
tpl User Guide
i

tpl User Guide

tpl User Guide
ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

1.5 February 2010 TDH

tpl User Guide
iii

Contents

1 Overview 1

1.1 Serialization in C. .1

1.2 Uses for tpl .1

1.3 Expressing type. .1

1.4 The tpl image. .1

1.4.1 What’s in a tpl image?. 1

1.4.2 No framing needed. 1

1.4.3 Data portability. 1

1.5 XML and Perl. .2

1.5.1 XML .2

1.5.2 Perl .2

1.6 Platforms .2

1.7 BSD licensed. .2

1.8 Download .2

1.9 Getting help. .2

1.10 Resources. .2

2 Build and install 3

2.1 As source .3

2.2 As a library .3

2.2.1 Test suite. .3

2.3 On Windows .3

2.3.1 DLL .3

2.3.2 Non-DLL usage . 3

2.3.3 MinGW/Cygwin . 3

3 API concepts 4

3.1 Order of functions. .4

3.2 Format string .4

3.2.1 Explicit sizes. .5

The trouble with double . 5

3.3 Arrays .5

3.3.1 Fixed-length vs. Variable-length arrays. 5

3.3.2 Index numbers. 6

Special index number 0. 6

3.4 Integers .6

3.4.1 Multi-dimensional arrays. 7

tpl User Guide
iv

3.5 Strings. .7

3.5.1 char* vs char[]. 8

3.5.2 Arrays of strings. 8

3.6 Binary buffers. .9

3.7 Structures. .9

3.7.1 Structure arrays. .10

3.7.2 Nested structures. .10

3.8 Linked lists .10

4 API 11

4.1 tpl_map .11

4.2 tpl_pack. .11

4.2.1 Index number 0. .12

4.2.2 Variable-length arrays. .12

Adding elements to an array. .12

Zero-length arrays are ok. .12

Packing nested arrays. .12

4.3 tpl_dump .13

4.4 tpl_load .14

4.4.1 TPL_EXCESS_OK. .15

4.5 tpl_unpack. .15

4.5.1 Index number 0. .15

4.5.2 Variable-length arrays. .15

Unpacking elements from an array. .15

Array length .16

Unpacking nested arrays. .16

4.6 tpl_free .16

4.7 tpl_Alen .16

4.8 tpl_peek. .17

4.8.1 Format peek .17

4.8.2 Array length peek. .17

4.8.3 Data peek. .17

Structure peek .18

4.9 tpl_jot .18

4.10 tpl_hook. .18

4.10.1 The oops hook. .18

4.10.2 The fatal hook .19

4.11 tpl_gather. .19

4.11.1 TPL_GATHER_BLOCKING. .20

4.11.2 TPL_GATHER_NONBLOCKING. .20

Typical Usage. .21

4.11.3 TPL_GATHER_MEM. .21

tpl User Guide
1 / 21

1 Overview

1.1 Serialization in C

Tpl is a library for serializing C data. The data is stored in its natural binary form. The API is small and tries to stay "out of the
way". Tpl can serialize many C data types, including structures.

1.2 Uses for tpl

Tpl makes a convenient file format. For example, suppose a program needs to store a list of user names and ids. This can be ex-
pressed using the format stringA(si) . If the program needs two such lists (say, one for regular users and one for administrators)
this could be expressed asA(si)A(si) . It is easy to read and write this kind of structured data using tpl.

Tpl can also be used as an IPC message format. It handles byte order issues and deframing individual messages off of a stream
automatically.

1.3 Expressing type

The "data type" of a tpl is explicitly stated as a format string. There is never any ambiguity about the type of data stored in a tpl.
Some examples:

• A(is) is a variable-length array of integer-string pairs

• A(is)A(is) are two such arrays, completely independent of one another

• S(ci) is a structure containing a char and integer

• S(ci)# is a fixed-length array of the latter structure

• A(A(i)) is a nested array, that is, an array of integer arrays

1.4 The tpl image

A tpl image is the serialized form of a tpl, stored in a memory buffer or file, or written to a file descriptor.

1.4.1 What’s in a tpl image?

There is no need to understand the internal structure of the tpl image. But for the curious, the image is a strictly defined binary
buffer having two sections, a header and the data. The header encodes the length of the image, its format string, endian order and
other flags. The data section contains the packed data.

1.4.2 No framing needed

A property of the tpl image is that consecutive images can be written to a stream without requiring any delimiter between them.
The reader making use oftpl_gather (or tpl_load in TPL_FDmode) will obtain exactly one tpl image at a time. Therefore
tpl images can be used as an IPC message format without any higher-level framing protocol.

1.4.3 Data portability

A tpl image generated on one kind of CPU will generally be portable to other CPU types when tpl is used properly. This may be a
surprise considering that tpl is a binary format. But tpl has been carefully designed to make this work. Eachformat characterhas
an associated explicitly-sized type. For integer and floating point types, whose "endian" or byte-order convention varies from one
CPU to another, tpl automatically and transparently corrects the endian order (if needed) during the unpacking process. Floating
point numbers present their ownspecial difficulties. No guarantees are made with regard to floating point portability.That said,
because many modern CPU’s use IEEE 754 floating point representation, data is likely to be portable among them.

tpl User Guide
2 / 21

1.5 XML and Perl

Note: Thetplxml utility and the Perl module are currently unsupported in tpl 1.5.

