
switch_core_new_memory_pool(&pool);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "created a memory pool\n");
if (pool != NULL) {
pool_auto_created = 1;
}
}
// if we have a pool, make a parser object
if (pool != NULL) {
*parser = (switch_ivr_digit_stream_parser_t *)switch_core_alloc(pool,sizeof(switch_ivr_digit_stream_parser_t));
}
// if we have parser object, initialize it for the caller
if (*parser != NULL) {
memset(*parser,0,sizeof(switch_ivr_digit_stream_parser_t));
(*parser)->pool_auto_created = pool_auto_created;
(*parser)->pool = pool;
(*parser)->digit_timeout_ms = 1000;
switch_core_hash_init(&(*parser)->hash,(*parser)->pool);
status = SWITCH_STATUS_SUCCESS;
} else {
status = SWITCH_STATUS_MEMERR;
// if we can't create a parser object,clean up the pool if we created it
if (pool != NULL && pool_auto_created) {
switch_core_destroy_memory_pool(&pool);
}
}
}
return status;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_digit_stream_parser_destroy(switch_ivr_digit_stream_parser_t *parser)
{ switch_status_t status = SWITCH_STATUS_FALSE;
if (parser != NULL) {
if (parser->hash != NULL) {
switch_core_hash_destroy(parser->hash);
parser->hash = NULL;
}
// free the memory pool if we created it
if (parser->pool_auto_created && parser->pool != NULL) {
status = switch_core_destroy_memory_pool(&parser->pool);
}
}
return status;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_digit_stream_new(switch_ivr_digit_stream_parser_t *parser, switch_ivr_digit_stream_t **stream)
{ switch_status_t status = SWITCH_STATUS_FALSE;
// if we have a paser object memory pool and a stream object pointer that is null
if (parser != NULL && parser->pool && stream != NULL && *stream == NULL) {
*stream = (switch_ivr_digit_stream_t *)switch_core_alloc(parser->pool,sizeof(switch_ivr_digit_stream_t));
if (*stream != NULL) {
memset(*stream,0,sizeof(switch_ivr_digit_stream_t));
status = SWITCH_STATUS_SUCCESS;
}
}
return status;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_digit_stream_destroy(switch_ivr_digit_stream_t *stream)
{ switch_status_t status = SWITCH_STATUS_FALSE;
if (stream == NULL && stream->digits != NULL) {
free(stream->digits);
stream->digits = NULL;
status = SWITCH_STATUS_SUCCESS;
}
return status;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_digit_stream_parser_set_event(switch_ivr_digit_stream_parser_t *parser, char *digits, void *data)
{ switch_status_t status = SWITCH_STATUS_FALSE;
if (parser != NULL && digits != NULL && *digits && parser->hash != NULL) {
status = switch_core_hash_insert_dup(parser->hash,digits,data);
if (status == SWITCH_STATUS_SUCCESS) {
switch_size_t len = strlen(digits);
// if we don't have a terminator, then we have to try and
// figure out when a digit set is completed, therefore we
// keep track of the min and max digit lengths
if (parser->terminator == '\0') {
if (len > parser->maxlen) {
parser->maxlen = len;
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "max len %u\n",parser->maxlen);
}
if (parser->minlen == 0 || len < parser->minlen) {
parser->minlen = len;
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "min len %u\n",parser->minlen);
}
} else {
// since we have a terminator, reset min and max
parser->minlen = 0;
parser->maxlen = 0;
}
}
}
if (status != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "unable to add hash for '%s'\n",digits);
}
return status;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_digit_stream_parser_del_event(switch_ivr_digit_stream_parser_t *parser, char *digits)
{ switch_status_t status = SWITCH_STATUS_FALSE;
if (parser != NULL && digits != NULL && *digits) {
