Changes to the signaling tone detector to detect concurrent 2400Hz + 2600Hz

tones. This passes voice immunity and other key tests, but it bounces a bit
when transitions like 2400 -> 2400+2600 -> 2600 occur. Transitions between
tone off and tone on are clean.
This commit is contained in:
Steve Underwood 2010-06-06 22:24:20 +08:00
parent c807502773
commit bc13e944c6
3 changed files with 435 additions and 184 deletions

View File

@ -23,7 +23,7 @@
* License along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* $Id: sig_tone.c,v 1.39 2010/03/11 14:22:30 steveu Exp $
* $Id: sig_tone.c,v 1.40 2010/05/12 15:32:41 steveu Exp $
*/
/*! \file */
@ -201,16 +201,25 @@ static const sig_tone_descriptor_t sig_tones[3] =
}
};
static const int tone_present_bits[2] =
static const int tone_present_bits[3] =
{
SIG_TONE_1_PRESENT,
SIG_TONE_2_PRESENT
SIG_TONE_2_PRESENT,
SIG_TONE_1_PRESENT | SIG_TONE_2_PRESENT
};
static const int tone_change_bits[2] =
static const int tone_change_bits[3] =
{
SIG_TONE_1_CHANGE,
SIG_TONE_2_CHANGE
SIG_TONE_2_CHANGE,
SIG_TONE_1_CHANGE | SIG_TONE_2_CHANGE
};
static const int coeff_sets[3] =
{
0,
1,
0
};
SPAN_DECLARE(int) sig_tone_tx(sig_tone_tx_state_t *s, int16_t amp[], int len)
@ -273,7 +282,7 @@ SPAN_DECLARE(int) sig_tone_tx(sig_tone_tx_state_t *s, int16_t amp[], int len)
for (j = i; j < i + n; j++)
{
tone = dds_mod(&(s->phase_acc[k]), s->phase_rate[k], s->tone_scaling[k][high_low], 0);
amp[j] = saturate(amp[j] + tone);
amp[j] = saturated_add16(amp[j], tone);
}
/*endfor*/
}
@ -300,6 +309,11 @@ SPAN_DECLARE(void) sig_tone_tx_set_mode(sig_tone_tx_state_t *s, int mode, int du
if (new_tones && old_tones != new_tones)
s->high_low_timer = s->desc->high_low_timeout;
/*endif*/
/* If a tone is being turned on, let's start the phase from zero */
if ((mode & SIG_TONE_1_PRESENT) && !(s->current_tx_tone & SIG_TONE_1_PRESENT))
s->phase_acc[0] = 0;
if ((mode & SIG_TONE_2_PRESENT) && !(s->current_tx_tone & SIG_TONE_2_PRESENT))
s->phase_acc[1] = 0;
s->current_tx_tone = mode;
s->current_tx_timeout = duration;
}
@ -352,63 +366,78 @@ SPAN_DECLARE(int) sig_tone_tx_free(sig_tone_tx_state_t *s)
}
/*- End of function --------------------------------------------------------*/
int nnn = 0;
SPAN_DECLARE(int) sig_tone_rx(sig_tone_rx_state_t *s, int16_t amp[], int len)
{
#if defined(SPANDSP_USE_FIXED_POINT)
int16_t x;
int32_t v;
int16_t notched_signal[2];
int16_t notched_signal[3];
int16_t bandpass_signal;
int16_t signal;
#else
float x;
float v;
float notched_signal[2];
float notched_signal[3];
float bandpass_signal;
float signal;
#endif
int i;
int j;
int32_t notch_power[2];
int k;
int l;
int m;
int32_t notch_power[3];
int32_t flat_power;
int immediate;
l = s->desc->tones;
if (l == 2)
l = 3;
notch_power[1] =
notch_power[2] = INT32_MAX;
for (i = 0; i < len; i++)
{
if (s->signalling_state_duration < INT_MAX)
s->signalling_state_duration++;
/*endif*/
for (j = 0; j < s->desc->tones; j++)
signal = amp[i];
for (j = 0; j < l; j++)
{
k = coeff_sets[j];
/* The notch filter is two cascaded biquads. */
#if defined(SPANDSP_USE_FIXED_POINT)
v = ((int32_t) amp[i]*s->desc->notch[j]->a1[0])
+ ((int32_t) s->tone[j].notch_z1[0]*s->desc->notch[j]->b1[1])
+ ((int32_t) s->tone[j].notch_z1[1]*s->desc->notch[j]->b1[2]);
v = ((int32_t) signal*s->desc->notch[k]->a1[0])
+ ((int32_t) s->tone[j].notch_z1[0]*s->desc->notch[k]->b1[1])
+ ((int32_t) s->tone[j].notch_z1[1]*s->desc->notch[k]->b1[2]);
x = v >> 15;
v += ((int32_t) s->tone[j].notch_z1[0]*s->desc->notch[j]->a1[1])