1.5.1 XML

While a tpl image is a binary entity, you can view any tpl image in XML format using the includedtplxml utility, located in
the lang/perl directory.

tplxml file.tpl > file.xml
tplxml file.xml > file.tpl

The utility is bidirectional, as shown. The file extension is not important;tplxml inspects its input to see if it’s tpl or XML.
You can also pipe data into it instead of giving it a filename. Thetplxml utility is slow. Its purpose is two-fold: debugging
(manual inspection of the data in a tpl), and interoperability with XML-based programs. The resulting XML is often ten times
the size of the original binary tpl image.

1.5.2 Perl

There is a Perl module inlang/perl/Tpl.pm . ThePerl API is convenient for writing Perl scripts that interoperate with C
programs, and need to pass structured data back and forth. It is written in pure Perl.

1.6 Platforms

The tpl software was developed for POSIX systems and has been tested on 32- and 64-bit platforms including:

• Linux

• Solaris

• Mac OS X

• OpenBSD

• Windows using Visual Studio 2008 or 2010, or Cygwin or MinGW

1.7 BSD licensed

This software is made available under therevised BSD license. It is free and open source.

1.8 Download

Please follow the link to download on thetpl website.

1.9 Getting help

If you need help, you are welcome to email the author atthanson@users.sourceforge.net.

1.10 Resources

News
The author has a news feed forsoftware updates(RSS).

file:perl.html
file:license.html
http://tpl.sourceforge.net
mailto:thanson@users.sourceforge.net
http://troydhanson.wordpress.com/feed/

tpl User Guide
3 / 21

2 Build and install

Tpl has no dependencies on libraries other than the system C library. You can simply copy the tpl source into your project, so
you have no dependencies. Alternatively, you can build tpl as a library and link it to your program.

2.1 As source

The simplest way to use tpl is to copy the source filestpl.h andtpl.c (from thesrc/ directory) right into your project, and
build them with the rest of your source files. No special compiler flags are required.

2.2 As a library

Alternatively, to build tpl as a library, from the top-level directory, run:

./configure
make
make install

This installs a static librarylibtpl.a and a shared library (e.g.,libtpl.so), if your system supports them, in stan-
dard places. The installation directory can be customized using./configure --prefix=/some/directory . Run
configure --help for further options.

2.2.1 Test suite

You can compile and run the built-in test suite by running:

cd tests/
make

2.3 On Windows

2.3.1 DLL

On the tpl home page, a Visual Studio 2008 solution package is available for download. This zip file contains pre-built 32- and
64-bit versions of tpl as a DLL. If you like, you can build the DLL yourself using VS2008 or VS2010 (the free Express Edition
is sufficient) by opening the solution file and choosing Build Solution.

2.3.2 Non-DLL usage

Alternatively, tpl can be used directly (instead of as a DLL) by compiling the tpl sources right into your program. To do this,
add tpl.c , tpl.h , win/mman.h andwin/mmap.c to your program’s source and header files and add the preprocessor
definitionTPL_NOLIB.

2.3.3 MinGW/Cygwin

Prior to tpl release 1.5, using tpl on Windows required building it with MinGW or Cygwin. This is no longer necessary. If you
want to build it that way anyway, use the non-Windows (i.e. tar.bz2) tpl download and follow the "configure; make; make install"
approach.

tpl User Guide
4 / 21

3 API concepts

To use tpl, you need to know the order in which to call the API functions, and the background concepts of format string, arrays
and index numbers.

3.1 Order of functions

Creating a tpl is always the first step, and freeing it is the last step. In between, you either pack and dump the tpl (if you’re
serializing data) or you load a tpl image and unpack it (if you’re deserializing data).

Table 1: Order of usage

Step If you’re serializing. . .
If you’re

deserializing. . .
1. tpl_map() tpl_map()
2. tpl_pack() tpl_load()
3. tpl_dump() tpl_unpack()
4. tpl_free() tpl_free()

3.2 Format string

When a tpl is created usingtpl_map() , its data type is expressed as a format string. Each character in the format string has an
associated argument of a specific type. For example, this is how a format string and its arguments are passed in totpl_map :

tpl_node *tn;
char c;
int i[10];
tn = tpl_map("ci#", &c, i, 10); /* ci# is our format string */

Table 2: Supported format characters

Type Description Required argument type
j 16-bit signed int int16_t* or equivalent
v 16-bit unsigned int uint16_t* or equivalent
i 32-bit signed int int32_t* or equivalent
u 32-bit unsigned int uint32_t* or equivalent
I 64-bit signed int int64_t* or equivalent
U 64-bit unsigned int uint64_t* or equivalent
c character (byte) char*
s string char**
f 64-bit double precision float double* (varies by platform)

#
array length; modifies preceding
iujvIUcsf or S(...)

int

B binary buffer (arbitrary-length) tpl_bin*
S structure (. . .) struct *
$ nested structure (. . .) none
A array (. . .) none

tpl User Guide
5 / 21

3.2.1 Explicit sizes

The sizes of data types such aslong and double vary by platform. This must be kept in mind because most tpl format
characters require a pointer argument to a specific-sized type, listed above. You can use explicit-sized types such asint32_t
(defined ininttypes.h) in your program if you find this helpful.

The trouble with double

Unfortunately there are no standard explicit-sized floating-point types-- nofloat64_t , for example. If you plan to serialize
double on your platform using tpl’sf format character, first be sure that yourdouble is 64 bits. Second, if you plan to
deserialize it on a different kind of CPU, be sure that both CPU’s use the same floating-point representation such as IEEE 754.

3.3 Arrays

Arrays come in two kinds:fixed-lengthandvariable-length arrays. Intuitively, they can be thought of like conventional C arrays
and linked lists. In general, use fixed-length arrays if possible, and variable-length arrays if necessary. The variable-length arrays
support more complex data types, and give or receive the elements to your program one by one.