status = switch_core_hash_delete(parser->hash,digits);
}
if (status != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "unable to del hash for '%s'\n",digits);
}
return status;
}
SWITCH_DECLARE(void *) switch_ivr_digit_stream_parser_feed(switch_ivr_digit_stream_parser_t *parser, switch_ivr_digit_stream_t *stream, char digit)
{ void *result = NULL;
if (parser != NULL && stream != NULL) {
switch_size_t len = (stream->digits != NULL ? strlen(stream->digits) : 0);
// handle new digit arrivals
if(digit != '\0') {
// if it's not a terminator digit, add it to the collected digits
if (digit != parser->terminator) {
// if collected digits length >= the max length of the keys
// in the hash table, then left shift the digit string
if (len > 0 && parser->maxlen != 0 && len >= parser->maxlen) {
char *src = stream->digits + 1;
char *dst = stream->digits;
while (*src) {
*(dst++) = *(src++);
}
*dst = digit;
} else {
stream->digits = realloc(stream->digits,len+2);
*(stream->digits+(len++)) = digit;
*(stream->digits+len) = '\0';
stream->last_digit_time = switch_time_now() / 1000;
}
}
}
// don't allow collected digit string testing if there are varying sized keys until timeout
if ( parser->maxlen - parser->minlen > 0
&& (switch_time_now() / 1000) - stream->last_digit_time < parser->digit_timeout_ms
) {
len = 0;
}
// if we have digits to test
if (len) {
result = switch_core_hash_find(parser->hash, stream->digits);
// if we matched the digit string, or this digit is the terminator
// reset the collected digits for next digit string
if (result != NULL || parser->terminator == digit) {
free(stream->digits);
stream->digits = NULL;
}
}
}
return result;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_digit_stream_reset(switch_ivr_digit_stream_t *stream)
{ switch_status_t status = SWITCH_STATUS_FALSE;
if (stream != NULL && stream->digits != NULL) {
free(stream->digits);
stream->digits = NULL;
stream->last_digit_time = 0;
status = SWITCH_STATUS_SUCCESS;
}
return status;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_digit_stream_parser_set_terminator(switch_ivr_digit_stream_parser_t *parser, char digit)
{ switch_status_t status = SWITCH_STATUS_FALSE;
if (parser != NULL) {
parser->terminator = digit;
// since we have a terminator, reset min and max
parser->minlen = 0;
parser->maxlen = 0;
status = SWITCH_STATUS_SUCCESS;
}
return status;
}
/******************************************************************************************************/
struct switch_ivr_menu_action;
struct switch_ivr_menu {
char *name;
char *greeting_sound;
char *short_greeting_sound;
char *invalid_sound;
char *exit_sound;
char *tts_engine;
char *tts_voice;
char *buf;
char *ptr;
int max_failures;
int timeout;
uint32_t inlen;
uint32_t flags;
struct switch_ivr_menu_action *actions;
struct switch_ivr_menu *next;
switch_memory_pool_t *pool;
};
struct switch_ivr_menu_action {
switch_ivr_menu_action_function_t *function;
switch_ivr_action_t ivr_action;
char *arg;
char *bind;
struct switch_ivr_menu_action *next;
};
static switch_ivr_menu_t *switch_ivr_menu_find(switch_ivr_menu_t *stack, char *name) {
switch_ivr_menu_t *ret;
for(ret = stack; ret ; ret = ret->next) {
if (!name || !strcmp(ret->name, name))
break;
}
return ret;
}
static void switch_ivr_menu_stack_add(switch_ivr_menu_t **top, switch_ivr_menu_t *bottom)
{
switch_ivr_menu_t *ptr;
for(ptr = *top ; ptr && ptr->next ; ptr = ptr->next);
if (ptr) {
ptr->next = bottom;
} else {
*top = bottom;
}
}
SWITCH_DECLARE(switch_status_t) switch_ivr_menu_init(switch_ivr_menu_t **new_menu,
switch_ivr_menu_t *main,
