FS-9803 #resolve [Add support for arbitrary data as hash keys]
This commit is contained in:
parent
44d69cb2b9
commit
a0180288cf
|
@ -106,7 +106,8 @@ typedef enum {
|
|||
KS_HASH_MODE_CASE_INSENSITIVE,
|
||||
KS_HASH_MODE_INT,
|
||||
KS_HASH_MODE_INT64,
|
||||
KS_HASH_MODE_PTR
|
||||
KS_HASH_MODE_PTR,
|
||||
KS_HASH_MODE_ARBITRARY
|
||||
} ks_hash_mode_t;
|
||||
|
||||
|
||||
|
@ -157,6 +158,7 @@ KS_DECLARE(int) ks_hash_insert_ex(ks_hash_t *h, void *k, void *v, ks_hash_flag_t
|
|||
|
||||
|
||||
KS_DECLARE(void) ks_hash_set_flags(ks_hash_t *h, ks_hash_flag_t flags);
|
||||
KS_DECLARE(void) ks_hash_set_keysize(ks_hash_t *h, ks_size_t keysize);
|
||||
KS_DECLARE(void) ks_hash_set_destructor(ks_hash_t *h, ks_hash_destructor_t destructor);
|
||||
|
||||
/*****************************************************************************
|
||||
|
@ -318,6 +320,352 @@ static __inline uint32_t ks_hash_default_ci(void *ky)
|
|||
return hash;
|
||||
}
|
||||
|
||||
#define hashsize(n) ((uint32_t)1<<(n))
|
||||
#define hashmask(n) (hashsize(n)-1)
|
||||
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
mix -- mix 3 32-bit values reversibly.
|
||||
|
||||
This is reversible, so any information in (a,b,c) before mix() is
|
||||
still in (a,b,c) after mix().
|
||||
|
||||
If four pairs of (a,b,c) inputs are run through mix(), or through
|
||||
mix() in reverse, there are at least 32 bits of the output that
|
||||
are sometimes the same for one pair and different for another pair.
|
||||
This was tested for:
|
||||
* pairs that differed by one bit, by two bits, in any combination
|
||||
of top bits of (a,b,c), or in any combination of bottom bits of
|
||||
(a,b,c).
|
||||
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
||||
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
||||
is commonly produced by subtraction) look like a single 1-bit
|
||||
difference.
|
||||
* the base values were pseudorandom, all zero but one bit set, or
|
||||
all zero plus a counter that starts at zero.
|
||||
|
||||
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
|
||||
satisfy this are
|
||||
4 6 8 16 19 4
|
||||
9 15 3 18 27 15
|
||||
14 9 3 7 17 3
|
||||
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
|
||||
for "differ" defined as + with a one-bit base and a two-bit delta. I
|
||||
used http://burtleburtle.net/bob/hash/avalanche.html to choose
|
||||
the operations, constants, and arrangements of the variables.
|
||||
|
||||
This does not achieve avalanche. There are input bits of (a,b,c)
|
||||
that fail to affect some output bits of (a,b,c), especially of a. The
|
||||
most thoroughly mixed value is c, but it doesn't really even achieve
|
||||
avalanche in c.
|
||||
|
||||
This allows some parallelism. Read-after-writes are good at doubling
|
||||
the number of bits affected, so the goal of mixing pulls in the opposite
|
||||
direction as the goal of parallelism. I did what I could. Rotates
|
||||
seem to cost as much as shifts on every machine I could lay my hands
|
||||
on, and rotates are much kinder to the top and bottom bits, so I used
|
||||
rotates.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define mix(a,b,c) \
|
||||
{ \
|
||||
a -= c; a ^= rot(c, 4); c += b; \
|
||||
b -= a; b ^= rot(a, 6); a += c; \
|
||||
c -= b; c ^= rot(b, 8); b += a; \
|
||||
a -= c; a ^= rot(c,16); c += b; \
|
||||
b -= a; b ^= rot(a,19); a += c; \
|
||||
c -= b; c ^= rot(b, 4); b += a; \
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
mix -- mix 3 32-bit values reversibly.
|
||||
|
||||
This is reversible, so any information in (a,b,c) before mix() is
|
||||
still in (a,b,c) after mix().
