/* * util.c * * some general memory functions * * a Net::DNS like library for C * * (c) NLnet Labs, 2004-2006 * * See the file LICENSE for the license */ #include #include #include #include #ifdef _MSC_VER #include #else #include #endif #include #include #ifndef _MSC_VER #include #else #include #endif #include #ifdef HAVE_SSL #include #endif /* put this here tmp. for debugging */ void xprintf_rdf(ldns_rdf *rd) { /* assume printable string */ fprintf(stderr, "size\t:%u\n", (unsigned int)ldns_rdf_size(rd)); fprintf(stderr, "type\t:%u\n", (unsigned int)ldns_rdf_get_type(rd)); fprintf(stderr, "data\t:[%.*s]\n", (int)ldns_rdf_size(rd), (char*)ldns_rdf_data(rd)); } void xprintf_rr(ldns_rr *rr) { /* assume printable string */ uint16_t count, i; count = ldns_rr_rd_count(rr); for(i = 0; i < count; i++) { fprintf(stderr, "print rd %u\n", (unsigned int) i); xprintf_rdf(rr->_rdata_fields[i]); } } void xprintf_hex(uint8_t *data, size_t len) { size_t i; for (i = 0; i < len; i++) { if (i > 0 && i % 20 == 0) { printf("\t; %u - %u\n", (unsigned int) i - 19, (unsigned int) i); } printf("%02x ", (unsigned int) data[i]); } printf("\n"); } ldns_lookup_table * ldns_lookup_by_name(ldns_lookup_table *table, const char *name) { while (table->name != NULL) { if (strcasecmp(name, table->name) == 0) return table; table++; } return NULL; } ldns_lookup_table * ldns_lookup_by_id(ldns_lookup_table *table, int id) { while (table->name != NULL) { if (table->id == id) return table; table++; } return NULL; } int ldns_get_bit(uint8_t bits[], size_t index) { /* * The bits are counted from left to right, so bit #0 is the * left most bit. */ return (int) (bits[index / 8] & (1 << (7 - index % 8))); } int ldns_get_bit_r(uint8_t bits[], size_t index) { /* * The bits are counted from right to left, so bit #0 is the * right most bit. */ return (int) bits[index / 8] & (1 << (index % 8)); } void ldns_set_bit(uint8_t *byte, int bit_nr, bool value) { if (bit_nr >= 0 && bit_nr < 8) { if (value) { *byte = *byte | (0x01 << bit_nr); } else { *byte = *byte & ~(0x01 << bit_nr); } } } int ldns_hexdigit_to_int(char ch) { switch (ch) { case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; case 'a': case 'A': return 10; case 'b': case 'B': return 11; case 'c': case 'C': return 12; case 'd': case 'D': return 13; case 'e': case 'E': return 14; case 'f': case 'F': return 15; default: return -1; } } char ldns_int_to_hexdigit(int i) { switch (i) { case 0: return '0'; case 1: return '1'; case 2: return '2'; case 3: return '3'; case 4: return '4'; case 5: return '5'; case 6: return '6'; case 7: return '7'; case 8: return '8'; case 9: return '9'; case 10: return 'a'; case 11: return 'b'; case 12: return 'c'; case 13: return 'd'; case 14: return 'e'; case 15: return 'f'; default: abort(); } } int ldns_hexstring_to_data(uint8_t *data, const char *str) { size_t i; if (!str || !data) { return -1; } if (strlen(str) % 2 != 0) { return -2; } for (i = 0; i < strlen(str) / 2; i++) { data[i] = 16 * (uint8_t) ldns_hexdigit_to_int(str[i*2]) + (uint8_t) ldns_hexdigit_to_int(str[i*2 + 1]); } return (int) i; } const char * ldns_version(void) { return (char*)LDNS_VERSION; } /* Number of days per month (except for February in leap years). */ static const int mdays[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; static int is_leap_year(int year) { return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0); } static int leap_days(int y1, int y2) { --y1; --y2; return (y2/4 - y1/4) - (y2/100 - y1/100) + (y2/400 - y1/400); } /* * Code adapted from Python 2.4.1 sources (Lib/calendar.py). */ time_t mktime_from_utc(const struct tm *tm) { int year = 1900 + tm->tm_year; time_t days = 365 * ((time_t) year - 