char *name,
char *greeting_sound,
char *short_greeting_sound,
char *invalid_sound,
char *exit_sound,
char *tts_engine,
char *tts_voice,
int timeout,
int max_failures,
switch_memory_pool_t *pool)
{
switch_ivr_menu_t *menu;
uint8_t newpool = 0;
if (!pool) {
if (switch_core_new_memory_pool(&pool) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_CRIT, "OH OH no pool\n");
return SWITCH_STATUS_MEMERR;
}
newpool = 1;
}
if (!(menu = switch_core_alloc(pool, sizeof(*menu)))) {
if (newpool) {
switch_core_destroy_memory_pool(&pool);
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_CRIT, "Memory Error!\n");
return SWITCH_STATUS_MEMERR;
}
}
menu->pool = pool;
if (!switch_strlen_zero(name)) {
menu->name = switch_core_strdup(menu->pool, name);
}
if (!switch_strlen_zero(greeting_sound)) {
menu->greeting_sound = switch_core_strdup(menu->pool, greeting_sound);
}
if (!switch_strlen_zero(short_greeting_sound)) {
menu->short_greeting_sound = switch_core_strdup(menu->pool, short_greeting_sound);
}
if (!switch_strlen_zero(invalid_sound)) {
menu->invalid_sound = switch_core_strdup(menu->pool, invalid_sound);
}
if (!switch_strlen_zero(exit_sound)) {
menu->exit_sound = switch_core_strdup(menu->pool, exit_sound);
}
if (!switch_strlen_zero(tts_engine)) {
menu->tts_engine = switch_core_strdup(menu->pool, tts_engine);
}
if (!switch_strlen_zero(tts_voice)) {
menu->tts_voice = switch_core_strdup(menu->pool, tts_voice);
}
menu->max_failures = max_failures;
menu->timeout = timeout;
menu->actions = NULL;
if (newpool) {
menu->flags |= SWITCH_IVR_MENU_FLAG_FREEPOOL;
}
if (menu->timeout <= 0) {
menu->timeout = 10000;
}
if (main) {
switch_ivr_menu_stack_add(&main, menu);
} else {
menu->flags |= SWITCH_IVR_MENU_FLAG_STACK;
}
*new_menu = menu;
return SWITCH_STATUS_SUCCESS;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_menu_bind_action(switch_ivr_menu_t *menu, switch_ivr_action_t ivr_action, char *arg, char *bind)
{
switch_ivr_menu_action_t *action;
uint32_t len;
if ((action = switch_core_alloc(menu->pool, sizeof(*action)))) {
action->bind = switch_core_strdup(menu->pool, bind);
action->next = menu->actions;
action->arg = switch_core_strdup(menu->pool, arg);
len = (uint32_t)strlen(action->bind) + 1;
if (len > menu->inlen) {
menu->inlen = len;
}
action->ivr_action = ivr_action;
menu->actions = action;
return SWITCH_STATUS_SUCCESS;
}
return SWITCH_STATUS_MEMERR;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_menu_bind_function(switch_ivr_menu_t *menu, switch_ivr_menu_action_function_t *function, char *arg, char *bind)
{
switch_ivr_menu_action_t *action;
uint32_t len;
if ((action = switch_core_alloc(menu->pool, sizeof(*action)))) {
action->bind = bind;
action->next = menu->actions;
action->arg = switch_core_strdup(menu->pool, arg);
len = (uint32_t)strlen(action->bind) + 1;
if (len > menu->inlen) {
menu->inlen = len;
}
action->function = function;
menu->actions = action;
return SWITCH_STATUS_SUCCESS;
}
return SWITCH_STATUS_MEMERR;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_menu_stack_free(switch_ivr_menu_t *stack)
{
switch_status_t status = SWITCH_STATUS_FALSE;
if (stack != NULL && stack->pool != NULL) {
if (switch_test_flag(stack, SWITCH_IVR_MENU_FLAG_STACK) && switch_test_flag(stack, SWITCH_IVR_MENU_FLAG_FREEPOOL)) {
switch_memory_pool_t *pool = stack->pool;
status = switch_core_destroy_memory_pool(&pool);
} else {
status = SWITCH_STATUS_SUCCESS;
}
}
return status;
}
static switch_status_t play_or_say(switch_core_session_t *session, switch_ivr_menu_t *menu, char *sound, uint32_t need)
{
char terminator;
uint32_t len;
char *ptr;