|
||||
|
||||
If four pairs of (a,b,c) inputs are run through mix(), or through
|
||||
mix() in reverse, there are at least 32 bits of the output that
|
||||
are sometimes the same for one pair and different for another pair.
|
||||
This was tested for:
|
||||
* pairs that differed by one bit, by two bits, in any combination
|
||||
of top bits of (a,b,c), or in any combination of bottom bits of
|
||||
(a,b,c).
|
||||
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
||||
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
||||
is commonly produced by subtraction) look like a single 1-bit
|
||||
difference.
|
||||
* the base values were pseudorandom, all zero but one bit set, or
|
||||
all zero plus a counter that starts at zero.
|
||||
|
||||
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
|
||||
satisfy this are
|
||||
4 6 8 16 19 4
|
||||
9 15 3 18 27 15
|
||||
14 9 3 7 17 3
|
||||
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
|
||||
for "differ" defined as + with a one-bit base and a two-bit delta. I
|
||||
used http://burtleburtle.net/bob/hash/avalanche.html to choose
|
||||
the operations, constants, and arrangements of the variables.
|
||||
|
||||
This does not achieve avalanche. There are input bits of (a,b,c)
|
||||
that fail to affect some output bits of (a,b,c), especially of a. The
|
||||
most thoroughly mixed value is c, but it doesn't really even achieve
|
||||
avalanche in c.
|
||||
|
||||
This allows some parallelism. Read-after-writes are good at doubling
|
||||
the number of bits affected, so the goal of mixing pulls in the opposite
|
||||
direction as the goal of parallelism. I did what I could. Rotates
|
||||
seem to cost as much as shifts on every machine I could lay my hands
|
||||
on, and rotates are much kinder to the top and bottom bits, so I used
|
||||
rotates.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define mix(a,b,c) \
|
||||
{ \
|
||||
a -= c; a ^= rot(c, 4); c += b; \
|
||||
b -= a; b ^= rot(a, 6); a += c; \
|
||||
c -= b; c ^= rot(b, 8); b += a; \
|
||||
a -= c; a ^= rot(c,16); c += b; \
|
||||
b -= a; b ^= rot(a,19); a += c; \
|
||||
c -= b; c ^= rot(b, 4); b += a; \
|
||||
}
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
final -- final mixing of 3 32-bit values (a,b,c) into c
|
||||
|
||||
Pairs of (a,b,c) values differing in only a few bits will usually
|
||||
produce values of c that look totally different. This was tested for
|
||||
* pairs that differed by one bit, by two bits, in any combination
|
||||
of top bits of (a,b,c), or in any combination of bottom bits of
|
||||
(a,b,c).
|
||||
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
|
||||
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
|
||||
is commonly produced by subtraction) look like a single 1-bit
|
||||
difference.
|
||||
* the base values were pseudorandom, all zero but one bit set, or
|
||||
all zero plus a counter that starts at zero.
|
||||
|
||||
These constants passed:
|
||||
14 11 25 16 4 14 24
|
||||
12 14 25 16 4 14 24
|
||||
and these came close:
|
||||
4 8 15 26 3 22 24
|
||||
10 8 15 26 3 22 24
|
||||
11 8 15 26 3 22 24
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
#define final(a,b,c) \
|
||||
{ \
|
||||
c ^= b; c -= rot(b,14); \
|
||||
a ^= c; a -= rot(c,11); \
|
||||
b ^= a; b -= rot(a,25); \
|
||||
c ^= b; c -= rot(b,16); \
|
||||
a ^= c; a -= rot(c,4); \
|
||||
b ^= a; b -= rot(a,14); \
|
||||
c ^= b; c -= rot(b,24); \
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
-------------------------------------------------------------------------------
|
||||
hashlittle() -- hash a variable-length key into a 32-bit value
|
||||
k : the key (the unaligned variable-length array of bytes)
|
||||
length : the length of the key, counting by bytes
|
||||
initval : can be any 4-byte value
|
||||
Returns a 32-bit value. Every bit of the key affects every bit of
|
||||
the return value. Two keys differing by one or two bits will have
|
||||
totally different hash values.