1970) + leap_days(1970, year); time_t hours; time_t minutes; time_t seconds; int i; for (i = 0; i < tm->tm_mon; ++i) { days += mdays[i]; } if (tm->tm_mon > 1 && is_leap_year(year)) { ++days; } days += tm->tm_mday - 1; hours = days * 24 + tm->tm_hour; minutes = hours * 60 + tm->tm_min; seconds = minutes * 60 + tm->tm_sec; return seconds; } /** * Init the random source * applications should call this if they need entropy data within ldns * If openSSL is available, it is automatically seeded from /dev/urandom * or /dev/random * * If you need more entropy, or have no openssl available, this function * MUST be called at the start of the program * * If openssl *is* available, this function just adds more entropy **/ int ldns_init_random(FILE *fd, unsigned int size) { /* if fp is given, seed srandom with data from file otherwise use /dev/urandom */ FILE *rand_f; uint8_t *seed; size_t read = 0; unsigned int seed_i; struct timeval tv; /* we'll need at least sizeof(unsigned int) bytes for the standard prng seed */ if (size < (unsigned int) sizeof(seed_i)){ size = (unsigned int) sizeof(seed_i); } seed = LDNS_XMALLOC(uint8_t, size); if(!seed) { return 1; } if (!fd) { if ((rand_f = fopen("/dev/urandom", "r")) == NULL) { /* no readable /dev/urandom, try /dev/random */ if ((rand_f = fopen("/dev/random", "r")) == NULL) { /* no readable /dev/random either, and no entropy source given. we'll have to improvise */ for (read = 0; read < size; read++) { gettimeofday(&tv, NULL); seed[read] = (uint8_t) (tv.tv_usec % 256); } } else { read = fread(seed, 1, size, rand_f); } } else { read = fread(seed, 1, size, rand_f); } } else { rand_f = fd; read = fread(seed, 1, size, rand_f); } if (read < size) { LDNS_FREE(seed); return 1; } else { #ifdef HAVE_SSL /* Seed the OpenSSL prng (most systems have it seeded automatically, in that case this call just adds entropy */ RAND_seed(seed, (int) size); #else /* Seed the standard prng, only uses the first * unsigned sizeof(unsiged int) bytes found in the entropy pool */ memcpy(&seed_i, seed, sizeof(seed_i)); srandom(seed_i); #endif LDNS_FREE(seed); } if (!fd) { if (rand_f) fclose(rand_f); } return 0; } /** * Get random number. * */ uint16_t ldns_get_random(void) { uint16_t rid = 0; #ifdef HAVE_SSL if (RAND_bytes((unsigned char*)&rid, 2) != 1) { rid = (uint16_t) random(); } #else rid = (uint16_t) random(); #endif return rid; } /* * BubbleBabble code taken from OpenSSH * Copyright (c) 2001 Carsten Raskgaard. All rights reserved. */ char * ldns_bubblebabble(uint8_t *data, size_t len) { char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' }; char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm', 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' }; size_t i, j = 0, rounds, seed = 1; char *retval; rounds = (len / 2) + 1; retval = LDNS_XMALLOC(char, rounds * 6); if(!retval) return NULL; retval[j++] = 'x'; for (i = 0; i < rounds; i++) { size_t idx0, idx1, idx2, idx3, idx4; if ((i + 1 < rounds) || (len % 2 != 0)) { idx0 = (((((size_t)(data[2 * i])) >> 6) & 3) + seed) % 6; idx1 = (((size_t)(data[2 * i])) >> 2) & 15; idx2 = ((((size_t)(data[2 * i])) & 3) + (seed / 6)) % 6; retval[j++] = vowels[idx0]; retval[j++] = consonants[idx1]; retval[j++] = vowels[idx2]; if ((i + 1) < rounds) { idx3 = (((size_t)(data[(2 * i) + 1])) >> 4) & 15; idx4 = (((size_t)(data[(2 * i) + 1]))) & 15; retval[j++] = consonants[idx3]; retval[j++] = '-'; retval[j++] = consonants[idx4]; seed = ((seed * 5) + ((((size_t)(data[2 * i])) * 7) + ((size_t)(data[(2 * i) + 1])))) % 36; } } else { idx0 = seed % 6; idx1 = 16; idx2 = seed / 6; retval[j++] = vowels[idx0]; retval[j++] = consonants[idx1]; retval[j++] = vowels[idx2]; } } retval[j++] = 'x'; retval[j++] = '\0'; return retval; }