freeswitch/third_party/bnlib/test/dhtest.c

376 lines
9.0 KiB
C
Raw Normal View History

2010-02-20 18:51:54 +00:00
/*
* dhtest.c - Diffie-Hellman prime generator.
*
* Copyright (c) 1995 Colin Plumb. All rights reserved.
* For licensing and other legal details, see the file legal.c.
*
* This generates Diffie-Hellman primes using a (hopefully) clearly
* defined algorithm, based on David Kravitz's "kosherizer".
* This takes a seed in the form of a byte string, usually ASCII.
* The byte string is hashed with SHA. This forms the low 160 bits
* of the search start number. If the desired start number is longer
* than this, the byte string is treated as a big-endian number and
* incremented, which increments the last byte, propagating carry.
* (Modulo the size of the seed itself, which is not an issue in
* practice for any seed at least one byte long.)
* This incremented value is hashed to produce the next most significant
* 160 bits, and so on.
* After enough bits have been accumulated, the low bit is set, the extra
* high bits are masked off to zero, and the two high bits of the
* search start number are set. This is used as a starting seed for a
* sequential (increasing) search for a suitable prime.
*
* A suitable prime P is itself prime, and (P-1)/2 is also prime.
*/
#include <stdio.h>
#include <string.h>
#include "bn.h"
#include "germain.h"
#include "sieve.h"
#include "cputime.h"
#include "sha.h"
#define BNDEBUG 1
#if BNDEBUG
#include "bnprint.h"
#define bndPut(prompt, bn) bnPrint(stdout, prompt, bn, "\n")
#define bndPrintf printf
#else
#define bndPut(prompt, bn) ((void)(prompt),(void)(bn))
#define bndPrintf (void)
#endif
/*
* Generate a bignum of a specified length, with the given
* high and low 8 bits. "High" is merged into the high 8 bits of the
* number. For example, set it to 0x80 to ensure that the number is
* exactly "bits" bits long (i.e. 2^(bits-1) <= bn < 2^bits).
* "Low" is merged into the low 8 bits. For example, set it to
* 1 to ensure that you generate an odd number.
*
* The bignum is generated using the given seed string. The
* technique is from David Kravitz (of the NSA)'s "kosherizer".
* The string is hashed, and that (with the low bit forced to 1)
* is used for the low 160 bits of the number. Then the string,
* considered as a big-endian array of bytes, is incremented
* and the incremented value is hashed to produce the next most
* significant 160 bits, and so on. The increment is performed
* modulo the size of the seed string.
*
* The most significant *two* bits are forced to 1, the first to
* ensure that the number is long enough, and the second just to
* place the prime in the high half of the range to make breaking
* it slightly more difficult, since it makes essentially no
* difference to the use of the number.
*/
static int
genRandBn(struct BigNum *bn, unsigned bits, unsigned char high,
unsigned char low, unsigned char *seed, unsigned len)
{
unsigned char buf[SHA_DIGESTSIZE];
unsigned bytes;
unsigned l = 0; /* Current position */
unsigned i;
struct SHAContext sha;
bnSetQ(bn, 0);
bytes = (bits+7) / 8; /* Number of bytes to use */
shaInit(&sha);
shaUpdate(&sha, seed, len);
shaFinal(&sha, buf);
buf[SHA_DIGESTSIZE-1] |= low;
while (bytes > SHA_DIGESTSIZE) {
bytes -= SHA_DIGESTSIZE;
/* Merge in low half of high bits, if necessary */
if (bytes == 1 && (bits & 7))
buf[0] |= high << (bits & 7);
if (bnInsertBigBytes(bn, buf, l, SHA_DIGESTSIZE) < 0)
return -1;
l += SHA_DIGESTSIZE;
/* Increment the seed, ignoring carry out. */
i = len;
while (i--) {
if (++seed[i] & 255)
break; /* Didn't wrap; done */
}
shaInit(&sha);
shaUpdate(&sha, seed, len);
shaFinal(&sha, buf);
}
/* Do the final "bytes"-long section, using the tail bytes in buf */
/* Mask off excess high bits */
buf[SHA_DIGESTSIZE-bytes] &= 255 >> (-bits & 7);
/* Merge in specified high bits */
buf[SHA_DIGESTSIZE-bytes] |= high >> (-bits & 7);
if (bytes > 1 && (bits & 7))
buf[SHA_DIGESTSIZE-bytes+1] |= high << (bits & 7);
/* Merge in the appropriate bytes of the buffer */
if (bnInsertBigBytes(bn, buf+SHA_DIGESTSIZE-bytes, l, bytes) < 0)
return -1;
return 0;
}
struct Progress {
FILE *f;
unsigned column;
unsigned wrap;
};
static int
genProgress(void *arg, int c)
{
struct Progress *p = arg;
if (++p->column > p->wrap) {
putc('\n', p->f);
p->column = 1;
}
putc(c, p->f);
fflush(p->f);
return 0;
}
static int
genDH(struct BigNum *bn, unsigned bits, unsigned char *seed, unsigned len,
FILE *f)
{
#if CLOCK_AVAIL
