mirror of
https://github.com/signalwire/freeswitch.git
synced 2025-08-13 17:38:59 +00:00
Working codec2 support
This commit is contained in:
253
libs/libcodec2/src/lpc.c
Normal file
253
libs/libcodec2/src/lpc.c
Normal file
@@ -0,0 +1,253 @@
|
||||
/*---------------------------------------------------------------------------*\
|
||||
|
||||
FILE........: lpc.c
|
||||
AUTHOR......: David Rowe
|
||||
DATE CREATED: 30/9/90
|
||||
|
||||
Linear Prediction functions written in C.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
/*
|
||||
Copyright (C) 2009 David Rowe
|
||||
|
||||
All rights reserved.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License version 2.1, as
|
||||
published by the Free Software Foundation. This program is
|
||||
distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||||
License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
#define LPC_MAX_N 512 /* maximum no. of samples in frame */
|
||||
#define PI 3.141592654 /* mathematical constant */
|
||||
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#include "defines.h"
|
||||
#include "lpc.h"
|
||||
|
||||
/*---------------------------------------------------------------------------*\
|
||||
|
||||
hanning_window()
|
||||
|
||||
Hanning windows a frame of speech samples.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
void hanning_window(
|
||||
float Sn[], /* input frame of speech samples */
|
||||
float Wn[], /* output frame of windowed samples */
|
||||
int Nsam /* number of samples */
|
||||
)
|
||||
{
|
||||
int i; /* loop variable */
|
||||
|
||||
for(i=0; i<Nsam; i++)
|
||||
Wn[i] = Sn[i]*(0.5 - 0.5*cos(2*PI*(float)i/(Nsam-1)));
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------------------*\
|
||||
|
||||
autocorrelate()
|
||||
|
||||
Finds the first P autocorrelation values of an array of windowed speech
|
||||
samples Sn[].
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
void autocorrelate(
|
||||
float Sn[], /* frame of Nsam windowed speech samples */
|
||||
float Rn[], /* array of P+1 autocorrelation coefficients */
|
||||
int Nsam, /* number of windowed samples to use */
|
||||
int order /* order of LPC analysis */
|
||||
)
|
||||
{
|
||||
int i,j; /* loop variables */
|
||||
|
||||
for(j=0; j<order+1; j++) {
|
||||
Rn[j] = 0.0;
|
||||
for(i=0; i<Nsam-j; i++)
|
||||
Rn[j] += Sn[i]*Sn[i+j];
|
||||
}
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------------------*\
|
||||
|
||||
levinson_durbin()
|
||||
|
||||
Given P+1 autocorrelation coefficients, finds P Linear Prediction Coeff.
|
||||
(LPCs) where P is the order of the LPC all-pole model. The Levinson-Durbin
|
||||
algorithm is used, and is described in:
|
||||
|
||||
J. Makhoul
|
||||
"Linear prediction, a tutorial review"
|
||||
Proceedings of the IEEE
|
||||
Vol-63, No. 4, April 1975
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
void levinson_durbin(
|
||||
float R[], /* order+1 autocorrelation coeff */
|
||||
float lpcs[], /* order+1 LPC's */
|
||||
int order /* order of the LPC analysis */
|
||||
)
|
||||
{
|
||||
float E[LPC_MAX+1];
|
||||
float k[LPC_MAX+1];
|
||||
float a[LPC_MAX+1][LPC_MAX+1];
|
||||
float sum;
|
||||
int i,j; /* loop variables */
|
||||
|
||||
E[0] = R[0]; /* Equation 38a, Makhoul */
|
||||
|
||||
for(i=1; i<=order; i++) {
|
||||
sum = 0.0;
|
||||
for(j=1; j<=i-1; j++)
|
||||
sum += a[i-1][j]*R[i-j];
|
||||
k[i] = -1.0*(R[i] + sum)/E[i-1]; /* Equation 38b, Makhoul */
|
||||
if (fabs(k[i]) > 1.0)
|
||||
k[i] = 0.0;
|
||||
|
||||
a[i][i] = k[i];
|
||||
|
||||
for(j=1; j<=i-1; j++)
|
||||
a[i][j] = a[i-1][j] + k[i]*a[i-1][i-j]; /* Equation 38c, Makhoul */
|
||||
|
||||
E[i] = (1-k[i]*k[i])*E[i-1]; /* Equation 38d, Makhoul */
|
||||
}
|
||||
|
||||
for(i=1; i<=order; i++)
|
||||
lpcs[i] = a[order][i];
|
||||
lpcs[0] = 1.0;
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------------------*\
|
||||
|
||||
inverse_filter()
|
||||
|
||||
Inverse Filter, A(z). Produces an array of residual samples from an array
|
||||
of input samples and linear prediction coefficients.