+ ((int32_t) s->tone[j].notch_z1[1]*s->desc->notch[j]->a1[2]);
v += ((int32_t) s->tone[j].notch_z1[0]*s->desc->notch[k]->a1[1])
+ ((int32_t) s->tone[j].notch_z1[1]*s->desc->notch[k]->a1[2]);
s->tone[j].notch_z1[1] = s->tone[j].notch_z1[0];
s->tone[j].notch_z1[0] = x;
v += ((int32_t) s->tone[j].notch_z2[0]*s->desc->notch[j]->b2[1])
+ ((int32_t) s->tone[j].notch_z2[1]*s->desc->notch[j]->b2[2]);
v += ((int32_t) s->tone[j].notch_z2[0]*s->desc->notch[k]->b2[1])
+ ((int32_t) s->tone[j].notch_z2[1]*s->desc->notch[k]->b2[2]);
x = v >> 15;
v += ((int32_t) s->tone[j].notch_z2[0]*s->desc->notch[j]->a2[1])
+ ((int32_t) s->tone[j].notch_z2[1]*s->desc->notch[j]->a2[2]);
v += ((int32_t) s->tone[j].notch_z2[0]*s->desc->notch[k]->a2[1])
+ ((int32_t) s->tone[j].notch_z2[1]*s->desc->notch[k]->a2[2]);
s->tone[j].notch_z2[1] = s->tone[j].notch_z2[0];
s->tone[j].notch_z2[0] = x;
notched_signal[j] = v >> s->desc->notch[j]->postscale;
notched_signal[j] = v >> s->desc->notch[k]->postscale;
#else
v = amp[i]*s->desc->notch[j]->a1[0]
+ s->tone[j].notch_z1[0]*s->desc->notch[j]->b1[1]
+ s->tone[j].notch_z1[1]*s->desc->notch[j]->b1[2];
v = signal*s->desc->notch[k]->a1[0]
+ s->tone[j].notch_z1[0]*s->desc->notch[k]->b1[1]
+ s->tone[j].notch_z1[1]*s->desc->notch[k]->b1[2];
x = v;
v += s->tone[j].notch_z1[0]*s->desc->notch[j]->a1[1]
+ s->tone[j].notch_z1[1]*s->desc->notch[j]->a1[2];
v += s->tone[j].notch_z1[0]*s->desc->notch[k]->a1[1]
+ s->tone[j].notch_z1[1]*s->desc->notch[k]->a1[2];
s->tone[j].notch_z1[1] = s->tone[j].notch_z1[0];
s->tone[j].notch_z1[0] = x;
v += s->tone[j].notch_z2[0]*s->desc->notch[j]->b2[1]
+ s->tone[j].notch_z2[1]*s->desc->notch[j]->b2[2];
v += s->tone[j].notch_z2[0]*s->desc->notch[k]->b2[1]
+ s->tone[j].notch_z2[1]*s->desc->notch[k]->b2[2];
x = v;
v += s->tone[j].notch_z2[0]*s->desc->notch[j]->a2[1]
+ s->tone[j].notch_z2[1]*s->desc->notch[j]->a2[2];
v += s->tone[j].notch_z2[0]*s->desc->notch[k]->a2[1]
+ s->tone[j].notch_z2[1]*s->desc->notch[k]->a2[2];
s->tone[j].notch_z2[1] = s->tone[j].notch_z2[0];
s->tone[j].notch_z2[0] = x;
notched_signal[j] = v;
@ -417,9 +446,10 @@ SPAN_DECLARE(int) sig_tone_rx(sig_tone_rx_state_t *s, int16_t amp[], int len)
this isn't used in low tone detect mode, but we must keep the
power measurement rolling along. */
notch_power[j] = power_meter_update(&s->tone[j].power, notched_signal[j]);
if (j == 1)
signal = notched_signal[j];
}
if (s->tone[0].tone_present || s->tone[1].tone_present)
if ((s->signalling_state & (SIG_TONE_1_PRESENT | SIG_TONE_2_PRESENT)))
{
if (s->flat_mode_timeout && --s->flat_mode_timeout == 0)
s->flat_mode = TRUE;
@ -432,8 +462,10 @@ SPAN_DECLARE(int) sig_tone_rx(sig_tone_rx_state_t *s, int16_t amp[], int len)
}
/*endif*/
immediate = -1;
if (s->flat_mode)
{
//printf("Flat mode %d %d\n", s->flat_mode_timeout, s->desc->sharp_flat_timeout);
/* Flat mode */
bandpass_signal = amp[i];
if (s->desc->flat)
@ -464,10 +496,9 @@ SPAN_DECLARE(int) sig_tone_rx(sig_tone_rx_state_t *s, int16_t amp[], int len)
flat_power = power_meter_update(&s->flat_power, bandpass_signal);
/* For the flat receiver we use a simple power threshold! */
if (s->tone[0].tone_present)
if ((s->signalling_state & (SIG_TONE_1_PRESENT | SIG_TONE_2_PRESENT)))
{
s->tone[0].tone_present = (flat_power > s->flat_detection_threshold);
if (!s->tone[0].tone_present)
if (flat_power < s->flat_detection_threshold)
{
s->signalling_state &= ~tone_present_bits[0];
s->signalling_state |= tone_change_bits[0];