3.3.1 Fixed-length vs. Variable-length arrays

Notation
Fixed-length arrays are denoted likei# (a simple type followed by one or more# signs), but variable-length arrays are
denoted likeA(i) .

Element handling
All the elements of a fixed-length array are packed or unpacked at once. But the elements of a variable-length array are
packed or unpacked one by one.

Array length
The number of elements in a fixed-length array is specified before use-- before any data is packed. But variable-length
arrays do not have a fixed element count. They can have any number of elements packed into them. When unpacking a
variable-length array, they are unpacked one by one until they are exhausted.

Element types
Elements of fixed-length arrays can be the integer, byte, double, string types or structures. (This excludes format characters
BA). Fixed-length arrays can also be multi-dimensional likei## . Variable-length arrays can have simple or complex
elements-- for example, an array of intsA(i) , an array of int/double pairsA(if) , or even nested arrays likeA(A(if)) .

Before explaining all the concepts, it’s illustrative to see how both kinds of arrays are used. Let’s pack the integers 0 through 9
both ways.

Example 3.1Packing 0-9 as a fixed-length array

#include " tpl . h"
int main () {

tpl_node * tn ;
int x[] = {0,1,2,3,4,5,6,7,8,9};

tn = tpl_map (" i #", x, 10);
tpl_pack (tn ,0); /* pack all 10 elements at once */
tpl_dump (tn , TPL_FILE , "/ tmp / fixed . tpl ");
tpl_free (tn);

}

Note that the length of the fixed-length array (10) was passed as an argument totpl_map() . The corresponding unpacking
exampleis listed further below. Now let’s see how we would pack 0-9 as a variable-length array:

tpl User Guide
6 / 21

Example 3.2Packing 0-9 as a variable-length array

#include " tpl . h"
int main () {

tpl_node * tn ;
int x;

tn = tpl_map (" A(i)", & x);
for (x = 0; x < 10; x++) tpl_pack (tn ,1); /* pack one element at a time */
tpl_dump (tn , TPL_FILE , "/ tmp / variable . tpl ");
tpl_free (tn);

}

Notice how we calledtpl_pack in a loop, once for each element 0-9. Again, there is a corresponding unpackingexample
shown later in the guide. You might also notice that this time, we passed 1 as the final argument to tpl_pack. This is an index
number designating which variable-length array we’re packing. In this case, there is only one.

3.3.2 Index numbers

Index numbers identify a particular variable-length array in the format string. EachA(...) in a format string has its own index
number. The index numbers are assigned left-to-right starting from 1. Examples:

A(i) /* index number 1 */
A(i)A(i) /* index numbers 1 and 2 */
A(A(i)) /* index numbers 1 and 2 (order is independent of nesting) */

Special index number 0

The special index number 0 designates all the format characters that are not inside anA(...) . Examples of what index 0 does
(and does not) designate:

S(ius) /* index 0 designates the whole thing */
iA(c)u /* index 0 designates the i and the u */
c#A(i)S(ci) /* index 0 designates the c# and the S(ci) */

An index number is passed totpl_pack andtpl_unpack to specify which variable-length array (or non-array, in the case
of index number 0) to act upon.

3.4 Integers

The array examplesabovedemonstrated how integers could be packed. We’ll show some further examples here of unpacking
integers and dealing with multi-dimensional arrays. The same program could be used to demonstrate working with byte, 16-bit
shorts, 32-bit or 64-bit signed and unsigned integers with only a change to the data type and the format character.

Example 3.3Unpacking 0-9 from a fixed-length array

#include " tpl . h"
int main () {

tpl_node * tn ;
int x[10];

tn = tpl_map (" i #", x, 10);
tpl_load (tn , TPL_FILE , "/ tmp / fixed . tpl ");
tpl_unpack (tn ,0); /* unpack all 10 elements at once */
tpl_free (tn);
/* now do something with x[0]... x[9].. (not shown */

}

tpl User Guide
7 / 21

For completeness, let’s also see how to unpack a variable-length integer array.

Example 3.4Unpacking 0-9 from a variable-length array

#include " tpl . h"
int main () {

tpl_node * tn ;
int x;

tn = tpl_map (" A(i)", & x);
tpl_load (tn , TPL_FILE , "/ tmp / variable . tpl ");
while (tpl_unpack (tn ,1) > 0) printf ("% d\ n", x); /* unpack one by one */
tpl_free (tn);

}

3.4.1 Multi-dimensional arrays

A multi-dimensional matrix of integers can be packed and unpacked the same way as any fixed-length array.

int xy[XDIM][YDIM];
...
tn = tpl_map("i##", xy, XDIM, YDIM);
tpl_pack(tn, 0);

This single call totpl_pack packs the entire matrix.

3.5 Strings

Tpl can serialize C strings. A different format is used forchar* vs. char[] as described below. Let’s look atchar* first:

Example 3.5Packing a string

#include " tpl . h"

int main () {
tpl_node * tn ;
char * s = " hello , world !";
tn = tpl_map (" s", & s);
tpl_pack (tn ,0); /* copies " hello , world !" into the tpl */
tpl_dump (tn , TPL_FILE ," string . tpl ");
tpl_free (tn);

}

Thechar* must point to a null-terminated string or be aNULLpointer.