switch_status_t status = SWITCH_STATUS_FALSE;
switch_input_args_t args= {0};
if (session != NULL && menu != NULL && !switch_strlen_zero(sound)) {
memset(menu->buf, 0, menu->inlen);
menu->ptr = menu->buf;
if (!need) {
len = 1;
ptr = NULL;
} else {
len = menu->inlen;
ptr = menu->ptr;
}
args.buf = ptr;
args.buflen = len;
if (*sound == '/' || *sound == '\\') {
status = switch_ivr_play_file(session, NULL, sound, &args);
} else {
if (menu->tts_engine && menu->tts_voice) {
status = switch_ivr_speak_text(session, menu->tts_engine, menu->tts_voice, 0, sound, &args);
}
}
if (need) {
menu->ptr += strlen(menu->buf);
if (strlen(menu->buf) < need) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "waiting for %u digits\n",need);
status = switch_ivr_collect_digits_count(session, menu->ptr, menu->inlen - strlen(menu->buf), need, "#", &terminator, menu->timeout);
}
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "digits '%s'\n",menu->buf);
}
}
return status;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_menu_execute(switch_core_session_t *session, switch_ivr_menu_t *stack, char *name, void *obj)
{
int reps = 0, errs = 0, match = 0, running = 1;
char *greeting_sound = NULL, *aptr = NULL;
char arg[512];
switch_ivr_action_t todo = SWITCH_IVR_ACTION_DIE;
switch_ivr_menu_action_t *ap;
switch_ivr_menu_t *menu;
switch_channel_t *channel;
switch_status_t status = SWITCH_STATUS_SUCCESS;
if (session == NULL || stack == NULL || switch_strlen_zero(name)) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Invalid menu context\n");
return SWITCH_STATUS_FALSE;
}
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
if (!(menu = switch_ivr_menu_find(stack, name))) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Invalid Menu!\n");
return SWITCH_STATUS_FALSE;
}
if (!(menu->buf = malloc(menu->inlen))) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "No Memory!\n");
return SWITCH_STATUS_FALSE;
}
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Executing IVR menu %s\n", menu->name);
for (reps = 0 ; (running && status == SWITCH_STATUS_SUCCESS && errs < menu->max_failures) ; reps++) {
if (!switch_channel_ready(channel)) {
break;
}
if (reps > 0 && menu->short_greeting_sound) {
greeting_sound = menu->short_greeting_sound;
} else {
greeting_sound = menu->greeting_sound;
}
match = 0;
aptr = NULL;
memset(arg, 0, sizeof(arg));
memset(menu->buf, 0, menu->inlen);
status = play_or_say(session, menu, greeting_sound, menu->inlen - 1);
if (!switch_strlen_zero(menu->buf)) {
for(ap = menu->actions; ap ; ap = ap->next) {
if (!strcmp(menu->buf, ap->bind)) {
char *membuf;
match++;
errs = 0;
if (ap->function) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "IVR function on menu '%s' matched '%s' param '%s'\n", menu->name, menu->buf, ap->arg);
todo = ap->function(menu, ap->arg, arg, sizeof(arg), obj);
aptr = arg;
} else {
todo = ap->ivr_action;
aptr = ap->arg;
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "IVR action on menu '%s' matched '%s' param '%s'\n", menu->name, menu->buf,aptr);
}
switch(todo) {
case SWITCH_IVR_ACTION_DIE:
status = SWITCH_STATUS_FALSE;
break;
case SWITCH_IVR_ACTION_PLAYSOUND:
status = switch_ivr_play_file(session, NULL, aptr, NULL);
break;
case SWITCH_IVR_ACTION_SAYTEXT:
status = switch_ivr_speak_text(session, menu->tts_engine, menu->tts_voice, 0, aptr, NULL);
break;
case SWITCH_IVR_ACTION_TRANSFER:
switch_ivr_session_transfer(session, aptr, NULL, NULL);
running = 0;
break;
case SWITCH_IVR_ACTION_EXECMENU:
reps = -1;
status = switch_ivr_menu_execute(session, stack, aptr, obj);
break;
case SWITCH_IVR_ACTION_EXECAPP: {