@ -476,18 +507,15 @@ SPAN_DECLARE(int) sig_tone_rx(sig_tone_rx_state_t *s, int16_t amp[], int len)
}
else
{
s->tone[0].tone_present = (flat_power > s->flat_detection_threshold);
if (s->tone[0].tone_present)
{
if (flat_power > s->flat_detection_threshold)
s->signalling_state |= (tone_present_bits[0] | tone_change_bits[0]);
}
/*endif*/
}
/*endif*/
/* Notch insertion logic */
/* Notch insertion logic */
/* tone_present and tone_on are equivalent in flat mode */
if (s->tone[0].tone_present)
if ((s->signalling_state & (SIG_TONE_1_PRESENT | SIG_TONE_2_PRESENT)))
{
s->notch_insertion_timeout = s->desc->notch_lag_time;
}
@ -504,64 +532,68 @@ SPAN_DECLARE(int) sig_tone_rx(sig_tone_rx_state_t *s, int16_t amp[], int len)
/* Sharp mode */
flat_power = power_meter_update(&s->flat_power, amp[i]);
for (j = 0; j < s->desc->tones; j++)
/* Persistence checking and notch insertion logic */
if (flat_power >= s->sharp_detection_threshold)
{
/* Persistence checking and notch insertion logic */
if (s->tone[j].tone_present)
/* Which is the better of the single tone responses? */
m = (notch_power[0] < notch_power[1]) ? 0 : 1;
/* Single tone has precedence. If the better one fails to detect, try
for a dual tone signal. */
if ((notch_power[m] >> 6)*s->detection_ratio < (flat_power >> 6))
immediate = m;
else if ((notch_power[2] >> 6)*s->detection_ratio < (flat_power >> 7))
immediate = 2;
}
//printf("Immediate = %d %d %d\n", immediate, s->signalling_state, s->tone_persistence_timeout);
if ((s->signalling_state & (SIG_TONE_1_PRESENT | SIG_TONE_2_PRESENT)))
{
if (immediate != s->current_notch_filter)
{
if (flat_power < s->sharp_detection_threshold
||
(notch_power[j] >> 6)*s->detection_ratio > (flat_power >> 6))
/* No tone is detected this sample */
if (--s->tone_persistence_timeout == 0)
{
/* Tone is not detected this sample */
if (--s->tone[j].tone_persistence_timeout == 0)
{
/* Tone off is confirmed */
s->tone[j].tone_present = FALSE;
s->tone[j].tone_persistence_timeout = s->desc->tone_on_check_time;
s->signalling_state &= ~tone_present_bits[j];
s->signalling_state |= tone_change_bits[j];
}
/*endif*/
}
else
{
s->tone[j].tone_persistence_timeout = s->desc->tone_off_check_time;
/* Tone off is confirmed */
s->tone_persistence_timeout = s->desc->tone_on_check_time;
s->signalling_state |= ((s->signalling_state & (SIG_TONE_1_PRESENT | SIG_TONE_2_PRESENT)) << 1);
s->signalling_state &= ~(SIG_TONE_1_PRESENT | SIG_TONE_2_PRESENT);
}
/*endif*/
}
else
{
if (s->notch_insertion_timeout)
s->notch_insertion_timeout--;
/*endif*/
if (flat_power > s->sharp_detection_threshold
&&
(notch_power[j] >> 6)*s->detection_ratio < (flat_power >> 6))
{
/* Tone is detected this sample */
if (--s->tone[j].tone_persistence_timeout == 0)
{
/* Tone on is confirmed */
s->tone[j].tone_present = TRUE;
s->tone[j].tone_persistence_timeout = s->desc->tone_off_check_time;
s->notch_insertion_timeout = s->desc->notch_lag_time;
s->signalling_state |= (tone_present_bits[j] | tone_change_bits[j]);
}
/*endif*/
}
else
{
s->tone[j].tone_persistence_timeout = s->desc->tone_on_check_time;
}
/*endif*/
s->tone_persistence_timeout = s->desc->tone_off_check_time;
}
/*endif*/
}
/*endfor*/
else
{
if (s->notch_insertion_timeout)
s->notch_insertion_timeout--;
/*endif*/
if (immediate >= 0 && immediate == s->last_sample_tone_present)
{
/* Consistent tone detected this sample */
if (--s->tone_persistence_timeout == 0)
{
/* Tone on is confirmed */
s->tone_persistence_timeout = s->desc->tone_off_check_time;