When deserializing (unpacking) a C string, space for it will be allocated automatically, but you are responsible for freeing it
(unless it isNULL):

tpl User Guide
8 / 21

Example 3.6Unpacking a string

#include " tpl . h"

int main () {
tpl_node * tn ;
char * s;
tn = tpl_map (" s", & s);
tpl_load (tn , TPL_FILE ," string . tpl ");
tpl_unpack (tn ,0); /* allocates space , points s to " hello , world !" */
printf (" unpacked %s\ n", s);
free (s); /* our responsibility to free s */
tpl_free (tn);

}

3.5.1 char* vs char[]

Thes format character is only for use withchar* types. In the example above,s is achar* . If it had been achar s[14] ,
we would use the format charactersc# to pack or unpack it, as a fixed-length character array. (This unpacks the characters "in-
place", instead of into a dynamically allocated buffer). Also, a fixed-length buffer described byc# need not be null-terminated.

3.5.2 Arrays of strings

You can use fixed- or variable-length arrays of strings in tpl. An example of packing a fixed-length two-dimensional array of
strings is shown here.

char *labels[2][3] = { {"one", "two", "three"},
{"eins", "zwei", "drei" } };

tpl_node *tn;
tn = tpl_map("s##", labels, 2, 3);
tpl_pack(tn,0);
tpl_dump(tn,TPL_FILE,filename);
tpl_free(tn);

Later, when unpacking these strings, the programmer must remember to free them one by one, after they are no longer needed.

char *olabels[2][3];
int i,j;

tn = tpl_map("s##", olabels, 2, 3);
tpl_load(tn,TPL_FILE,filename);
tpl_unpack(tn,0);
tpl_free(tn);

for(i=0;i<2;i++) {
for(j=0;j<3;j++) {

printf("%s\n", olabels[i][j]);
free(olabels[i][j]);

}
}

tpl User Guide
9 / 21

3.6 Binary buffers

Packing an arbitrary-length binary buffer (tpl format characterB) makes use of thetpl_bin structure. You must declare this
structure and populate it with the address and length of the binary buffer to be packed.

Example 3.7Packing a binary buffer

#include " tpl . h"
#include <sys / time . h>

int main () {
tpl_node * tn ;
tpl_bin tb ;

/* we’ ll use a timeval as our guinea pig */
struct timeval tv ;
gettimeofday (& tv , NULL);

tn = tpl_map (" B", & tb);
tb . sz = sizeof (struct timeval); /* size of buffer to pack */
tb . addr = &tv ; /* address of buffer to pack */
tpl_pack (tn , 0);
tpl_dump (tn , TPL_FILE , " bin . tpl ");
tpl_free (tn);

}

When you unpack a binary buffer, tpl will automatically allocate it, and will populate yourtpl_bin structure with its address
and length. You are responsible for eventually freeing the buffer.

Example 3.8Unpacking a binary buffer

#include " tpl . h"

int main () {
tpl_node * tn ;
tpl_bin tb ;

tn = tpl_map (" B", & tb);
tpl_load (tn , TPL_FILE , " bin . tpl ");
tpl_unpack (tn , 0);
tpl_free (tn);

printf (" binary buffer of length %d at address %p\ n", tb . sz , tb . addr);
free (tb . addr); /* our responsibility to free it */

}

3.7 Structures

You can use tpl to pack and unpack structures, and arrays of structures.

struct ci {
char c;
int i;

};
struct ci s = {’a’, 1};

tpl User Guide
10 / 21

tn = tpl_map("S(ci)", &s); /* pass structure address */
tpl_pack(tn, 0);
tpl_dump(tn, TPL_FILE, "struct.tpl");
tpl_free(tn);

As shown, omit the individual arguments for the format characters inside the parenthesis. The exception is for fixed-length
arrays; whenS(...) contains a# character, its length argument is required:tpl_map("S(f#i)", &s, 10);

When using theS(...) format, the only characters allowed inside the parentheses areiujvcsfIU#$() .

3.7.1 Structure arrays

Arrays of structures are the same as simple arrays. Fixed- or variable- length arrays are supported.

struct ci sa[100], one;

tn = tpl_map("S(ci)#", sa, 100); /* fixed-length array of 100 structures */
tn = tpl_map("A(S(ci))", &one); /* variable-length array (one at a time)*/

The differences between fixed- and variable-length arrays are explained in theArrayssection.

3.7.2 Nested structures

When dealing with nested structures, the outermost structure uses theS format character, and the inner nested structures use the
$ format. Only theoutermoststructure’s address is given totpl_map .

struct inner_t {
char a;

}

struct outer_t {
char b;
struct inner_t i;

}

tpl_node *tn;
struct outer_t outer = {’b’, {’a’}};

tn = tpl_map("S(c$(c))", &outer);

Structures can nest to any level. Currently tpl does not support fixed-length array suffixes on inner structures. However the
outermost structure can have a length suffix even if it contains some nested structures.

3.8 Linked lists

While tpl has no specific data type for a linked list, the technique for packing them is illustrated here. First describe your list
element as a format string and then surround it withA(...) to describe it as variable-length array. Then, using a temporary
variable, iterate over each list element, copying it to the temporary variable and packing it.

struct element {
char c;
int i;
struct element *next;

}

tpl User Guide
11 / 21

struct element *list, *i, tmp;
tpl_node *tn;

/* add some elements to list.. (not shown)*/

tn = tpl_map("A(ci)", &tmp);
for(i = list; i != NULL; i=i->next) {

tmp = *i;
tpl_pack(tn, 1);

}
tpl_dump(tn,TPL_FILE,"list.tpl");
tpl_free(tn);

Unpacking is similar. Thefor loop is just replaced with:

while(tpl_unpack(tn,1) > 0) {
struct element *newelt = malloc(sizeof(struct element));
*newelt = tmp;
add_to_list(list, newelt);

}

As you can see, tpl does not reinstate the whole list at once-- just one element at a time. You need to link the elements manually.
A future release of tpl may supportpointer swizzlingto make this easier.

