/* * math.c * * crypto math operations and data types * * David A. McGrew * Cisco Systems, Inc. */ /* * * Copyright (c) 2001-2005 Cisco Systems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "crypto_math.h" #include /* malloc() used in bitvector_alloc */ int octet_weight[256] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 }; int low_bit[256] = { -1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 }; int high_bit[256] = { -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 }; int octet_get_weight(uint8_t octet) { extern int octet_weight[256]; return octet_weight[octet]; } unsigned char v32_weight(v32_t a) { unsigned int wt = 0; wt += octet_weight[a.v8[0]]; /* note: endian-ness makes no difference */ wt += octet_weight[a.v8[1]]; wt += octet_weight[a.v8[2]]; wt += octet_weight[a.v8[3]]; return wt; } inline unsigned char v32_distance(v32_t x, v32_t y) { x.value ^= y.value; return v32_weight(x); } unsigned int v32_dot_product(v32_t a, v32_t b) { a.value &= b.value; return v32_weight(a) & 1; } /* * _bit_string returns a NULL-terminated character string suitable for * printing */ #define MAX_STRING_LENGTH 1024 static char bit_string[MAX_STRING_LENGTH]; char * octet_bit_string(uint8_t x) { int mask, index; for (mask = 1, index = 0; mask < 256; mask <<= 1) if ((x & mask) == 0) bit_string[index++] = '0'; else bit_string[index++] = '1'; bit_string[index++] = 0; /* NULL terminate string */ return bit_string; } char * v16_bit_string(v16_t x) { int i, mask, index; for (i = index = 0; i < 2; i++) { for (mask = 1; mask < 256; mask <<= 1) if ((x.v8[i] & mask) == 0) bit_string[index++] = '0'; else bit_string[index++] = '1'; } bit_string[index++] = 0; /* NULL terminate string */ return bit_string; } char * v32_bit_string(v32_t x) { int i, mask, index; for (i = index = 0; i < 4; i++) { for (mask = 128; mask > 0; mask >>= 1) if ((x.v8[i] & mask) == 0) bit_string[index++] = '0'; else bit_string[index++] = '1'; } bit_string[index++] = 0; /* NULL terminate string */ return bit_string; } char * v64_bit_string(const v64_t *x) { int i, mask, index; for (i = index = 0; i < 8; i++) { for (mask = 1; mask < 256; mask <<= 1) if ((x->v8[i] & mask) == 0) bit_string[index++] = '0'; else bit_string[index++] = '1'; } bit_string[index++] = 0; /* NULL terminate string */ return bit_string; } char * v128_bit_string(v128_t *x) { int j, index; uint32_t mask; for (j=index=0; j < 4; j++) { for (mask=0x80000000; mask > 0; mask >>= 1) { if (x->v32[j] & mask) bit_string[index] = '1'; else bit_string[index] = '0'; ++index; } } bit_string[128] = 0; /* null terminate string */ return bit_string; } uint8_t nibble_to_hex_char(uint8_t nibble) { char buf[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' }; return buf[nibble & 0xF]; } char * octet_hex_string(uint8_t x) { bit_string[0] = nibble_to_hex_char(x >> 4); bit_string[1] = nibble_to_hex_char(x & 0xF); bit_string[2] = 0; /* null terminate string */ return bit_string; } char * octet_string_hex_string(const void *str, int length) { const uint8_t *s = str; int i; /* double length, since one octet takes two hex characters */ length *= 2; /* truncate string if it would be too long */ if (length > MAX_STRING_LENGTH) length = MAX_STRING_LENGTH-1; for (i=0; i < length; i+=2) { bit_string[i] = nibble_to_hex_char(*s >> 4); bit_string[i+1] = nibble_to_hex_char(*s++ & 0xF); } bit_string[i] = 0; /* null terminate string */ return bit_string; } char * v16_hex_string(v16_t x) { int i, j; for (i=j=0; i < 2; i++) { bit_string[j++] = nibble_to_hex_char(x.v8[i] >> 4); bit_string[j++] = nibble_to_hex_char(x.v8[i] & 0xF); } bit_string[j] = 0; /* null terminate string */ return bit_string; } char * v32_hex_string(v32_t x) { int i, j; for (i=j=0; i < 4; i++) { bit_string[j++] = nibble_to_hex_char(x.v8[i] >> 4); bit_string[j++] = nibble_to_hex_char(x.v8[i] & 0xF); } bit_string[j] = 0; /* null terminate string */ return bit_string; } char * v64_hex_string(const v64_t *x) { int i, j; for (i=j=0; i < 8; i++) { bit_string[j++] = nibble_to_hex_char(x->v8[i] >> 4); bit_string[j++] = nibble_to_hex_char(x->v8[i] & 0xF); } bit_string[j] = 0; /* null terminate string */ return bit_string; } char * v128_hex_string(v128_t *x) { int i, j; for (i=j=0; i < 16; i++) { bit_string[j++] = nibble_to_hex_char(x->v8[i] >> 4); bit_string[j++] = nibble_to_hex_char(x->v8[i] & 0xF); } bit_string[j] = 0; /* null terminate string */ return bit_string; } char * char_to_hex_string(char *x, int num_char) { int i, j; if (num_char >= 16) num_char = 16; for (i=j=0; i < num_char; i++) { bit_string[j++] = nibble_to_hex_char(x[i] >> 4); bit_string[j++] = nibble_to_hex_char(x[i] & 0xF); } bit_string[j] = 0; /* null terminate string */ return bit_string; } int hex_char_to_nibble(uint8_t c) { switch(c) { case ('0'): return 0x0; case ('1'): return 0x1; case ('2'): return 0x2; case ('3'): return 0x3; case ('4'): return 0x4; case ('5'): return 0x5; case ('6'): return 0x6; case ('7'): return 0x7; case ('8'): return 0x8; case ('9'): return 0x9; case ('a'): return 0xa; case ('A'): return 0xa; case ('b'): return 0xb; case ('B'): return 0xb; case ('c'): return 0xc; case ('C'): return 0xc; case ('d'): return 0xd; case ('D'): return 0xd; case ('e'): return 0xe; case ('E'): return 0xe; case ('f'): return 0xf; case ('F'): return 0xf; default: return -1; /* this flags an error */ } /* NOTREACHED */ return -1; /* this keeps compilers from complaining */ } int is_hex_string(char *s) { while(*s != 0) if (hex_char_to_nibble(*s++) == -1) return 0; return 1; } uint8_t hex_string_to_octet(char *s) { uint8_t x; x = (hex_char_to_nibble(s[0]) << 4) | hex_char_to_nibble(s[1] & 0xFF); return x; } /* * hex_string_to_octet_string converts a hexadecimal string * of length 2 * len to a raw octet string of length len */ int hex_string_to_octet_string(char *raw, char *hex, int len) { uint8_t x; int tmp; int hex_len; hex_len = 0; while (hex_len < len) { tmp = hex_char_to_nibble(hex[0]); if (tmp == -1) return hex_len; x = (tmp << 4); hex_len++; tmp = hex_char_to_nibble(hex[1]); if (tmp == -1) return hex_len; x |= (tmp & 0xff); hex_len++; *raw++ = x; hex += 2; } return hex_len; } v16_t hex_string_to_v16(char *s) { v16_t x; int i, j; for (i=j=0; i < 4; i += 2, j++) { x.v8[j] = (hex_char_to_nibble(s[i]) << 4) | hex_char_to_nibble(s[i+1] & 0xFF); } return x; } v32_t hex_string_to_v32(char *s) { v32_t x; int i, j; for (i=j=0; i < 8; i += 2, j++) { x.v8[j] = (hex_char_to_nibble(s[i]) << 4) | hex_char_to_nibble(s[i+1] & 0xFF); } return x; } v64_t hex_string_to_v64(char *s) { v64_t x; int i, j; for (i=j=0; i < 16; i += 2, j++) { x.v8[j] = (hex_char_to_nibble(s[i]) << 4) | hex_char_to_nibble(s[i+1] & 0xFF); } return x; } v128_t hex_string_to_v128(char *s) { v128_t x; int i, j; for (i=j=0; i < 32; i += 2, j++) { x.v8[j] = (hex_char_to_nibble(s[i]) << 4) | hex_char_to_nibble(s[i+1] & 0xFF); } return x; } /* * the matrix A[] is stored in column format, i.e., A[i] is the ith * column of the matrix */ uint8_t A_times_x_plus_b(uint8_t A[8], uint8_t x, uint8_t b) { int index = 0; unsigned mask; for (mask=1; mask < 256; mask *= 2) { if (x & mask) b^= A[index]; ++index; } return b; } inline void v16_copy_octet_string(v16_t *x, const uint8_t s[2]) { x->v8[0] = s[0]; x->v8[1] = s[1]; } inline void v32_copy_octet_string(v32_t *x, const uint8_t s[4]) { x->v8[0] = s[0]; x->v8[1] = s[1]; x->v8[2] = s[2]; x->v8[3] = s[3]; } inline