s->notch_insertion_timeout = s->desc->notch_lag_time;
s->signalling_state |= (tone_present_bits[immediate] | tone_change_bits[immediate]);
s->current_notch_filter = immediate;
}
/*endif*/
}
else
{
s->tone_persistence_timeout = s->desc->tone_on_check_time;
}
/*endif*/
}
/*endif*/
//printf("XXX %d %d %d %d %d %d\n", nnn++, notch_power[0], notch_power[1], notch_power[2], flat_power, immediate*10000000);
}
/*endif*/
if (s->signalling_state & (SIG_TONE_1_CHANGE | SIG_TONE_2_CHANGE))
if ((s->signalling_state & (SIG_TONE_1_CHANGE | SIG_TONE_2_CHANGE)))
{
if (s->sig_update)
s->sig_update(s->user_data, s->signalling_state, 0, s->signalling_state_duration);
@ -574,7 +606,11 @@ SPAN_DECLARE(int) sig_tone_rx(sig_tone_rx_state_t *s, int16_t amp[], int len)
if ((s->current_rx_tone & SIG_TONE_RX_PASSTHROUGH))
{
if ((s->current_rx_tone & SIG_TONE_RX_FILTER_TONE) || s->notch_insertion_timeout)
amp[i] = saturate(notched_signal[0]);
#if defined(SPANDSP_USE_FIXED_POINT)
amp[i] = saturate16(notched_signal[s->current_notch_filter]);
#else
amp[i] = fsaturatef(notched_signal[s->current_notch_filter]);
#endif
/*endif*/
}
else
@ -583,6 +619,7 @@ SPAN_DECLARE(int) sig_tone_rx(sig_tone_rx_state_t *s, int16_t amp[], int len)
amp[i] = 0;
}
/*endif*/
s->last_sample_tone_present = immediate;
}
/*endfor*/
return len;
@ -620,17 +657,19 @@ SPAN_DECLARE(sig_tone_rx_state_t *) sig_tone_rx_init(sig_tone_rx_state_t *s, int
s->tone[j].notch_z1[i] = 0.0f;
s->tone[j].notch_z2[i] = 0.0f;
}
s->flat_z[i] = 0.0f;
}
for (i = 0; i < 2; i++)
s->flat_z[i] = 0.0f;
#endif
s->last_sample_tone_present = -1;
s->sig_update = sig_update;
s->user_data = user_data;
s->desc = &sig_tones[tone_type - 1];
power_meter_init(&s->tone[0].power, 5);
power_meter_init(&s->tone[1].power, 5);
for (i = 0; i < 3; i++)
power_meter_init(&s->tone[i].power, 5);
power_meter_init(&s->flat_power, 5);
s->flat_detection_threshold = power_meter_level_dbm0(s->desc->flat_detection_threshold);

View File

@ -169,6 +169,8 @@ struct sig_tone_rx_state_s
int current_rx_tone;
/*! \brief The timeout for switching from the high level to low level tone detector. */
int high_low_timer;
/*! \brief ??? */
int current_notch_filter;
struct
{
@ -186,11 +188,7 @@ struct sig_tone_rx_state_s
/*! \brief The power output of the notch. */
power_meter_t power;
/*! \brief Persistence check for tone present */
int tone_persistence_timeout;
/*! \brief TRUE if the tone is declared to be present */
int tone_present;
} tone[2];
} tone[3];
#if defined(SPANDSP_USE_FIXED_POINT)
/*! \brief The z's for the weighting/bandpass filter. */
@ -202,6 +200,11 @@ struct sig_tone_rx_state_s
/*! \brief The output power of the flat (unfiltered or flat filtered) path. */
power_meter_t flat_power;
/*! \brief Persistence check for tone present */
int tone_persistence_timeout;
/*! \brief The tone pattern on the last audio sample */
int last_sample_tone_present;
/*! \brief The minimum reading from the power meter for detection in flat mode */
int32_t flat_detection_threshold;
/*! \brief The minimum reading from the power meter for detection in sharp mode */

View File

@ -70,6 +70,13 @@ const char *bellcore_files[] =
""
};
typedef struct
{
double freq;
double min_level;
double max_level;
} template_t;
static int number_of_tones = 1;
static int sampleno = 0;
@ -81,47 +88,132 @@ static int dial_pulses = 0;
static int rx_handler_callbacks = 0;
static int tx_handler_callbacks = 0;
static int use_gui = FALSE;
static void plot_frequency_response(void)