4 API

4.1 tpl_map

The only way to create a tpl is to calltpl_map() . The first argument is theformat string. This is followed by a list of arguments
as required by the particular characters in the format string. E.g,

tpl_node *tn;
int i;
tn = tpl_map("A(i)", &i);

The function creates a mapping between the items in the format string and the C program variables whose addresses are given.
Later, the C variables will be read or written as the tpl is packed or unpacked.

This function returns atpl_node* on success, orNULLon failure.

4.2 tpl_pack

The functiontpl_pack() packs data into a tpl. The arguments totpl_pack() are atpl_node* and anindex number.

tn = tpl_map("A(i)A(c)", &i, &c);
for(i=0; i<10; i++) tpl_pack(tn, 1); /* pack 0-9 into index 1 */
for(c=’a; c<=’z’; c++) tpl_pack(tn, 2); /* pack a-z into index 2 */

Data is copied when packed Every call totpl_pack() immediatelycopiesthe data being packed. Thus the program is
free to immediately overwrite or re-use the packed variables.

tpl User Guide
12 / 21

4.2.1 Index number 0

It is necessary to pack index number 0 only if the format string contains characters that are not inside anA(...) , such as thei
in the format stringiA(c) .

4.2.2 Variable-length arrays

Adding elements to an array

To add elements to a variable-length array, calltpl_pack() repeatedly. Each call adds another element to the array.

Zero-length arrays are ok

It’s perfectly acceptable to pack nothing into a variable-length array, resulting in a zero-length array.

Packing nested arrays

In a format string containing a nested, variable-length array, such asA(A(s)) , the inner, child array should be packed prior to
the parent array.

When you pack a parent array, a "snapshot" of the current child array is placed into the parent’s new element. Packing a parent
array also empties the child array. This way, you can pack new data into the child, then pack the parent again. This creates
distinct parent elements which each contain distinct child arrays.

Tip
When dealing with nested arrays like A(A(i)) , pack them from the "inside out" (child first), but unpack them from the "outside
in" (parent first).

The example below creates a tpl having the format stringA(A(c)) .

Example 4.1Packing nested arrays

#include " tpl . h"

int main () {
char c;
tpl_node * tn ;

tn = tpl_map (" A(A(c))", & c);

for (c=’ a’; c<’ c ’; c++) tpl_pack (tn ,2); /* pack child (twice) */
tpl_pack (tn , 1); /* pack parent */

for (c=’1’; c<’4’; c++) tpl_pack (tn ,2); /* pack child (three times) */
tpl_pack (tn , 1); /* pack parent */

tpl_dump (tn , TPL_FILE , " test40 . tpl ");
tpl_free (tn);

}

This creates a nested array in which the parent has two elements: the first element is the two-element nested arraya, b; and the
second element is the three-element nested array1, 2, 3. Thenested unpacking exampleshows how this tpl is unpacked.

tpl User Guide
13 / 21

4.3 tpl_dump

After packing a tpl,tpl_dump() is used to write the tpl image to a file, memory buffer or file descriptor. The corresponding
modes are shown below. A final mode is for querying the output size without actually performing the dump.

tpl User Guide
14 / 21

Write to. . . Usage
file tpl_dump(tn, TPL_FILE, "file.tpl");

file descriptor tpl_dump(tn, TPL_FD, 2);
memory tpl_dump(tn, TPL_MEM, &addr, &len);

caller’s memory
tpl_dump(tn, TPL_MEM|TPL_PREALLOCD,
buf, sizeof(buf));

just get size tpl_dump(tn, TPL_GETSIZE, &sz);

The first argument is thetpl_node* and the second is one of these constants:

TPL_FILE
Writes the tpl to a file whose name is given in the following argument. The file is created with permissions 664 (rw-rw-r--)
unless further restricted by the processumask.

TPL_FD
Writes the tpl to the file descriptor given in the following argument. The descriptor can be either blocking or non-blocking,
but will busy-loop if non-blocking and the contents cannot be written immediately.

TPL_MEM
Writes the tpl to a memory buffer. The following two arguments must be avoid** and asize_t* . The function will
allocate a buffer and store its address and length into these locations. The caller is responsible tofree() the buffer when
done using it.

TPL_MEM|TPL_PREALLOCD
Writes the tpl to a memory buffer that the caller has already allocated or declared. The following two arguments must be
a void* and asize_t specifying the buffer address and size respectively. (If the buffer is of insufficient size to receive
the tpl dump, the function will return -1). This mode can be useful in conjunction withtpl_load in TPL_EXCESS_OK
mode, as shownhere.

TPL_GETSIZE
This special mode does not actually dump the tpl. Instead it places the size that the dumpwouldrequire into theuint32_t
pointed to by the following argument.

The return value is 0 on success, or -1 on error.

Thetpl_dump() function does not free the tpl. Usetpl_free() to release the tpl’s resources when done.

Tip
If you want to store a series of tpl images, or transmit sequential tpl images over a socket (perhaps as messages to another
program), you can simply dump them sequentially without needing to add any delimiter for the individual tpl images. Tpl images
are internally delimited, so tpl_load will read just one at a time even if multiple images are contiguous.