|
||||
|
||||
The best hash table sizes are powers of 2. There is no need to do
|
||||
mod a prime (mod is sooo slow!). If you need less than 32 bits,
|
||||
use a bitmask. For example, if you need only 10 bits, do
|
||||
h = (h & hashmask(10));
|
||||
In which case, the hash table should have hashsize(10) elements.
|
||||
|
||||
If you are hashing n strings (uint8_t **)k, do it like this:
|
||||
for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
|
||||
|
||||
By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
|
||||
code any way you wish, private, educational, or commercial. It's free.
|
||||
|
||||
Use for hash table lookup, or anything where one collision in 2^^32 is
|
||||
acceptable. Do NOT use for cryptographic purposes.
|
||||
-------------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
static __inline uint32_t ks_hash_default_arbitrary( const void *key, ks_size_t length, uint32_t initval)
|
||||
{
|
||||
uint32_t a,b,c; /* internal state */
|
||||
union { const void *ptr; ks_size_t i; } u; /* needed for Mac Powerbook G4 */
|
||||
|
||||
/* Set up the internal state */
|
||||
a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
|
||||
|
||||
u.ptr = key;
|
||||
if (KS_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
|
||||
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
|
||||
|
||||
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
|
||||
while (length > 12)
|
||||
{
|
||||
a += k[0];
|
||||
b += k[1];
|
||||
c += k[2];
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 3;
|
||||
}
|
||||
|
||||
/*----------------------------- handle the last (probably partial) block */
|
||||
/*
|
||||
* "k[2]&0xffffff" actually reads beyond the end of the string, but
|
||||
* then masks off the part it's not allowed to read. Because the
|
||||
* string is aligned, the masked-off tail is in the same word as the
|
||||
* rest of the string. Every machine with memory protection I've seen
|
||||
* does it on word boundaries, so is OK with this. But VALGRIND will
|
||||
* still catch it and complain. The masking trick does make the hash
|
||||
* noticably faster for short strings (like English words).
|
||||
*/
|
||||
#ifndef VALGRIND
|
||||
|
||||
switch(length)
|
||||
{
|
||||
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
||||
case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
|
||||
case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
|
||||
case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
|
||||
case 8 : b+=k[1]; a+=k[0]; break;
|
||||
case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
|
||||
case 6 : b+=k[1]&0xffff; a+=k[0]; break;
|
||||
case 5 : b+=k[1]&0xff; a+=k[0]; break;
|
||||
case 4 : a+=k[0]; break;
|
||||
case 3 : a+=k[0]&0xffffff; break;
|
||||
case 2 : a+=k[0]&0xffff; break;
|
||||
case 1 : a+=k[0]&0xff; break;
|
||||
case 0 : return c; /* zero length strings require no mixing */
|
||||
}
|
||||
|
||||
#else /* make valgrind happy */
|
||||
|
||||
k8 = (const uint8_t *)k;
|
||||
switch(length)
|
||||
{
|
||||
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
|
||||
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
|
||||
case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
|
||||
case 9 : c+=k8[8]; /* fall through */
|
||||
case 8 : b+=k[1]; a+=k[0]; break;
|
||||
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