{
FILE *gnucmd;
if ((gnucmd = popen("gnuplot", "w")) == NULL)
{
exit(2);
}
fprintf(gnucmd, "set autoscale\n");
fprintf(gnucmd, "unset log\n");
fprintf(gnucmd, "unset label\n");
fprintf(gnucmd, "set xtic auto\n");
fprintf(gnucmd, "set ytic auto\n");
fprintf(gnucmd, "set title 'Notch filter frequency response'\n");
fprintf(gnucmd, "set xlabel 'Frequency (Hz)'\n");
fprintf(gnucmd, "set ylabel 'Gain (dB)'\n");
fprintf(gnucmd, "plot 'sig_tone_notch' using 1:3 title 'min' with lines,"
"'sig_tone_notch' using 1:6 title 'actual' with lines,"
"'sig_tone_notch' using 1:9 title 'max' with lines\n");
fflush(gnucmd);
getchar();
if (pclose(gnucmd) == -1)
{
exit(2);
}
}
/*- End of function --------------------------------------------------------*/
static void tx_handler(void *user_data, int what, int level, int duration)
{
sig_tone_tx_state_t *s;
int tone;
int time;
static const int pattern_1_tone[][2] =
{
{33, SIG_TONE_1_PRESENT},
{67, 0},
{33, SIG_TONE_1_PRESENT},
{67, 0},
{33, SIG_TONE_1_PRESENT},
{67, 0},
{33, SIG_TONE_1_PRESENT},
{67, 0},
{33, SIG_TONE_1_PRESENT},
{67, 0},
{33, SIG_TONE_1_PRESENT},
{67, 0},
{33, SIG_TONE_1_PRESENT},
{67, 0},
{33, SIG_TONE_1_PRESENT},
{67, 0},
{33, SIG_TONE_1_PRESENT},
{67, 0},
{600, SIG_TONE_1_PRESENT},
{0, 0}
};
static const int pattern_2_tones[][2] =
{
#if 0
{33, SIG_TONE_1_PRESENT},
{67, 0},
{33, SIG_TONE_1_PRESENT},
{67, 0},
{33, SIG_TONE_1_PRESENT},
{67, 0},
{33, SIG_TONE_1_PRESENT},
{67, 0},
{33, SIG_TONE_1_PRESENT},
{67, 0},
{33, SIG_TONE_1_PRESENT},
{67, 0},
{33, SIG_TONE_1_PRESENT},
{67, 0},
{33, SIG_TONE_1_PRESENT},
{67, 0},
{33, SIG_TONE_1_PRESENT},
{67, 0},
#endif
{100, SIG_TONE_1_PRESENT},
{100, SIG_TONE_1_PRESENT | SIG_TONE_2_PRESENT},
{100, SIG_TONE_2_PRESENT},
#if 0
{100, 0},
{100, SIG_TONE_2_PRESENT},
{100, SIG_TONE_1_PRESENT | SIG_TONE_2_PRESENT},
{100, SIG_TONE_1_PRESENT},
#endif
{0, 0}
};
s = (sig_tone_tx_state_t *) user_data;
tx_handler_callbacks++;
//printf("What - %d, duration - %d\n", what, duration);
if ((what & SIG_TONE_TX_UPDATE_REQUEST))
{
printf("Tx: update request\n");
/* The sig tone transmit side wants to know what to do next */
switch (tx_section)
printf("Tx: update request\n");
if (number_of_tones == 1)
{
case 0:
printf("33ms break - %d samples\n", ms_to_samples(33));
tx_section++;
sig_tone_tx_set_mode(s, SIG_TONE_1_PRESENT, ms_to_samples(33));
break;
case 1:
printf("67ms make - %d samples\n", ms_to_samples(67));
if (++dial_pulses == 9)
tx_section++;
else
tx_section--;
/*endif*/
sig_tone_tx_set_mode(s, 0, ms_to_samples(67));
break;
case 2:
tx_section++;
printf("600ms on - %d samples\n", ms_to_samples(600));
if (number_of_tones == 2)
sig_tone_tx_set_mode(s, SIG_TONE_2_PRESENT, ms_to_samples(600));
else
sig_tone_tx_set_mode(s, SIG_TONE_1_PRESENT, ms_to_samples(600));
break;
case 3:
printf("End of sequence\n");
sig_tone_tx_set_mode(s, SIG_TONE_1_PRESENT | SIG_TONE_TX_PASSTHROUGH, 0);
break;
time = pattern_1_tone[tx_section][0];
tone = pattern_1_tone[tx_section][1];
}
else
{
time = pattern_2_tones[tx_section][0];
tone = pattern_2_tones[tx_section][1];
}
if (time)
{
printf("Tx: [%04x] %s %s for %d samples (%dms)\n",
tone,
(tone & SIG_TONE_1_PRESENT) ? "on " : "off",
(tone & SIG_TONE_2_PRESENT) ? "on " : "off",
ms_to_samples(time),
time);
sig_tone_tx_set_mode(s, tone, ms_to_samples(time));
tx_section++;
}
else
{
printf("End of sequence\n");
}
/*endswitch*/
}
/*endif*/
}
@ -130,30 +222,46 @@ static void tx_handler(void *user_data, int what, int level, int duration)