4.4 tpl_load

This API function reads a previously-dumped tpl image from a file, memory buffer or file descriptor, and prepares it for subse-
quent unpacking. The format string specified in the preceding call totpl_map() will be cross-checked for equality with the
format string stored in the tpl image.

tn = tpl_map("A(i)", &i);
tpl_load(tn, TPL_FILE, "demo.tpl");

The first argument totpl_load() is thetpl_node* . The second argument is one of the constants:

TPL_FILE
Loads the tpl from the file named in the following argument. It is also possible to bitwise-OR this flag withTPL_EXCESS_OK
as explained below.

tpl User Guide
15 / 21

TPL_MEM
Loads the tpl from a memory buffer. The following two arguments must be avoid* and asize_t , specifying the buffer
address and size, respectively. The caller must not free the memory buffer until after freeing the tpl withtpl_free() .
(If the caller wishes to hand over responsibility for freeing the memory buffer, so that it’s automatically freed along with
the tpl whentpl_free() is called, the constantTPL_UFREEmay be bitwise-OR’d withTPL_MEMto achieve this).
Furthermore,TPL_MEMmay be bitwise-OR’d withTPL_EXCESS_OK, explained below.

TPL_FD
Loads the tpl from the file descriptor given in the following argument. The descriptor is read until one complete tpl image
is loaded; no bytes past the end of the tpl image will be read. The descriptor can be either blocking or non-blocking, but
will busy-loop if non-blocking and the contents cannot be read immediately.

During loading, the tpl image will be extensively checked for internal validity.

This function returns 0 on success or -1 on error.

4.4.1 TPL_EXCESS_OK

When reading a tpl image from a file or memory (but not from a file descriptor) the size of the file or memory buffer must exactly
equal that of the tpl image stored therein. In other words, no excess trailing data beyond the tpl image is permitted. The bit flag
TPL_EXCESS_OKcan be OR’d withTPL_MEMor TPL_FILE to relax this requirement.

A situation where this flag can be useful is in conjunction withtpl_dump in theTPL_MEM|TPL_PREALLOCDmode. In this
example, the program does not concern itself with the actual tpl size as long asLEN is sufficiently large.

char buf[LEN]; /* will store and read tpl images here */
...
tpl_dump(tn, TPL_MEM|TPL_PREALLOCD, buf, LEN);
...
tpl_load(tn, TPL_MEM|TPL_EXCESS_OK, buf, LEN);

4.5 tpl_unpack

The tpl_unpack() function unpacks data from the tpl. When data is unpacked, it is copied to the C program variables
originally specified intpl_map() . The first argument totpl_unpack is thetpl_node* for the tpl and the second argument
is anindex number.

tn = tpl_map("A(i)A(c)", &i, &c);
tpl_load(tn, TPL_FILE, "nested.tpl");
while (tpl_unpack(tn, 1) > 0) printf("i is %d\n", i); /* unpack index 1 */
while (tpl_unpack(tn, 2) > 0) printf("c is %c\n", c); /* unpack index 2 */

4.5.1 Index number 0

It is necessary to unpack index number 0 only if the format string contains characters that are not inside anA(...) , such as the
i in the format stringiA(c) .

4.5.2 Variable-length arrays

Unpacking elements from an array

For variable-length arrays, each call totpl_unpack() unpacks another element. The return value can be used to tell when
you’re done: if it’s positive, an element was unpacked; if it’s 0, nothing was unpacked because there are no more elements. A
negative retun value indicates an error (e.g. invalid index number). In this document, we usually unpack variable-length arrays
using awhile loop:

tpl User Guide
16 / 21

while(tpl_unpack(tn, 1) > 0) {
/* got another element */

}

Array length

When unpacking a variable-length array, it may be convenient to know ahead of time how many elements will need to be
unpacked. You can usetpl_Alen() to get this number.

Unpacking nested arrays

In a format string containing a nested variable-length array such asA(A(s)) , unpack the outer, parent array before unpacking
the child array.

When you unpack a parent array, it prepares the child array for unpacking. After unpacking the elements of the child array, the
program can repeat the process by unpacking another parent element, then the child elements, and so on. The example below
unpacks a tpl having the format stringA(A(c)) .

Example 4.2Unpacking nested arrays

#include " tpl . h"
#include <stdio . h>

int main () {
char c;
tpl_node * tn ;

tn = tpl_map (" A(A(c))", & c);

tpl_load (tn , TPL_FILE , " test40 . tpl ");
while (tpl_unpack (tn ,1) > 0) {

while (tpl_unpack (tn ,2) > 0) printf ("% c ", c);
printf ("\ n");

}
tpl_free (tn);

}

The filetest40.tpl is from thenested packing example. When run, this program prints:

a b
1 2 3

4.6 tpl_free

The final step for any tpl is to release it usingtpl_free() . Its only argument is the thetpl_node* to free.

tpl_free(tn);

This function does not return a value (it isvoid).

4.7 tpl_Alen

This function takes atpl_node* and an index number and returns anint specifying the number of elements in the variable-
length array.

tpl User Guide
17 / 21

num_elements = tpl_Alen(tn, index);

This is mainly useful for programs that unpack data and need to know ahead of time the number of elements that will need to be
unpacked. (It returns the current number of elements; it will decrease as elements are unpacked).

4.8 tpl_peek

This function peeks into a file or a memory buffer containing a tpl image and and returns a copy of its format string. It can also
peek at the lengths of any fixed-length arrays in the format string, or it can also peek into the data stored in the tpl.

4.8.1 Format peek

The format string can be obtained like this:

fmt = tpl_peek(TPL_FILE, "file.tpl");
fmt = tpl_peek(TPL_MEM, addr, sz);

On success, a copy of the format string is returned. The caller must eventually free it. On error, such as a non-existent file, or an
invalid tpl image, it returnsNULL.