|
||||
|
||||
The filter memory is stored in the first order samples of the input array.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
void inverse_filter(
|
||||
float Sn[], /* Nsam input samples */
|
||||
float a[], /* LPCs for this frame of samples */
|
||||
int Nsam, /* number of samples */
|
||||
float res[], /* Nsam residual samples */
|
||||
int order /* order of LPC */
|
||||
)
|
||||
{
|
||||
int i,j; /* loop variables */
|
||||
|
||||
for(i=0; i<Nsam; i++) {
|
||||
res[i] = 0.0;
|
||||
for(j=0; j<=order; j++)
|
||||
res[i] += Sn[i-j]*a[j];
|
||||
}
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------------------*\
|
||||
|
||||
synthesis_filter()
|
||||
|
||||
C version of the Speech Synthesis Filter, 1/A(z). Given an array of
|
||||
residual or excitation samples, and the the LP filter coefficients, this
|
||||
function will produce an array of speech samples. This filter structure is
|
||||
IIR.
|
||||
|
||||
The synthesis filter has memory as well, this is treated in the same way
|
||||
as the memory for the inverse filter (see inverse_filter() notes above).
|
||||
The difference is that the memory for the synthesis filter is stored in
|
||||
the output array, wheras the memory of the inverse filter is stored in the
|
||||
input array.
|
||||
|
||||
Note: the calling function must update the filter memory.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
void synthesis_filter(
|
||||
float res[], /* Nsam input residual (excitation) samples */
|
||||
float a[], /* LPCs for this frame of speech samples */
|
||||
int Nsam, /* number of speech samples */
|
||||
int order, /* LPC order */
|
||||
float Sn_[] /* Nsam output synthesised speech samples */
|
||||
)
|
||||
{
|
||||
int i,j; /* loop variables */
|
||||
|
||||
/* Filter Nsam samples */
|
||||
|
||||
for(i=0; i<Nsam; i++) {
|
||||
Sn_[i] = res[i]*a[0];
|
||||
for(j=1; j<=order; j++)
|
||||
Sn_[i] -= Sn_[i-j]*a[j];
|
||||
}
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------------------*\
|
||||
|
||||
find_aks()
|
||||
|
||||
This function takes a frame of samples, and determines the linear
|
||||
prediction coefficients for that frame of samples.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
void find_aks(
|
||||
float Sn[], /* Nsam samples with order sample memory */
|
||||
float a[], /* order+1 LPCs with first coeff 1.0 */
|
||||
int Nsam, /* number of input speech samples */
|
||||
int order, /* order of the LPC analysis */
|
||||
float *E /* residual energy */
|
||||
)
|
||||
{
|
||||
float Wn[LPC_MAX_N]; /* windowed frame of Nsam speech samples */
|
||||
float R[LPC_MAX+1]; /* order+1 autocorrelation values of Sn[] */
|
||||
int i;
|
||||
|
||||
assert(order < LPC_MAX);
|
||||
assert(Nsam < LPC_MAX_N);
|
||||
|
||||
hanning_window(Sn,Wn,Nsam);
|
||||
autocorrelate(Wn,R,Nsam,order);
|
||||
levinson_durbin(R,a,order);
|
||||
|
||||
*E = 0.0;
|
||||
for(i=0; i<=order; i++)
|
||||
*E += a[i]*R[i];
|
||||
if (*E < 0.0)
|
||||
*E = 1E-12;
|
||||
}
|
||||
|
||||
/*---------------------------------------------------------------------------*\
|
||||
|
||||
weight()
|
||||
|
||||
Weights a vector of LPCs.
|
||||
|
||||
\*---------------------------------------------------------------------------*/
|
||||
|
||||
void weight(
|
||||
float ak[], /* vector of order+1 LPCs */
|
||||
float gamma, /* weighting factor */
|
||||
int order, /* num LPCs (excluding leading 1.0) */
|
||||
float akw[] /* weighted vector of order+1 LPCs */
|
||||
)
|
||||
{
|
||||
int i;
|
||||
|
||||
for(i=1; i<=order; i++)
|
||||
akw[i] = ak[i]*pow(gamma,(float)i);
|
||||
}
|
||||
|
Reference in New Issue
Block a user