static void rx_handler(void *user_data, int what, int level, int duration)
{
float ms;
int x;
rx_handler_callbacks++;
ms = 1000.0f*(float) duration/(float) SAMPLE_RATE;
printf("What - %d, duration - %d\n", what, duration);
printf("Rx: [%04x]", what);
x = what & SIG_TONE_1_PRESENT;
if ((what & SIG_TONE_1_CHANGE))
{
tone_1_present = what & SIG_TONE_1_PRESENT;
printf("Rx: tone 1 is %s after %d samples (%fms)\n", (tone_1_present) ? "on" : "off", duration, ms);
printf(" %s", (x) ? "on " : "off");
if (x == tone_1_present)
exit(2);
tone_1_present = x;
}
else
{
printf(" ---");
if (x != tone_1_present)
exit(2);
}
/*endif*/
x = what & SIG_TONE_2_PRESENT;
if ((what & SIG_TONE_2_CHANGE))
{
tone_2_present = what & SIG_TONE_2_PRESENT;
printf("Rx: tone 2 is %s after %d samples (%fms)\n", (tone_2_present) ? "on" : "off", duration, ms);
printf(" %s", (x) ? "on " : "off");
if (x == tone_2_present)
exit(2);
tone_2_present = x;
}
else
{
if (x != tone_2_present)
exit(2);
printf(" ---");
}
/*endif*/
printf(" after %d samples (%.3fms)\n", duration, ms);
}
/*- End of function --------------------------------------------------------*/
static void map_frequency_response(sig_tone_rx_state_t *s,
double f1,
double f2,
double f3,
double f4)
static void map_frequency_response(sig_tone_rx_state_t *s, template_t template[])
{
int16_t buf[SAMPLES_PER_CHUNK];
int i;
@ -163,12 +271,16 @@ static void map_frequency_response(sig_tone_rx_state_t *s,
swept_tone_state_t *swept;
double freq;
double gain;
int template_entry;
FILE *file;
/* Things like noise don't highlight the frequency response of the high Q notch
very well. We use a slowly swept frequency to check it. */
printf("Frequency response test\n");
sig_tone_rx_set_mode(s, SIG_TONE_RX_PASSTHROUGH | SIG_TONE_RX_FILTER_TONE, 0);
swept = swept_tone_init(NULL, 200.0f, 3900.0f, -10.0f, 120*SAMPLE_RATE, 0);
template_entry = 0;
file = fopen("sig_tone_notch", "wb");
for (;;)
{
if ((len = swept_tone(swept, buf, SAMPLES_PER_CHUNK)) <= 0)
@ -188,22 +300,43 @@ static void map_frequency_response(sig_tone_rx_state_t *s,
gain = 10.0*log10(sumout/sumin);
else
gain = 0.0;
printf("%7.1f Hz %f dBm0\n", freq, gain);
if (gain > 0.0
||
(freq < f1 && gain < -1.0)
||
(freq > f2 && freq < f3 && gain > -30.0)
||
(freq > f4 && gain < -1.0))
printf("%7.1f Hz %.3f dBm0 < %.3f dBm0 < %.3f dBm0\n",
freq,
template[template_entry].min_level,
gain,
template[template_entry].max_level);
if (file)
{
fprintf(file,
"%7.1f Hz %.3f dBm0 < %.3f dBm0 < %.3f dBm0\n",
freq,
template[template_entry].min_level,
gain,
template[template_entry].max_level);
}
/*endif*/
if (gain < template[template_entry].min_level || gain > template[template_entry].max_level)
{
printf("Expected: %.3f dBm0 to %.3f dBm0\n",
template[template_entry].min_level,
template[template_entry].max_level);
printf(" Failed\n");
exit(2);
}
/*endif*/
if (freq > template[template_entry].freq)
template_entry++;
}
/*endfor*/
swept_tone_free(swept);
if (file)
{
fclose(file);
if (use_gui)
plot_frequency_response();
/*endif*/
}
/*endif*/
printf(" Passed\n");
}
/*- End of function --------------------------------------------------------*/
@ -256,16 +389,17 @@ static void speech_immunity_tests(sig_tone_rx_state_t *s)
}
/*- End of function --------------------------------------------------------*/
static void level_and_ratio_tests(sig_tone_rx_state_t *s, double pitch)
static void level_and_ratio_tests(sig_tone_rx_state_t *s, double pitch[2])
{
awgn_state_t noise_source;