|
||||
case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
|
||||
case 5 : b+=k8[4]; /* fall through */
|
||||
case 4 : a+=k[0]; break;
|
||||
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
|
||||
case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
|
||||
case 1 : a+=k8[0]; break;
|
||||
case 0 : return c;
|
||||
}
|
||||
|
||||
#endif /* !valgrind */
|
||||
|
||||
} else if (KS_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
|
||||
const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
|
||||
const uint8_t *k8;
|
||||
|
||||
/*--------------- all but last block: aligned reads and different mixing */
|
||||
while (length > 12)
|
||||
{
|
||||
a += k[0] + (((uint32_t)k[1])<<16);
|
||||
b += k[2] + (((uint32_t)k[3])<<16);
|
||||
c += k[4] + (((uint32_t)k[5])<<16);
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 6;
|
||||
}
|
||||
|
||||
/*----------------------------- handle the last (probably partial) block */
|
||||
k8 = (const uint8_t *)k;
|
||||
switch(length)
|
||||
{
|
||||
case 12: c+=k[4]+(((uint32_t)k[5])<<16);
|
||||
b+=k[2]+(((uint32_t)k[3])<<16);
|
||||
a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
|
||||
case 10: c+=k[4];
|
||||
b+=k[2]+(((uint32_t)k[3])<<16);
|
||||
a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 9 : c+=k8[8]; /* fall through */
|
||||
case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
|
||||
a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
|
||||
case 6 : b+=k[2];
|
||||
a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 5 : b+=k8[4]; /* fall through */
|
||||
case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
|
||||
break;
|
||||
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
|
||||
case 2 : a+=k[0];
|
||||
break;
|
||||
case 1 : a+=k8[0];
|
||||
break;
|
||||
case 0 : return c; /* zero length requires no mixing */
|
||||
}
|
||||
|
||||
} else { /* need to read the key one byte at a time */
|
||||
const uint8_t *k = (const uint8_t *)key;
|
||||
|
||||
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */
|
||||
while (length > 12)
|
||||
{
|
||||
a += k[0];
|
||||
a += ((uint32_t)k[1])<<8;
|
||||
a += ((uint32_t)k[2])<<16;
|
||||
a += ((uint32_t)k[3])<<24;
|
||||
b += k[4];
|
||||
b += ((uint32_t)k[5])<<8;
|
||||
b += ((uint32_t)k[6])<<16;
|
||||
b += ((uint32_t)k[7])<<24;
|
||||
c += k[8];
|
||||
c += ((uint32_t)k[9])<<8;
|
||||
c += ((uint32_t)k[10])<<16;
|
||||
c += ((uint32_t)k[11])<<24;
|
||||
mix(a,b,c);
|
||||
length -= 12;
|
||||
k += 12;
|
||||
}
|
||||
|
||||
/*-------------------------------- last block: affect all 32 bits of (c) */
|
||||
switch(length) /* all the case statements fall through */
|
||||
{
|
||||
case 12: c+=((uint32_t)k[11])<<24;
|
||||
case 11: c+=((uint32_t)k[10])<<16;
|
||||
case 10: c+=((uint32_t)k[9])<<8;
|
||||
case 9 : c+=k[8];
|
||||
case 8 : b+=((uint32_t)k[7])<<24;
|
||||
case 7 : b+=((uint32_t)k[6])<<16;
|
||||
case 6 : b+=((uint32_t)k[5])<<8;
|
||||
case 5 : b+=k[4];
|
||||
case 4 : a+=((uint32_t)k[3])<<24;
|
||||
case 3 : a+=((uint32_t)k[2])<<16;
|
||||
case 2 : a+=((uint32_t)k[1])<<8;
|
||||
case 1 : a+=k[0];
|
||||
break;
|
||||
case 0 : return c;
|
||||
}
|
||||
}
|
||||
|
||||
final(a,b,c);
|
||||
return c;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -56,6 +56,22 @@ KS_BEGIN_EXTERN_C
|
|||
#define KS_64BIT 1
|
||||
#endif
|
||||
|
||||