const switch_application_interface_t *application_interface;
if ((membuf = strdup(aptr))) {
char *app_name = membuf;
char *app_arg = strchr(app_name, ' ');
if (app_arg) {
*app_arg = '\0';
app_arg++;
}
if (app_name && app_arg) {
if ((application_interface = switch_loadable_module_get_application_interface(app_name))) {
if (application_interface->application_function) {
application_interface->application_function(session, app_arg);
}
}
}
}
}
break;
case SWITCH_IVR_ACTION_BACK:
running = 0;
status = SWITCH_STATUS_SUCCESS;
break;
case SWITCH_IVR_ACTION_TOMAIN:
switch_set_flag(stack, SWITCH_IVR_MENU_FLAG_FALLTOMAIN);
status = SWITCH_STATUS_BREAK;
break;
case SWITCH_IVR_ACTION_NOOP:
status = SWITCH_STATUS_SUCCESS;
break;
default:
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_WARNING, "Invalid TODO!\n");
break;
}
}
}
if (switch_test_flag(menu, SWITCH_IVR_MENU_FLAG_STACK)) { // top level
if (switch_test_flag(stack, SWITCH_IVR_MENU_FLAG_FALLTOMAIN)) { // catch the fallback and recover
switch_clear_flag(stack, SWITCH_IVR_MENU_FLAG_FALLTOMAIN);
status = SWITCH_STATUS_SUCCESS;
running = 1;
continue;
}
}
}
if (*menu->buf && !match) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "IVR menu '%s' caught invalid input '%s'\n", menu->name, menu->buf);
if (menu->invalid_sound) {
play_or_say(session, menu, menu->invalid_sound, 0);
}
errs++;
if (status == SWITCH_STATUS_SUCCESS) {
status = switch_ivr_sleep(session, 1000);
}
}
}
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "exit-sound '%s'\n",menu->exit_sound);
if (!switch_strlen_zero(menu->exit_sound)) {
status = switch_ivr_play_file(session, NULL, menu->exit_sound, NULL);
}
switch_safe_free(menu->buf);
return status;
}
/******************************************************************************************************/
typedef struct switch_ivr_menu_xml_map {
char *name;
switch_ivr_action_t action;
switch_ivr_menu_action_function_t *function;
struct switch_ivr_menu_xml_map *next;
} switch_ivr_menu_xml_map_t;
struct switch_ivr_menu_xml_ctx {
switch_memory_pool_t *pool;
struct switch_ivr_menu_xml_map *map;
int autocreated;
};
static switch_ivr_menu_xml_map_t *switch_ivr_menu_stack_xml_find(switch_ivr_menu_xml_ctx_t *xml_ctx, char *name)
{
switch_ivr_menu_xml_map_t *map = (xml_ctx != NULL ? xml_ctx->map : NULL);
int rc = -1;
while (map != NULL && (rc = strcasecmp(map->name,name)) != 0) {
map = map->next;
}
return (rc == 0 ? map : NULL);
}
static switch_status_t switch_ivr_menu_stack_xml_add(switch_ivr_menu_xml_ctx_t *xml_ctx, char*name, int action, switch_ivr_menu_action_function_t *function)
{
switch_status_t status = SWITCH_STATUS_FALSE;
// if this action/function does not exist yet
if (xml_ctx != NULL && name != NULL && xml_ctx->pool != NULL && switch_ivr_menu_stack_xml_find(xml_ctx,name) == NULL) {
switch_ivr_menu_xml_map_t *map = switch_core_alloc(xml_ctx->pool,sizeof(switch_ivr_menu_xml_map_t));
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "switch_ivr_menu_stack_xml_add bindng '%s'\n",name);
// and we have memory
if (map != NULL) {
map->name = switch_core_strdup(xml_ctx->pool,name);
map->action = action;
map->function = function;
if (map->name != NULL) {
// insert map item at top of list
map->next = xml_ctx->map;
xml_ctx->map = map;
status = SWITCH_STATUS_SUCCESS;
} else {
status = SWITCH_STATUS_MEMERR;
}
} else {
status = SWITCH_STATUS_MEMERR;
}
}
return status;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_menu_stack_xml_init(switch_ivr_menu_xml_ctx_t **xml_menu_ctx, switch_memory_pool_t *pool)
{
switch_status_t status = SWITCH_STATUS_FALSE;
int autocreated = 0;
// build a memory pool ?