int32_t phase_rate;
uint32_t phase;
int32_t phase_rate[2];
uint32_t phase[2];
int16_t gain;
int16_t amp[SAMPLE_RATE];
int i;
int j;
int k;
int l;
float noise_level;
float tone_level;
power_meter_t noise_meter;
@ -273,9 +407,12 @@ static void level_and_ratio_tests(sig_tone_rx_state_t *s, double pitch)
int16_t noise;
int16_t tone;
printf("Acceptable level and ratio test\n");
phase = 0;
phase_rate = dds_phase_rate(pitch);
printf("Acceptable level and ratio test - %.2f Hz + %.2f Hz\n", pitch[0], pitch[1]);
for (l = 0; l < 2; l++)
{
phase[l] = 0;
phase_rate[l] = (pitch[l] != 0.0) ? dds_phase_rate(pitch[l]) : 0;
}
for (k = -25; k > -60; k--)
{
noise_level = k;
@ -293,7 +430,9 @@ static void level_and_ratio_tests(sig_tone_rx_state_t *s, double pitch)
for (i = 0; i < SAMPLES_PER_CHUNK; i++)
{
noise = awgn(&noise_source);
tone = dds_mod(&phase, phase_rate, gain, 0);
tone = dds_mod(&phase[0], phase_rate[0], gain, 0);
if (phase_rate[1])
tone += dds_mod(&phase[1], phase_rate[1], gain, 0);
power_meter_update(&noise_meter, noise);
power_meter_update(&tone_meter, tone);
amp[i] = noise + tone;
@ -302,8 +441,10 @@ static void level_and_ratio_tests(sig_tone_rx_state_t *s, double pitch)
sig_tone_rx(s, amp, SAMPLES_PER_CHUNK);
if (rx_handler_callbacks)
{
printf("Hit at tone = %fdBm0, noise = %fdBm0\n", tone_level, noise_level);
printf("Noise = %fdBm0, tone = %fdBm0\n", power_meter_current_dbm0(&noise_meter), power_meter_current_dbm0(&tone_meter));
printf("Hit at tone = %.2fdBm0, noise = %.2fdBm0\n", tone_level, noise_level);
printf("Measured tone = %.2fdBm0, noise = %.2fdBm0\n", power_meter_current_dbm0(&tone_meter), power_meter_current_dbm0(&noise_meter));
if (rx_handler_callbacks != 1)
printf("Callbacks = %d\n", rx_handler_callbacks);
}
/*endif*/
tone_level += 1.0f;
@ -327,6 +468,7 @@ static void sequence_tests(sig_tone_tx_state_t *tx_state, sig_tone_rx_state_t *r
int tx_samples;
printf("Signalling sequence test\n");
tx_section = 0;
if ((outhandle = sf_open_telephony_write(OUT_FILE_NAME, 2)) == NULL)
{
fprintf(stderr, " Cannot create audio file '%s'\n", OUT_FILE_NAME);
@ -335,12 +477,14 @@ static void sequence_tests(sig_tone_tx_state_t *tx_state, sig_tone_rx_state_t *r
/*endif*/
awgn_init_dbm0(&noise_source, 1234567, -20.0f);
for (sampleno = 0; sampleno < 60000; sampleno += SAMPLES_PER_CHUNK)
sig_tone_tx_set_mode(tx_state, SIG_TONE_1_PRESENT | SIG_TONE_2_PRESENT | SIG_TONE_TX_PASSTHROUGH, 0);
sig_tone_rx_set_mode(rx_state, SIG_TONE_RX_PASSTHROUGH, 0);
for (sampleno = 0; sampleno < 4000; sampleno += SAMPLES_PER_CHUNK)
{
if (sampleno == 8000)
if (sampleno == 800)
{
/* 100ms seize */
printf("100ms seize - %d samples\n", ms_to_samples(100));
printf("Tx: [0000] off off for %d samples (%dms)\n", ms_to_samples(100), 100);
dial_pulses = 0;
sig_tone_tx_set_mode(tx_state, 0, ms_to_samples(100));
}
@ -381,24 +525,40 @@ int main(int argc, char *argv[])
sig_tone_tx_state_t tx_state;
sig_tone_rx_state_t rx_state;
codec_munge_state_t *munge;
double f1;
double f2;
double fc;
double f3;
double f4;
double fc[2];
int i;
template_t template[10];
int opt;
use_gui = FALSE;
while ((opt = getopt(argc, argv, "g")) != -1)
{
switch (opt)
{
case 'g':
use_gui = TRUE;
break;
default:
//usage();
exit(2);
break;
}
}
for (type = 1; type <= 3; type++)
{
sampleno = 0;
tone_1_present = 0;
tone_2_present = 0;
tx_section = 0;
munge = NULL;
f1 =
f2 =
fc =
f3 =
f4 = 0.0;
for (i = 0; i < 10; i++)
{
template[i].freq = 0.0;
template[i].min_level = 0.0;