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
|
||||
__BYTE_ORDER == __LITTLE_ENDIAN) || \
|
||||
(defined(i386) || defined(__i386__) || defined(__i486__) || \
|
||||
defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL))
|
||||
# define KS_LITTLE_ENDIAN 1
|
||||
# define KS_BIG_ENDIAN 0
|
||||
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
|
||||
__BYTE_ORDER == __BIG_ENDIAN) || \
|
||||
(defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
|
||||
# define KS_LITTLE_ENDIAN 0
|
||||
# define KS_BIG_ENDIAN 1
|
||||
#else
|
||||
# define KS_LITTLE_ENDIAN 0
|
||||
# define KS_BIG_ENDIAN 0
|
||||
#endif
|
||||
|
||||
#include <stdarg.h>
|
||||
#include <time.h>
|
||||
#include <stdarg.h>
|
||||
|
|
|
@ -75,7 +75,7 @@ KS_BEGIN_EXTERN_C
|
|||
|
||||
typedef uint16_t ks_port_t;
|
||||
typedef size_t ks_size_t;
|
||||
|
||||
typedef unsigned char ks_byte_t;
|
||||
typedef enum {
|
||||
KS_STATUS_SUCCESS,
|
||||
KS_STATUS_FAIL,
|
||||
|
|
|
@ -64,6 +64,8 @@ struct ks_hash {
|
|||
ks_rwl_t *rwl;
|
||||
ks_mutex_t *mutex;
|
||||
uint32_t readers;
|
||||
ks_size_t keysize;
|
||||
ks_hash_mode_t mode;
|
||||
};
|
||||
|
||||
/*****************************************************************************/
|
||||
|
@ -72,13 +74,22 @@ struct ks_hash {
|
|||
static inline unsigned int
|
||||
hash(ks_hash_t *h, void *k)
|
||||
{
|
||||
/* Aim to protect against poor hash functions by adding logic here
|
||||
* - logic taken from java 1.4 ks_hash source */
|
||||
unsigned int i = h->hashfn(k);
|
||||
i += ~(i << 9);
|
||||
i ^= ((i >> 14) | (i << 18)); /* >>> */
|
||||
i += (i << 4);
|
||||
i ^= ((i >> 10) | (i << 22)); /* >>> */
|
||||
unsigned int i;
|
||||
|
||||
if (h->mode == KS_HASH_MODE_ARBITRARY) {
|
||||
i = ks_hash_default_arbitrary(k, h->keysize, 13);
|
||||
} else {
|
||||
i = h->hashfn(k);
|
||||
}
|
||||
|
||||
/* Aim to protect against poor hash functions by adding logic here
|
||||
* - logic taken from java 1.4 hash source */
|
||||
|
||||
i += ~(i << 9);
|
||||
i ^= ((i >> 14) | (i << 18)); /* >>> */
|
||||
i += (i << 4);
|
||||
i ^= ((i >> 10) | (i << 22)); /* >>> */
|
||||
|
||||
return i;
|
||||
}
|
||||
|
||||
|
@ -146,6 +157,11 @@ KS_DECLARE(void) ks_hash_set_flags(ks_hash_t *h, ks_hash_flag_t flags)
|
|||
h->flags = flags;
|
||||
}
|
||||
|
||||
KS_DECLARE(void) ks_hash_set_keysize(ks_hash_t *h, ks_size_t keysize)
|
||||
{
|
||||
h->keysize = keysize;
|
||||
}
|
||||
|
||||
KS_DECLARE(void) ks_hash_set_destructor(ks_hash_t *h, ks_hash_destructor_t destructor)
|
||||
{
|
||||
h->destructor = destructor;
|
||||
|
@ -159,6 +175,7 @@ ks_hash_create_ex(ks_hash_t **hp, unsigned int minsize,
|
|||
{
|
||||
ks_hash_t *h;
|
||||
unsigned int pindex, size = primes[0];
|
||||
ks_size_t keysize = 0;
|
||||
|
||||
switch(mode) {
|
||||
case KS_HASH_MODE_CASE_INSENSITIVE:
|
||||
|
@ -170,18 +187,24 @@ ks_hash_create_ex(ks_hash_t **hp, unsigned int minsize,
|
|||
ks_assert(eqf == NULL);
|
||||
hashf = ks_hash_default_int;
|
||||
eqf = ks_hash_equalkeys_int;
|
||||
keysize = 4;
|
||||
break;
|
||||
case KS_HASH_MODE_INT64:
|
||||
ks_assert(hashf == NULL);
|
||||
ks_assert(eqf == NULL);
|
||||
hashf = ks_hash_default_int64;
|
||||
eqf = ks_hash_equalkeys_int64;
|
||||
keysize = 8;
|
||||
break;
|
||||
case KS_HASH_MODE_PTR:
|
||||
ks_assert(hashf == NULL);
|
||||
ks_assert(eqf == NULL);
|
||||