if (pool == NULL) {
status = switch_core_new_memory_pool(&pool);
autocreated = 1;
}
// allocate the xml context
if (xml_menu_ctx != NULL && pool != NULL) {
*xml_menu_ctx = switch_core_alloc(pool,sizeof(switch_ivr_menu_xml_ctx_t));
if (*xml_menu_ctx != NULL) {
(*xml_menu_ctx)->pool = pool;
(*xml_menu_ctx)->autocreated = autocreated;
(*xml_menu_ctx)->map = NULL;
status = SWITCH_STATUS_SUCCESS;
} else {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Unable to alloc xml_ctx\n");
status = SWITCH_STATUS_FALSE;
}
}
// build the standard/default xml menu handler mappings
if (status == SWITCH_STATUS_SUCCESS && xml_menu_ctx != NULL && *xml_menu_ctx != NULL) {
struct iam_s {
char *name;
switch_ivr_action_t action;
} iam [] = {
{"menu-exit", SWITCH_IVR_ACTION_DIE},
{"menu-sub", SWITCH_IVR_ACTION_EXECMENU},
{"menu-exec-api", SWITCH_IVR_ACTION_EXECAPP},
{"menu-play-sound", SWITCH_IVR_ACTION_PLAYSOUND},
{"menu-say-text", SWITCH_IVR_ACTION_SAYTEXT},
{"menu-back", SWITCH_IVR_ACTION_BACK},
{"menu-top", SWITCH_IVR_ACTION_TOMAIN},
{"menu-call-transfer", SWITCH_IVR_ACTION_TRANSFER},
};
int iam_qty = (sizeof(iam)/sizeof(iam[0]));
int i;
for(i=0; i<iam_qty && status == SWITCH_STATUS_SUCCESS; i++) {
status = switch_ivr_menu_stack_xml_add(*xml_menu_ctx,iam[i].name,iam[i].action,NULL);
}
}
return status;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_menu_stack_xml_add_custom(switch_ivr_menu_xml_ctx_t *xml_menu_ctx, char *name, switch_ivr_menu_action_function_t *function)
{
return switch_ivr_menu_stack_xml_add(xml_menu_ctx, name, -1, function);
}
SWITCH_DECLARE(switch_status_t) switch_ivr_menu_stack_xml_build(switch_ivr_menu_xml_ctx_t *xml_menu_ctx,
switch_ivr_menu_t **menu_stack,
switch_xml_t xml_menus,
switch_xml_t xml_menu)
{
switch_status_t status = SWITCH_STATUS_FALSE;
if (xml_menu_ctx != NULL && menu_stack != NULL && xml_menu != NULL) {
char *menu_name = (char *)switch_xml_attr_soft(xml_menu,"name"); // if the attr doesn't exist, return ""
char *greet_long = (char *)switch_xml_attr(xml_menu,"greet-long"); // if the attr doesn't exist, return NULL
char *greet_short = (char *)switch_xml_attr(xml_menu,"greet-short"); // if the attr doesn't exist, return NULL
char *invalid_sound = (char *)switch_xml_attr(xml_menu,"invalid-sound"); // if the attr doesn't exist, return NULL
char *exit_sound = (char *)switch_xml_attr(xml_menu,"exit-sound"); // if the attr doesn't exist, return NULL
char *tts_engine = (char *)switch_xml_attr(xml_menu,"tts-engine"); // if the attr doesn't exist, return NULL
char *tts_voice = (char *)switch_xml_attr(xml_menu,"tts-voice"); // if the attr doesn't exist, return NULL
char *timeout = (char *)switch_xml_attr_soft(xml_menu,"timeout"); // if the attr doesn't exist, return ""
char *max_failures = (char *)switch_xml_attr_soft(xml_menu,"max-failures"); // if the attr doesn't exist, return ""
switch_ivr_menu_t *menu = NULL;
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "building menu '%s'\n",menu_name);
status = switch_ivr_menu_init(&menu,
*menu_stack,
menu_name,
greet_long,
greet_short,
invalid_sound,
exit_sound,
tts_engine,
tts_voice,
atoi(timeout)*1000,
atoi(max_failures),
xml_menu_ctx->pool
);
// set the menu_stack for the caller
if (status == SWITCH_STATUS_SUCCESS && *menu_stack == NULL) {
*menu_stack = menu;
}
if (status == SWITCH_STATUS_SUCCESS && menu != NULL) {
switch_xml_t xml_kvp;
// build menu entries
for(xml_kvp = switch_xml_child(xml_menu, "entry"); xml_kvp != NULL && status == SWITCH_STATUS_SUCCESS; xml_kvp = xml_kvp->next) {
char *action = (char *)switch_xml_attr(xml_kvp, "action");
char *digits = (char *)switch_xml_attr(xml_kvp, "digits");
char *param = (char *)switch_xml_attr_soft(xml_kvp, "param");
if (!switch_strlen_zero(action) && !switch_strlen_zero(digits)) {
switch_ivr_menu_xml_map_t *xml_map = xml_menu_ctx->map;
int found = 0;
// find and appropriate xml handler
while(xml_map != NULL && !found) {
if (!(found = (strcasecmp(xml_map->name,action) == 0))) {
xml_map = xml_map->next;
}
}
if (found && xml_map != NULL) {
// do we need to build a new sub-menu ?