template[i].max_level = 0.0;
}
fc[0] =
fc[1] = 0.0;
switch (type)
{
case 1:
@ -407,11 +567,33 @@ int main(int argc, char *argv[])
sig_tone_tx_init(&tx_state, SIG_TONE_2280HZ, tx_handler, &tx_state);
sig_tone_rx_init(&rx_state, SIG_TONE_2280HZ, rx_handler, &rx_state);
number_of_tones = 1;
f1 = 2280.0 - 200.0;
f2 = 2280.0 - 20.0;
fc = 2280.0;
f3 = 2280.0 + 20.0;
f4 = 2280.0 + 200.0;
fc[0] = 2280.0;
/* From BTNR 181 2.3.3.1 */
template[0].freq = 1150.0;
template[0].min_level = -0.2;
template[0].max_level = 0.0;
template[1].freq = 1880.0;
template[1].min_level = -0.5;
template[1].max_level = 0.0;
template[2].freq = 2080.0;
template[2].min_level = -5.0;
template[2].max_level = 0.0;
template[3].freq = 2280.0 - 20.0;
template[3].min_level = -99.0;
template[3].max_level = 0.0;
template[4].freq = 2280.0 + 20.0;
template[4].min_level = -99.0;
template[4].max_level = -30.0;
template[5].freq = 2480.0;
template[5].min_level = -99.0;
template[5].max_level = 0.0;
template[6].freq = 2680.0;
template[6].min_level = -5.0;
template[6].max_level = 0.0;
template[7].freq = 4000.0;
template[7].min_level = -0.5;
template[7].max_level = 0.0;
break;
case 2:
printf("2600Hz tests.\n");
@ -419,11 +601,23 @@ int main(int argc, char *argv[])
sig_tone_tx_init(&tx_state, SIG_TONE_2600HZ, tx_handler, &tx_state);
sig_tone_rx_init(&rx_state, SIG_TONE_2600HZ, rx_handler, &rx_state);
number_of_tones = 1;
f1 = 2600.0 - 200.0;
f2 = 2600.0 - 20.0;
fc = 2600.0;
f3 = 2600.0 + 20.0;
f4 = 2600.0 + 200.0;
fc[0] = 2600.0;
template[0].freq = 2600.0 - 200.0;
template[0].min_level = -1.0;
template[0].max_level = 0.0;
template[1].freq = 2600.0 - 20.0;
template[1].min_level = -99.0;
template[1].max_level = 0.0;
template[2].freq = 2600.0 + 20.0;
template[2].min_level = -99.0;
template[2].max_level = -30.0;
template[3].freq = 2600.0 + 200.0;
template[3].min_level = -99.0;
template[3].max_level = 0.0;
template[4].freq = 4000.0;
template[4].min_level = -1.0;
template[4].max_level = 0.0;
break;
case 3:
printf("2400Hz/2600Hz tests.\n");
@ -431,21 +625,36 @@ int main(int argc, char *argv[])
sig_tone_tx_init(&tx_state, SIG_TONE_2400HZ_2600HZ, tx_handler, &tx_state);
sig_tone_rx_init(&rx_state, SIG_TONE_2400HZ_2600HZ, rx_handler, &rx_state);
number_of_tones = 2;
f1 = 2400.0 - 200.0;
f2 = 2400.0 - 20.0;
fc = 2400.0;
f3 = 2400.0 + 20.0;
f4 = 2400.0 + 200.0;
fc[0] = 2400.0;
fc[1] = 2600.0;
template[0].freq = 2400.0 - 200.0;
template[0].min_level = -1.0;
template[0].max_level = 0.0;
template[1].freq = 2400.0 - 20.0;
template[1].min_level = -99.0;
template[1].max_level = 0.0;
template[2].freq = 2400.0 + 20.0;
template[2].min_level = -99.0;
template[2].max_level = -30.0;
template[3].freq = 2600.0 - 20.0;
template[3].min_level = -99.0;
template[3].max_level = 0.0;
template[4].freq = 2600.0 + 20.0;
template[4].min_level = -99.0;
template[4].max_level = -30.0;
template[5].freq = 2600.0 + 200.0;
template[5].min_level = -99.0;
template[5].max_level = 0.0;
template[6].freq = 4000.0;
template[6].min_level = -1.0;
template[6].max_level = 0.0;
break;
}
/*endswitch*/
/* Set to the default on hook condition */
map_frequency_response(&rx_state, f1, f2, f3, f4);
map_frequency_response(&rx_state, template);
speech_immunity_tests(&rx_state);
level_and_ratio_tests(&rx_state, fc);
sig_tone_tx_set_mode(&tx_state, SIG_TONE_1_PRESENT | SIG_TONE_2_PRESENT | SIG_TONE_TX_PASSTHROUGH, 0);
sig_tone_rx_set_mode(&rx_state, SIG_TONE_RX_PASSTHROUGH, 0);
sequence_tests(&tx_state, &rx_state, munge);
}
/*endfor*/