4.8.2 Array length peek

The lengths of all fixed-length arrays in the format string can be queried using theTPL_FXLENSmode. It provides the number
of such fixed-length arrays and their lengths. If the former is non-zero, the caller must free the latter array when finished. The
format string itself must also be freed.

uint32_t num_fxlens, *fxlens, j;
fmt = tpl_peek(TPL_FILE|TPL_FXLENS, filename, &num_fxlens, &fxlens);
if (fmt) {

printf("format %s, num_fxlens %u\n", fmt, num_fxlens);
for(j=0; j<num_fxlens; j++) printf("fxlens[%u] %u\n", j, fxlens[j]);
if (num_fxlens > 0) free(fxlens);
free(fmt);

}

TheTPL_FXLENSmode is mutually exclusive withTPL_DATAPEEK.

4.8.3 Data peek

To peek into the data, additional arguments are used. This is a quick alternative to mapping, loading and unpacking the tpl, but
peeking is limited to the data in index 0. In other words, no peeking intoA(...) types. Suppose the tpl image infile.tpl
has the format stringsiA(i) . Then the index 0 format characters aresi . This is how to peek at their content:

char *s;
int i;
fmt = tpl_peek(TPL_FILE | TPL_DATAPEEK, "file.tpl", "si", &s, &i);

Now s , i , andfmt have been populated with data. The caller must eventually freefmt ands because they are allocated strings.
Of course, it works withTPL_MEMas well asTPL_FILE . Notice thatTPL_DATAPEEKwas OR’d with the mode. You can also
specifyany leading portionof the index 0 format if you don’t want to peek at the whole thing:

fmt = tpl_peek(TPL_FILE | TPL_DATAPEEK, "file.tpl", "s", &s);

TheTPL_DATAPEEKmode is mutually exclusive withTPL_FXLENS.

tpl User Guide
18 / 21

Structure peek

Lastly you can peek intoS(...) structures in index 0, but omit the surroundingS(...) in the format, and specify an
argument to receive each structure member individually. You can specify any leading portion of the structure format. For
example ifstruct.tpl has the format stringS(si) , you can peek at its data in these ways:

fmt = tpl_peek(TPL_FILE | TPL_DATAPEEK, "struct.tpl", "s", &s);
fmt = tpl_peek(TPL_FILE | TPL_DATAPEEK, "struct.tpl", "si", &s, &i);

4.9 tpl_jot

This is a quick shortcut for generating a tpl. It can be used instead of the usual "map, pack, dump, and free" lifecycle. With
tpl_jot all those steps are handled for you. It only works for simple formats-- namely, those withoutA(...) in their format
string. Here is how it is used:

char *hello = "hello", *world = "world";
tpl_jot(TPL_FILE, "file.tpl", "ss", &hello, &world);

It supports the three standard modes,TPL_FILE , TPL_FD andTPL_MEM. It returns -1 on failure (such as a bad format string
or error writing the file) or 0 on success.

4.10 tpl_hook

Most users will just leave these hooks at their default values. You can change these hook values if you want to modify tpl’s
internal memory management and error reporting behavior.

A global structure calledtpl_hook encapsulates the hooks. A program can reconfigure any hook by specifying an alternative
function whose prototype matches the default. For example:

#include "tpl.h"
extern tpl_hook_t tpl_hook;

int main() {
tpl_hook.oops = printf;
...

}

Table 3: Configurable hooks

Hook Description Default
tpl_hook.oops log error messages tpl_oops
tpl_hook.malloc allocate memory malloc
tpl_hook.realloc reallocate memory realloc
tpl_hook.free free memory free
tpl_hook.fatal log fatal message and exit tpl_fatal
tpl_hook.gather_max tpl_gather max image size 0 (unlimited)

4.10.1 The oops hook

Theoops has the same prototype asprintf . The built-in default oops handling function writes the error message tostderr .

tpl User Guide
19 / 21

4.10.2 The fatal hook

The fatal hook is invoked when a tpl function cannot continue because of an out- of-memory condition or some other usage
violation or inconsistency. It has this prototype:

void fatal_fcn(char *fmt, ...);

Thefatal hook must not return. It must either exit,or if the program needs to handle the failure and keep executing,setjmp
andlongjmp can be used. The default behavior is toexit(-1) .

Example 4.3Using longjmp in a fatal error handler

#include <setjmp . h>
#include <stdio . h>
#include <stdarg . h>
#include " tpl . h"

jmp_buf env ;
extern tpl_hook_t tpl_hook ;

void catch_fatal (char * fmt , ...) {
va_list ap;

va_start (ap, fmt);
vfprintf (stderr , fmt , ap);
va_end (ap);
longjmp (env ,-1); /* return to setjmp point */

}

int main () {
int err ;
tpl_node * tn ;
tpl_hook . fatal = catch_fatal ; /* install fatal handler */

err = setjmp (env); /* on error , control will return here */
if (err) {

printf (" caught error !\ n");
return -1;

}

tn = tpl_map (" @"); /* generate a fatal error */
printf (" program ending , without error \ n");
return 0;

}

This example is included intests/test123.c . When run, this program prints:

unsupported option @
failed to parse @
caught error!