timetype start, stop;
unsigned long s;
#endif
int i;
unsigned char s1[1024], s2[1024];
unsigned p1, p2;
struct BigNum step;
struct Progress progress;
if (f)
fprintf(f, "Generating a %u-bit D-H prime with \"%.*s\"\n",
bits, (int)len, (char *)seed);
progress.f = f;
progress.column = 0;
progress.wrap = 78;
/* Find p - choose a starting place */
if (genRandBn(bn, bits, 0xC0, 3, seed, len) < 0)
return -1;
#if BNDEBUG /* DEBUG - check that sieve works properly */
bnBegin(&step);
bnSetQ(&step, 2);
sieveBuild(s1, 1024, bn, 2, 0);
sieveBuildBig(s2, 1024, bn, &step, 0);
p1 = p2 = 0;
if (s1[0] != s2[0])
printf("Difference: s1[0] = %x s2[0] = %x\n", s1[0], s2[0]);
do {
p1 = sieveSearch(s1, 1024, p1);
p2 = sieveSearch(s2, 1024, p2);
if (p1 != p2)
printf("Difference: p1 = %u p2 = %u\n", p1, p2);
} while (p1 && p2);
bnEnd(&step);
#endif
/* And search for a prime */
#if CLOCK_AVAIL
gettime(&start);
#endif
i = germainPrimeGen(bn, 1, f ? genProgress : 0, (void *)&progress);
if (i < 0)
return -1;
#if CLOCK_AVAIL
gettime(&stop);
#endif
if (f) {
putc('\n', f);
fprintf(f, "%d modular exponentiations performed.\n", i);
}
#if CLOCK_AVAIL
subtime(stop, start);
s = sec(stop);
bndPrintf("%u-bit time = %lu.%03u sec.", bits, s, msec(stop));
if (s > 60) {
putchar(' ');
putchar('(');
if (s > 3600)
printf("%u:%02u", (unsigned)(s/3600),
(unsigned)(s/60%60));
else
printf("%u", (unsigned)(s/60));
printf(":%02u)", (unsigned)(s%60));
}
putchar('\n');
#endif
bndPut("p = ", bn);
return 0;
}
static int
testDH(struct BigNum *bn)
{
struct BigNum pub1, pub2, sec1, sec2;
unsigned bits;
int i = 0;
char buf[4];
bnBegin(&pub1);
bnBegin(&pub2);
bnBegin(&sec1);
bnBegin(&sec2);
/* Bits of secret - add a few to ensure an even distribution */
bits = bnBits(bn)+4;
/* Temporarily decrement bn for some operations */
(void)bnSubQ(bn, 1);
strcpy(buf, "foo");
i = genRandBn(&sec1, bits, 0, 0, (unsigned char *)buf, 4);
if (i < 0)
goto done;
/* Reduce sec1 to the correct range */
i = bnMod(&sec1, &sec1, bn);
if (i < 0)
goto done;
strcpy(buf, "bar");
i = genRandBn(&sec2, bits, 0, 0, (unsigned char *)buf, 4);
if (i < 0)
goto done;
/* Reduce sec2 to the correct range */
i = bnMod(&sec2, &sec2, bn);
if (i < 0)
goto done;
/* Re-increment bn */
(void)bnAddQ(bn, 1);
puts("Doing first half for party 1");
i = bnTwoExpMod(&pub1, &sec1, bn);
if (i < 0)
goto done;
puts("Doing first half for party 2");
i = bnTwoExpMod(&pub2, &sec2, bn);
if (i < 0)
goto done;
/* In a real protocol, pub1 and pub2 are now exchanged */
puts("Doing second half for party 1");
i = bnExpMod(&pub2, &pub2, &sec1, bn);
if (i < 0)
goto done;
bndPut("shared = ", &pub2);
puts("Doing second half for party 2");
i = bnExpMod(&pub1, &pub1, &sec2, bn);
if (i < 0)
goto done;
bndPut("shared = ", &pub1);
if (bnCmp(&pub1, &pub2) != 0) {
puts("Diffie-Hellman failed!");
i = -1;
} else {
puts("Test successful.");
}
done:
bnEnd(&sec2);
bnEnd(&sec1);
bnEnd(&pub2);
bnEnd(&pub1);
return i;
}
/* Copy the command line to the buffer. */
static unsigned
copy(unsigned char *buf, int argc, char **argv)
{
unsigned pos, len;
pos = 0;
while (--argc) {
len = strlen(*++argv);
memcpy(buf, *argv, len);
buf += len;
pos += len;
if (argc > 1) {
*buf++ = ' ';
pos++;
}
}
return pos;
}
int
main(int argc, char **argv)
{
unsigned len;
struct BigNum bn;
unsigned char buf[1024];
if (argc < 2) {
fprintf(stderr, "Usage: %s <seed>\n", argv[0]);
fputs("\
<seed> should be a a string of bytes to be hashed to seed the prime\n\
generator. Note that unquoted whitespace between words will be counted\n\
as a single space. To include multiple spaces, quote them.\n", stderr);
return 1;
}
bnInit();
bnBegin(&bn);
len = copy(buf, argc, argv);
genDH(&bn, 0x100, buf, len, stdout);
testDH(&bn);
len = copy(buf, argc, argv);
genDH(&bn, 0x200, buf, len, stdout);
testDH(&bn);
len = copy(buf, argc, argv);
genDH(&bn, 0x300, buf, len, stdout);
testDH(&bn);
len = copy(buf, argc, argv);
genDH(&bn, 0x400, buf, len, stdout);
testDH(&bn);
len = copy(buf, argc, argv);
genDH(&bn, 0x500, buf, len, stdout);
testDH(&bn);
#if 0
/* These get *really* slow */
len = copy(buf, argc, argv);
genDH(&bn, 0x600, buf, len, stdout);
testDH(&bn);
len = copy(buf, argc, argv);
genDH(&bn, 0x800, buf, len, stdout);
testDH(&bn);
len = copy(buf, argc, argv);
genDH(&bn, 0xc00, buf, len, stdout);
testDH(&bn);
/* Like, plan on a *week* or more for this one. */
len = copy(buf, argc, argv);
genDH(&bn, 0x1000, buf, len, stdout);
testDH(&bn);
#endif
bnEnd(&bn);
return 0;
}