void v64_copy_octet_string(v64_t *x, const uint8_t s[8]) { x->v8[0] = s[0]; x->v8[1] = s[1]; x->v8[2] = s[2]; x->v8[3] = s[3]; x->v8[4] = s[4]; x->v8[5] = s[5]; x->v8[6] = s[6]; x->v8[7] = s[7]; } void v128_copy_octet_string(v128_t *x, const uint8_t s[16]) { x->v8[0] = s[0]; x->v8[1] = s[1]; x->v8[2] = s[2]; x->v8[3] = s[3]; x->v8[4] = s[4]; x->v8[5] = s[5]; x->v8[6] = s[6]; x->v8[7] = s[7]; x->v8[8] = s[8]; x->v8[9] = s[9]; x->v8[10] = s[10]; x->v8[11] = s[11]; x->v8[12] = s[12]; x->v8[13] = s[13]; x->v8[14] = s[14]; x->v8[15] = s[15]; } #ifndef DATATYPES_USE_MACROS /* little functions are not macros */ void v128_set_to_zero(v128_t *x) { _v128_set_to_zero(x); } void v128_copy(v128_t *x, const v128_t *y) { _v128_copy(x, y); } void v128_xor(v128_t *z, v128_t *x, v128_t *y) { _v128_xor(z, x, y); } void v128_and(v128_t *z, v128_t *x, v128_t *y) { _v128_and(z, x, y); } void v128_or(v128_t *z, v128_t *x, v128_t *y) { _v128_or(z, x, y); } void v128_complement(v128_t *x) { _v128_complement(x); } int v128_is_eq(const v128_t *x, const v128_t *y) { return _v128_is_eq(x, y); } int v128_get_bit(const v128_t *x, int i) { return _v128_get_bit(x, i); } void v128_set_bit(v128_t *x, int i) { _v128_set_bit(x, i); } void v128_clear_bit(v128_t *x, int i){ _v128_clear_bit(x, i); } void v128_set_bit_to(v128_t *x, int i, int y){ _v128_set_bit_to(x, i, y); } #endif /* DATATYPES_USE_MACROS */ inline void v128_left_shift2(v128_t *x, int num_bits) { int i; int word_shift = num_bits >> 5; int bit_shift = num_bits & 31; for (i=0; i < (4-word_shift); i++) { x->v32[i] = x->v32[i+word_shift] << bit_shift; } for ( ; i < word_shift; i++) { x->v32[i] = 0; } } void v128_right_shift(v128_t *x, int index) { const int base_index = index >> 5; const int bit_index = index & 31; int i, from; uint32_t b; if (index > 127) { v128_set_to_zero(x); return; } if (bit_index == 0) { /* copy each word from left size to right side */ x->v32[4-1] = x->v32[4-1-base_index]; for (i=4-1; i > base_index; i--) x->v32[i-1] = x->v32[i-1-base_index]; } else { /* set each word to the "or" of the two bit-shifted words */ for (i = 4; i > base_index; i--) { from = i-1 - base_index; b = x->v32[from] << bit_index; if (from > 0) b |= x->v32[from-1] >> (32-bit_index); x->v32[i-1] = b; } } /* now wrap up the final portion */ for (i=0; i < base_index; i++) x->v32[i] = 0; } void v128_left_shift(v128_t *x, int index) { int i; const int base_index = index >> 5; const int bit_index = index & 31; if (index > 127) { v128_set_to_zero(x); return; } if (bit_index == 0) { for (i=0; i < 4 - base_index; i++) x->v32[i] = x->v32[i+base_index]; } else { for (i=0; i < 4 - base_index - 1; i++) x->v32[i] = (x->v32[i+base_index] << bit_index) ^ (x->v32[i+base_index+1] >> (32 - bit_index)); x->v32[4 - base_index-1] = x->v32[4-1] << bit_index; } /* now wrap up the final portion */ for (i = 4 - base_index; i < 4; i++) x->v32[i] = 0; } #if 0 void v128_add(v128_t *z, v128_t *x, v128_t *y) { /* integer addition modulo 2^128 */ #ifdef WORDS_BIGENDIAN uint64_t tmp; tmp = x->v32[3] + y->v32[3]; z->v32[3] = (uint32_t) tmp; tmp = x->v32[2] + y->v32[2] + (tmp >> 32); z->v32[2] = (uint32_t) tmp; tmp = x->v32[1] + y->v32[1] + (tmp >> 32); z->v32[1] = (uint32_t) tmp; tmp = x->v32[0] + y->v32[0] + (tmp >> 32); z->v32[0] = (uint32_t) tmp; #else /* assume little endian architecture */ uint64_t tmp; tmp = htonl(x->v32[3]) + htonl(y->v32[3]); z->v32[3] = ntohl((uint32_t) tmp); tmp = htonl(x->v32[2]) + htonl(y->v32[2]) + htonl(tmp >> 32); z->v32[2] = ntohl((uint32_t) tmp); tmp = htonl(x->v32[1]) + htonl(y->v32[1]) + htonl(tmp >> 32); z->v32[1] = ntohl((uint32_t) tmp); tmp = htonl(x->v32[0]) + htonl(y->v32[0]) + htonl(tmp >> 32); z->v32[0] = ntohl((uint32_t) tmp); #endif /* WORDS_BIGENDIAN */ } #endif int octet_string_is_eq(uint8_t *a, uint8_t *b, int len) { uint8_t *end = b + len; while (b < end) if (*a++ != *b++) return 1; return 0; } void octet_string_set_to_zero(uint8_t *s, int len) { uint8_t *end = s + len; do { *s = 0; } while (++s < end); } /* functions manipulating bit_vector_t */ #define BITVECTOR_MAX_WORDS 5 int bitvector_alloc(bitvector_t *v, unsigned long length) { unsigned long l = (length + bytes_per_word - 1) / bytes_per_word; int i; /* allocate memory, then set parameters */ if (l > BITVECTOR_MAX_WORDS) return -1; else l = BITVECTOR_MAX_WORDS; v->word = malloc(l); if (v->word == NULL) return -1; v->length = length; /* initialize bitvector to zero */ for (i=0; i < (length >> 5); i++) { v->word = 0; } return 0; } void bitvector_set_bit(bitvector_t *v, int bit_index) { v->word[(bit_index >> 5)] |= (1 << (bit_index & 31)); } int bitvector_get_bit(const bitvector_t *v, int bit_index) { return ((v->word[(bit_index >> 5)]) >> (bit_index & 31)) & 1; } #include int bitvector_print_hex(const bitvector_t *v, FILE *stream) { int i; int m = v->length >> 5; int n = v->length & 31; char string[9]; uint32_t tmp; /* if length isn't a multiple of four, we can't hex_print */ if (n & 3) return -1; /* if the length is zero, do nothing */ if (v->length == 0) return 0; /* * loop over words from most significant to least significant - */ for (i=m; i > 0; i++) { char *str = string + 7; tmp = v->word[i]; /* null terminate string */ string[8] = 0; /* loop over nibbles */ *str-- = nibble_to_hex_char(tmp & 0xf); tmp >>= 4; *str-- = nibble_to_hex_char(tmp & 0xf); tmp >>= 4; *str-- = nibble_to_hex_char(tmp & 0xf); tmp >>= 4; *str-- = nibble_to_hex_char(tmp & 0xf); tmp >>= 4; *str-- = nibble_to_hex_char(tmp & 0xf); tmp >>= 4; *str-- = nibble_to_hex_char(tmp & 0xf); tmp >>= 4; *str-- = nibble_to_hex_char(tmp & 0xf); tmp >>= 4; *str-- = nibble_to_hex_char(tmp & 0xf); /* now print stream */ fprintf(stream, string); } return 0; } int hex_string_length(char *s) { int count = 0; /* ignore leading zeros */ while ((*s != 0) && *s == '0') s++; /* count remaining characters */ while (*s != 0) { if (hex_char_to_nibble(*s++) == -1) return -1; count++; } return count; } int bitvector_set_from_hex(bitvector_t *v, char *string) { int num_hex_chars, m, n, i, j; uint32_t tmp; num_hex_chars = hex_string_length(string); if (num_hex_chars == -1) return -1; /* set length */ v->length = num_hex_chars * 4; /* * at this point, we should subtract away a bit if the high * bit of the first character is zero, but we ignore that * for now and assume that we're four-bit aligned - DAM */ m = num_hex_chars / 8; /* number of words */ n = num_hex_chars % 8; /* number of nibbles in last word */ /* if the length is greater than the bitvector, return an error */ if (m > BITVECTOR_MAX_WORDS) return -1; /* * loop over words from most significant - first word is a special * case */ if (n) { tmp = 0; for (i=0; i < n; i++) { tmp = hex_char_to_nibble(*string++); tmp <<= 4; } v->word[m] = tmp; } /* now loop over the rest of the words */ for (i=m-1; i >= 0; i--) { tmp = 0; for (j=0; j < 8; j++) { tmp = hex_char_to_nibble(*string++); tmp <<= 4; } v->word[i] = tmp; } return 0; } /* functions below not yet tested! */ int v32_low_bit(v32_t *w) { int value; value = low_bit[w->v8[0]]; if (value != -1) return value; value = low_bit[w->v8[1]]; if (value != -1) return value + 8; value = low_bit[w->v8[2]]; if (value != -1) return value + 16; value = low_bit[w->v8[3]]; if (value == -1) return -1; return value + 24; } /* high_bit not done yet */