if (xml_map->action == SWITCH_IVR_ACTION_EXECMENU && switch_ivr_menu_find(*menu_stack, param) == NULL) {
if ((xml_menu = switch_xml_find_child(xml_menus, "menu", "name", param)) != NULL) {
status = switch_ivr_menu_stack_xml_build(xml_menu_ctx, menu_stack, xml_menus, xml_menu);
}
}
// finally bind the menu entry
if (status == SWITCH_STATUS_SUCCESS) {
if (xml_map->function != NULL) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG,
"binding menu caller control '%s'/'%s' to '%s'\n", xml_map->name, param, digits);
status = switch_ivr_menu_bind_function(menu, xml_map->function, param, digits);
} else {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG,
"binding menu action '%s' to '%s'\n", xml_map->name, digits);
status = switch_ivr_menu_bind_action(menu, xml_map->action, param, digits);
}
}
}
} else {
status = SWITCH_STATUS_FALSE;
}
}
}
}
if (status != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Unable to build xml menu\n");
}
return status;
}
static char *SAY_METHOD_NAMES[] = {
"N/A",
"PRONOUNCED",
"ITERATED",
"COUNTED",
NULL
};
static char *SAY_TYPE_NAMES[] = {
"NUMBER",
"ITEMS",
"PERSONS",
"MESSAGES",
"CURRENCY",
"TIME_MEASUREMENT",
"CURRENT_DATE",
"CURRENT_TIME",
"CURRENT_DATE_TIME",
"TELEPHONE_NUMBER",
"TELEPHONE_EXTENSION",
"URL",
"IP_ADDRESS",
"EMAIL_ADDRESS",
"POSTAL_ADDRESS",
"ACCOUNT_NUMBER",
"NAME_SPELLED",
"NAME_PHONETIC",
NULL
};
static switch_say_method_t get_say_method_by_name(char *name)
{
int x = 0;
for (x = 0; SAY_METHOD_NAMES[x]; x++) {
if (!strcasecmp(SAY_METHOD_NAMES[x], name)) {
break;
}
}
return (switch_say_method_t) x;
}
static switch_say_method_t get_say_type_by_name(char *name)
{
int x = 0;
for (x = 0; SAY_TYPE_NAMES[x]; x++) {
if (!strcasecmp(SAY_TYPE_NAMES[x], name)) {
break;
}
}
return (switch_say_method_t) x;
}
SWITCH_DECLARE(switch_status_t) switch_ivr_phrase_macro(switch_core_session_t *session,
char *macro_name,
char *data,
char *lang,
switch_input_args_t *args)
{
switch_xml_t cfg, xml = NULL, language, macros, macro, input, action;
char *lname = NULL, *mname = NULL, hint_data[1024] = "", enc_hint[1024] = "";
switch_status_t status = SWITCH_STATUS_GENERR;
char *old_sound_prefix = NULL, *sound_path = NULL, *tts_engine = NULL, *tts_voice = NULL;
switch_channel_t *channel;
uint8_t done = 0;
channel = switch_core_session_get_channel(session);
assert(channel != NULL);
if (!macro_name) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "No phrase macro specified.\n");
return status;
}
if (!lang) {
lang = "en";
}
if (!data) {
data = "";
}
switch_url_encode(data, enc_hint, sizeof(enc_hint));
snprintf(hint_data, sizeof(hint_data), "macro_name=%s&lang=%s&data=%s", macro_name, lang, enc_hint);
if (switch_xml_locate("phrases", NULL, NULL, NULL, &xml, &cfg, hint_data) != SWITCH_STATUS_SUCCESS) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "open of phrases failed.\n");
goto done;
}
if (!(macros = switch_xml_child(cfg, "macros"))) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "can't find macros tag.\n");
goto done;
}
if (!(language = switch_xml_child(macros, "language"))) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "can't find language tag.\n");
goto done;
}
while(language) {
if ((lname = (char *) switch_xml_attr(language, "name")) && !strcasecmp(lname, lang)) {
break;
}
language = language->next;
}
if (!language) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "can't find language %s.\n", lang);
goto done;
}
sound_path = (char *) switch_xml_attr_soft(language, "sound_path");
tts_engine = (char *) switch_xml_attr_soft(language, "tts_engine");
tts_voice = (char *) switch_xml_attr_soft(language, "tts_voice");