4.11 tpl_gather

Most programs don’t need this Normally,tpl_load() is used to read a tpl image having an expected format string.
A more generic operation is to acquire a tpl image whose format string is unknown. E.g., a generic message-receiving
function might gather tpl images of varying format and route them to their final destination. This is the purpose of
tpl_gather . It produces a memory buffer containing one tpl image. If there are multiple contiguous images in the
input, it gathers exactly one image at a time.

tpl User Guide
20 / 21

The prototype for this function is:

int tpl_gather(int mode, ...);

Themode argument is one of three constants listed below, which must be followed by the mode-specific required arguments:

TPL_GATHER_BLOCKING, int fd, void **img, size_t *sz
TPL_GATHER_NONBLOCKING, int fd, tpl_gather_t **gs, tpl_gather_cb *cb, void *data
TPL_GATHER_MEM, void *addr, size_t sz, tpl_gather_t **gs, tpl_gather_cb *cb, void *data

Note
All modes honor tpl_hook.gather_max , specifying the maximum byte size for a tpl image to be gathered (the default is
unlimited, signified by 0). If a source attempts to send a tpl image larger than this maximum, whatever partial image has been
read will be discarded, and no further reading will take place; in this case tpl_gather will return a negative (error) value
to inform the caller that it should stop gathering from this source, and close the originating file descriptor if there is one. (The
whole idea is to prevent untrusted sources from sending extremely large tpl images which would consume too much memory.)

4.11.1 TPL_GATHER_BLOCKING

In this mode,tpl_gather blocks while reading file descriptorfd until one complete tpl image is read. No bytes past the end
of the tpl image will be read. The address of the buffer containing the image is returned inimg and its size is placed insz . The
caller is responsible for eventually freeing the buffer. The function returns 1 on success, 0 on end-of-file, or a negative number
on error.

4.11.2 TPL_GATHER_NONBLOCKING

This mode is for non-blocking, event-driven programs that implement their own file descriptor readability testing usingselect()
or the like. In this mode, tpl images are gathered in chunks as data becomes readable. Whenever a full tpl image has been gath-
ered, it invokes a caller-specified callback to do something with the image. The arguments are the file descriptorfd which the
caller has determined to be readable and which must be in non-blocking mode, a pointer to a file-descriptor-specific handle which
the caller has declared (explained below); a callback to invoke when a tpl image has been read; and an opaque pointer that will
passed to the callback.

For each file descriptor on whichtpl_gather will be used, the caller must declare atpl_gather_t* and initialize it to
NULL. Thereafter it will be used internally bytpl_gather whenever data is readable on the descriptor.

The callback will only be invoked whenevertpl_gather() has accumulated one complete tpl image. It must have this
prototype:

int (tpl_gather_cb)(void *img, size_t sz, void *data);

The callback can do anything with the tpl image but it must not free it. It can be copied if it needs to survive past the callback’s
return. The callback should return 0 under normal circumstances, or a negative number to abort; that is, returning a negative
number causestpl_gather itself to discard any remaining full or partial tpl images that have been read, and to return a
negative number (-4 in particular) to signal its caller to close the file descriptor.

The return value oftpl_gather() is negative if an error occured or 0 if a normal EOF was encountered-- both cases require
that the caller close the file descriptor (and stop monitoring it for readability, obviously). If the return value is positive, the
function succeeded in gathering whatever data was currently readable, which may have been a partial tpl image, or one or more
complete images.

tpl User Guide
21 / 21

Typical Usage

The program will have established a file descriptor in non-blocking mode and be monitoring it for readability, usingselect() .
Whenever it’s readable, the program callstpl_gather() . In skeletal terms:

tpl_gather_t *gt=NULL;
int rc;

void fd_is_readable(int fd) {
rc = tpl_gather(TPL_GATHER_NONBLOCKING, fd, >, callback, NULL);
if (rc <= 0) {

close(fd); /* got eof or fatal */
stop_watching_fd(fd);

}
}

int callback(void *img, size_t sz, void *data) {
printf("got a tpl image\n"); /* do something with img. do not free it. */
return 0; /* normal (no error) */

}

4.11.3 TPL_GATHER_MEM

This mode is identical toTPL_GATHER_NONBLOCKINGexcept that it gathers from a memory buffer instead of from a file
descriptor. In other words, if some other layer of code-- say, a decryption function (that is decrypting fixed-size blocks) produces
tpl fragments one-by-one, this mode can be used to reconstitute the tpl images and invoke the callback for each one. Its parameters
are the same as for theTPL_GATHER_NONBLOCKINGmode except that instead of a file descriptor, it takes a buffer address
and size. The return values are also the same as forTPL_GATHER_NONBLOCKINGnoting of course there is no file descriptor
to close on a non-positive return value.

	Overview
	Serialization in C
	Uses for tpl
	Expressing type
	The tpl image
	What's in a tpl image?
	No framing needed
	Data portability

	XML and Perl
	XML
	Perl

	Platforms
	BSD licensed
	Download
	Getting help
	Resources

	Build and install
	As source
	As a library
	Test suite

	On Windows
	DLL
	Non-DLL usage
	MinGW/Cygwin

	API concepts
	Order of functions
	Format string
	Explicit sizes
	The trouble with double

	Arrays
	Fixed-length vs. Variable-length arrays
	Index numbers
	Special index number 0

	Integers
	Multi-dimensional arrays

	Strings
	char* vs char[]
	Arrays of strings

	Binary buffers
	Structures
	Structure arrays
	Nested structures

	Linked lists

	API
	tpl_map
	tpl_pack
	Index number 0
	Variable-length arrays
	Adding elements to an array
	Zero-length arrays are ok
	Packing nested arrays

	tpl_dump
	tpl_load
	TPL_EXCESS_OK

	tpl_unpack
	Index number 0
	Variable-length arrays
	Unpacking elements from an array
	Array length
	Unpacking nested arrays

	tpl_free
	tpl_Alen
	tpl_peek
	Format peek
	Array length peek
	Data peek
	Structure peek

	tpl_jot
	tpl_hook
	The oops hook
	The fatal hook

	tpl_gather
	TPL_GATHER_BLOCKING
	TPL_GATHER_NONBLOCKING
	Typical Usage

	TPL_GATHER_MEM