hashf = ks_hash_default_ptr;
|
||||
eqf = ks_hash_equalkeys_ptr;
|
||||
keysize = sizeof(void *);
|
||||
break;
|
||||
case KS_HASH_MODE_ARBITRARY:
|
||||
keysize = sizeof(void *);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
|
@ -210,6 +233,8 @@ ks_hash_create_ex(ks_hash_t **hp, unsigned int minsize,
|
|||
h->pool = pool;
|
||||
h->flags = flags;
|
||||
h->destructor = destructor;
|
||||
h->keysize = keysize;
|
||||
h->mode = mode;
|
||||
|
||||
if ((flags & KS_HASH_FLAG_RWLOCK)) {
|
||||
ks_rwl_create(&h->rwl, h->pool);
|
||||
|
@ -303,6 +328,15 @@ ks_hash_count(ks_hash_t *h)
|
|||
return h->entrycount;
|
||||
}
|
||||
|
||||
static int key_equals(ks_hash_t *h, void *k1, void *k2)
|
||||
{
|
||||
if (h->mode == KS_HASH_MODE_ARBITRARY) {
|
||||
return !memcmp(k1, k2, h->keysize);
|
||||
} else {
|
||||
return h->eqfn(k1, k2);
|
||||
}
|
||||
}
|
||||
|
||||
static void * _ks_hash_remove(ks_hash_t *h, void *k, unsigned int hashvalue, unsigned int index) {
|
||||
/* TODO: consider compacting the table when the load factor drops enough,
|
||||
* or provide a 'compact' method. */
|
||||
|
@ -316,7 +350,7 @@ static void * _ks_hash_remove(ks_hash_t *h, void *k, unsigned int hashvalue, uns
|
|||
e = *pE;
|
||||
while (NULL != e) {
|
||||
/* Check hash value to short circuit heavier comparison */
|
||||
if ((hashvalue == e->h) && (h->eqfn(k, e->k))) {
|
||||
if ((hashvalue == e->h) && (key_equals(h, k, e->k))) {
|
||||
*pE = e->next;
|
||||
h->entrycount--;
|
||||
v = e->v;
|
||||
|
@ -457,7 +491,7 @@ ks_hash_search(ks_hash_t *h, void *k, ks_locked_t locked)
|
|||
e = h->table[index];
|
||||
while (NULL != e) {
|
||||
/* Check hash value to short circuit heavier comparison */
|
||||
if ((hashvalue == e->h) && (h->eqfn(k, e->k))) {
|
||||
if ((hashvalue == e->h) && (key_equals(h, k, e->k))) {
|
||||
v = e->v;
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -120,16 +120,56 @@ int test2(void)
|
|||
return 1;
|
||||
}
|
||||
|
||||
#include "sodium.h"
|
||||
#define TEST3_SIZE 20
|
||||
int test3(void)
|
||||
{
|
||||
ks_pool_t *pool;
|
||||
ks_hash_t *hash;
|
||||
ks_byte_t data[TEST3_SIZE];
|
||||
ks_byte_t data2[TEST3_SIZE];
|
||||
ks_byte_t data3[TEST3_SIZE];
|
||||
char *A, *B, *C;
|
||||
|
||||
ks_pool_open(&pool);
|
||||
ks_hash_create(&hash, KS_HASH_MODE_ARBITRARY, KS_HASH_FLAG_NONE, pool);
|
||||
ks_hash_set_keysize(hash, TEST3_SIZE);
|
||||
|
||||
randombytes_buf(data, sizeof(data));
|
||||
randombytes_buf(data2, sizeof(data2));
|
||||
|
||||
ks_hash_insert(hash, data, "FOO");
|
||||
ks_hash_insert(hash, data2, "BAR");
|
||||
ks_hash_insert(hash, data3, "BAZ");
|
||||
|
||||
|
||||
A = (char *)ks_hash_search(hash, data, KS_UNLOCKED);
|
||||
B = (char *)ks_hash_search(hash, data2, KS_UNLOCKED);
|
||||
C = (char *)ks_hash_search(hash, data3, KS_UNLOCKED);
|
||||
|
||||
|
||||
printf("RESULT [%s][%s][%s]\n", A, B, C);
|
||||
|
||||
ks_hash_destroy(&hash);
|
||||
|
||||
ks_pool_close(&pool);
|
||||
|
||||
return !strcmp(A, "FOO") && !strcmp(B, "BAR") && !strcmp(C, "BAZ");
|
||||
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
|
||||
ks_init();
|
||||
srand((unsigned)(time(NULL) - (unsigned)(intptr_t)ks_thread_self()));
|
||||
|
||||
plan(2);
|
||||
plan(3);
|
||||
|
||||
ok(test1());
|
||||
ok(test2());
|
||||
ok(test3());
|
||||
|
||||
ks_shutdown();
|
||||
|
||||
|
|
Loading…
Reference in New Issue