old_sound_prefix = switch_channel_get_variable(channel, "sound_prefix");
switch_channel_set_variable(channel, "sound_prefix", sound_path);
if (!(macro = switch_xml_child(language, "macro"))) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "can't find any macro tags.\n");
goto done;
}
while(macro) {
if ((mname = (char *) switch_xml_attr(macro, "name")) && !strcasecmp(mname, macro_name)) {
break;
}
macro = macro->next;
}
if (!macro) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "can't find macro %s.\n", macro_name);
goto done;
}
if (!(input = switch_xml_child(macro, "input"))) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "can't find any input tags.\n");
goto done;
}
switch_channel_pre_answer(channel);
while(input && !done) {
char *pattern = (char *) switch_xml_attr(input, "pattern");
if (pattern) {
pcre *re = NULL;
int proceed = 0, ovector[30];
char *substituted = NULL;
uint32_t len = 0;
char *odata = NULL;
char *expanded = NULL;
switch_xml_t match = NULL;
if ((proceed = switch_perform_regex(data, pattern, &re, ovector, sizeof(ovector) / sizeof(ovector[0])))) {
match = switch_xml_child(input, "match");
} else {
match = switch_xml_child(input, "nomatch");
}
if (match) {
status = SWITCH_STATUS_SUCCESS;
for (action = switch_xml_child(match, "action"); action && status == SWITCH_STATUS_SUCCESS; action = action->next) {
char *adata = (char *) switch_xml_attr_soft(action, "data");
char *func = (char *) switch_xml_attr_soft(action, "function");
if (strchr(pattern, '(') && strchr(adata, '$')) {
len = (uint32_t)(strlen(data) + strlen(adata) + 10);
if (!(substituted = malloc(len))) {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Memory Error!\n");
switch_clean_re(re);
switch_safe_free(expanded);
goto done;
}
memset(substituted, 0, len);
switch_perform_substitution(re, proceed, adata, data, substituted, len, ovector);
odata = substituted;
} else {
odata = adata;
}
expanded = switch_channel_expand_variables(channel, odata);
if (expanded == odata) {
expanded = NULL;
} else {
odata = expanded;
}
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_DEBUG, "Handle %s:[%s] (%s)\n", func, odata, lang);
if (!strcasecmp(func, "play-file")) {
status = switch_ivr_play_file(session, NULL, odata, args);
} else if (!strcasecmp(func, "break")) {
done = 1;
break;
} else if (!strcasecmp(func, "execute")) {
} else if (!strcasecmp(func, "say")) {
switch_say_interface_t *si;
if ((si = switch_loadable_module_get_say_interface(lang))) {
char *say_type = (char *) switch_xml_attr_soft(action, "type");
char *say_method = (char *) switch_xml_attr_soft(action, "method");
status = si->say_function(session, odata, get_say_type_by_name(say_type), get_say_method_by_name(say_method), args);
} else {
switch_log_printf(SWITCH_CHANNEL_LOG, SWITCH_LOG_ERROR, "Invalid SAY Interface [%s]!\n", lang);
}
} else if (!strcasecmp(func, "speak-text")) {
switch_codec_t *read_codec;
if ((read_codec = switch_core_session_get_read_codec(session))) {
status = switch_ivr_speak_text(session,
tts_engine,
tts_voice,
read_codec->implementation->samples_per_second,
odata,
args);
}
}
}
}
switch_clean_re(re);
switch_safe_free(expanded);
switch_safe_free(substituted);
}
if (status != SWITCH_STATUS_SUCCESS) {
done = 1;
break;
}
input = input->next;
}
done:
switch_channel_set_variable(channel, "sound_prefix", old_sound_prefix);
if (xml) {
switch_xml_free(xml);
}
return status;
}
/* For Emacs:
* Local Variables:
* mode:c
* indent-tabs-mode:t
* tab-width:4
* c-basic-offset:4
* End:
* For VIM:
* vim:set softtabstop=4 shiftwidth=4 tabstop=4 expandtab:
*/