/* * SpanDSP - a series of DSP components for telephony * * fsk.c - FSK modem transmit and receive parts * * Written by Steve Underwood * * Copyright (C) 2003 Steve Underwood * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 2.1, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /*! \file */ #if defined(HAVE_CONFIG_H) #include "config.h" #endif #include #include #include #if defined(HAVE_TGMATH_H) #include #endif #if defined(HAVE_MATH_H) #include #endif #if defined(HAVE_STDBOOL_H) #include #else #include "spandsp/stdbool.h" #endif #include "floating_fudge.h" #include #include "spandsp/telephony.h" #include "spandsp/alloc.h" #include "spandsp/complex.h" #include "spandsp/dds.h" #include "spandsp/power_meter.h" #include "spandsp/async.h" #include "spandsp/fsk.h" #include "spandsp/private/power_meter.h" #include "spandsp/private/fsk.h" const fsk_spec_t preset_fsk_specs[] = { { "V21 ch 1", 1080 + 100, 1080 - 100, -14, -30, 300*100 }, { "V21 ch 2", 1750 + 100, 1750 - 100, -14, -30, 300*100 }, { /* This is mode 2 of the V.23 spec. Mode 1 (the 600baud mode) is not defined here */ "V23 ch 1", 1700 + 400, 1700 - 400, -14, -30, 1200*100 }, { "V23 ch 2", 420 + 30, 420 - 30, -14, -30, 75*100 }, { "Bell103 ch 1", 2125 - 100, 2125 + 100, -14, -30, 300*100 }, { "Bell103 ch 2", 1170 - 100, 1170 + 100, -14, -30, 300*100 }, { "Bell202", 1700 + 500, 1700 - 500, -14, -30, 1200*100 }, { "Weitbrecht 45.45", /* Used for US TDD (Telecoms Device for the Deaf) */ 1600 + 200, 1600 - 200, -14, -30, 4545 }, { "Weitbrecht 50", /* Used for international TDD (Telecoms Device for the Deaf) */ 1600 + 200, 1600 - 200, -14, -30, 50*100 }, { "Weitbrecht 47.6", /* Used for V.18 probing */ 1600 + 200, 1600 - 200, -14, -30, 4760 }, { "V21 (110bps) ch 1", 1080 + 100, 1080 - 100, -14, -30, 110*100 } }; SPAN_DECLARE(int) fsk_tx_restart(fsk_tx_state_t *s, const fsk_spec_t *spec) { s->baud_rate = spec->baud_rate; s->phase_rates[0] = dds_phase_rate((float) spec->freq_zero); s->phase_rates[1] = dds_phase_rate((float) spec->freq_one); s->scaling = dds_scaling_dbm0((float) spec->tx_level); /* Initialise fractional sample baud generation. */ s->phase_acc = 0; s->baud_frac = 0; s->current_phase_rate = s->phase_rates[1]; s->shutdown = false; return 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(fsk_tx_state_t *) fsk_tx_init(fsk_tx_state_t *s, const fsk_spec_t *spec, get_bit_func_t get_bit, void *user_data) { if (s == NULL) { if ((s = (fsk_tx_state_t *) span_alloc(sizeof(*s))) == NULL) return NULL; /*endif*/ } /*endif*/ memset(s, 0, sizeof(*s)); s->get_bit = get_bit; s->get_bit_user_data = user_data; fsk_tx_restart(s, spec); return s; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) fsk_tx_release(fsk_tx_state_t *s) { return 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) fsk_tx_free(fsk_tx_state_t *s) { span_free(s); return 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) fsk_tx(fsk_tx_state_t *s, int16_t amp[], int len) { int sample; int bit; if (s->shutdown) return 0; /*endif*/ /* Make the transitions between 0 and 1 phase coherent, but instantaneous jumps. There is currently no interpolation for bauds that end mid-sample. Mainstream users will not care. Some specialist users might have a problem with them, if they care about accurate transition timing. */ for (sample = 0; sample < len; sample++) { if ((s->baud_frac += s->baud_rate) >= SAMPLE_RATE*100) { s->baud_frac -= SAMPLE_RATE*100; if ((bit = s->get_bit(s->get_bit_user_data)) == SIG_STATUS_END_OF_DATA) { if (s->status_handler) s->status_handler(s->status_user_data, SIG_STATUS_END_OF_DATA); /*endif*/ if (s->status_handler) s->status_handler(s->status_user_data, SIG_STATUS_SHUTDOWN_COMPLETE); /*endif*/ s->shutdown = true; break; } /*endif*/ s->current_phase_rate = s->phase_rates[bit & 1]; } /*endif*/ amp[sample] = dds_mod(&s->phase_acc, s->current_phase_rate, s->scaling, 0); } /*endfor*/ return sample; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(void) fsk_tx_power(fsk_tx_state_t *s, float power) { s->scaling = dds_scaling_dbm0(power); } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(void) fsk_tx_set_get_bit(fsk_tx_state_t *s, get_bit_func_t get_bit, void *user_data) { s->get_bit = get_bit; s->get_bit_user_data = user_data; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(void) fsk_tx_set_modem_status_handler(fsk_tx_state_t *s, modem_status_func_t handler, void *user_data) { s->status_handler = handler; s->status_user_data = user_data; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(void) fsk_rx_signal_cutoff(fsk_rx_state_t *s, float cutoff) { /* The 6.04 allows for the gain of the DC blocker */ s->carrier_on_power = (int32_t) (power_meter_level_dbm0(cutoff + 2.5f - 6.04f)); s->carrier_off_power = (int32_t) (power_meter_level_dbm0(cutoff - 2.5f - 6.04f)); } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(float) fsk_rx_signal_power(fsk_rx_state_t *s) { return power_meter_current_dbm0(&s->power); } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(void) fsk_rx_set_put_bit(fsk_rx_state_t *s, put_bit_func_t put_bit, void *user_data) { s->put_bit = put_bit; s->put_bit_user_data = user_data; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(void) fsk_rx_set_modem_status_handler(fsk_rx_state_t *s, modem_status_func_t handler, void *user_data) { s->status_handler = handler; s->status_user_data = user_data; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) fsk_rx_restart(fsk_rx_state_t *s, const fsk_spec_t *spec, int framing_mode) { int chop; s->baud_rate = spec->baud_rate; s->framing_mode = framing_mode; fsk_rx_signal_cutoff(s, (float) spec->min_level); /* Detect by correlating against the tones we want, over a period of one baud. The correlation must be quadrature. */ /* First we need the quadrature tone generators to correlate against. */ s->phase_rate[0] = dds_phase_rate((float) spec->freq_zero); s->phase_rate[1] = dds_phase_rate((float) spec->freq_one); s->phase_acc[0] = 0; s->phase_acc[1] = 0; s->last_sample = 0; /* The correlation should be over one baud. */ s->correlation_span = SAMPLE_RATE*100/spec->baud_rate; /* But limit it for very slow baud rates, so we do not overflow our buffer. */ if (s->correlation_span > FSK_MAX_WINDOW_LEN) s->correlation_span = FSK_MAX_WINDOW_LEN; /*endif*/ /* We need to scale, to avoid overflow in the correlation. */ s->scaling_shift = 0; chop = s->correlation_span; while (chop != 0) { s->scaling_shift++; chop >>= 1; } /*endwhile*/ /* Initialise the baud/bit rate tracking. */ s->baud_phase = 0; s->frame_state = 0; s->frame_bits = 0; s->last_bit = 0; /* Initialise a power detector, so sense when a signal is present. */ power_meter_init(&s->power, 4); s->signal_present = 0; return 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(fsk_rx_state_t *) fsk_rx_init(fsk_rx_state_t *s, const fsk_spec_t *spec, int framing_mode, put_bit_func_t put_bit, void *user_data) { if (s == NULL) { if ((s = (fsk_rx_state_t *) span_alloc(sizeof(*s))) == NULL) return NULL; /*endif*/ } /*endif*/ memset(s, 0, sizeof(*s)); s->put_bit = put_bit; s->put_bit_user_data = user_data; fsk_rx_restart(s, spec, framing_mode); return s; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) fsk_rx_release(fsk_rx_state_t *s) { return 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) fsk_rx_free(fsk_rx_state_t *s) { span_free(s); return 0; } /*- End of function --------------------------------------------------------*/ static void report_status_change(fsk_rx_state_t *s, int status) { if (s->status_handler) s->status_handler(s->status_user_data, status); else if (s->put_bit) s->put_bit(s->put_bit_user_data, status); /*endif*/ } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) fsk_rx(fsk_rx_state_t *s, const int16_t *amp, int len) { int buf_ptr; int baudstate; int i; int j; int16_t x; int32_t dot; int32_t sum[2]; int32_t power; complexi_t ph; buf_ptr = s->buf_ptr; for (i = 0; i < len; i++) { /* The *totally* asynchronous character to character behaviour of these modems, when carrying async. data, seems to force a sample by sample approach. */ for (j = 0; j < 2; j++) { s->dot[j].re -= s->window[j][buf_ptr].re; s->dot[j].im -= s->window[j][buf_ptr].im; ph = dds_complexi(&s->phase_acc[j], s->phase_rate[j]); s->window[j][buf_ptr].re = (ph.re*amp[i]) >> s->scaling_shift; s->window[j][buf_ptr].im = (ph.im*amp[i]) >> s->scaling_shift; s->dot[j].re += s->window[j][buf_ptr].re; s->dot[j].im += s->window[j][buf_ptr].im; dot = s->dot[j].re >> 15; sum[j] = dot*dot; dot = s->dot[j].im >> 15; sum[j] += dot*dot; } /*endfor*/ /* If there isn't much signal, don't demodulate - it will only produce useless junk results. */ /* There should be no DC in the signal, but sometimes there is. We need to measure the power with the DC blocked, but not using a slow to respond DC blocker. Use the most elementary HPF. */ x = amp[i] >> 1; power = power_meter_update(&s->power, x - s->last_sample); s->last_sample = x; if (s->signal_present) { /* Look for power below turn-off threshold to turn the carrier off */ if (power < s->carrier_off_power) { if (--s->signal_present <= 0) { /* Count down a short delay, to ensure we push the last few bits through the filters before stopping. */ report_status_change(s, SIG_STATUS_CARRIER_DOWN); s->baud_phase = 0; continue; } /*endif*/ } /*endif*/ } else { /* Look for power exceeding turn-on threshold to turn the carrier on */ if (power < s->carrier_on_power) { s->baud_phase = 0; continue; } /*endif*/ if (s->baud_phase < (s->correlation_span >> 1) - 30) { s->baud_phase++; continue; } /*endif*/ s->signal_present = 1; /* Initialise the baud/bit rate tracking. */ s->baud_phase = 0; s->frame_state = 0; s->frame_bits = 0; s->last_bit = 0; report_status_change(s, SIG_STATUS_CARRIER_UP); } /*endif*/ /* Non-coherent FSK demodulation by correlation with the target tones over a one baud interval. The slow V.xx specs. are too open ended to allow anything fancier to be used. The dot products are calculated using a sliding window approach, so the compute load is not that great. */ baudstate = (sum[0] < sum[1]); switch (s->framing_mode) { case FSK_FRAME_MODE_SYNC: /* Synchronous serial operation - e.g. for HDLC */ if (s->last_bit != baudstate) { /* On a transition we check our timing */ s->last_bit = baudstate; /* For synchronous use (e.g. HDLC channels in FAX modems), nudge the baud phase gently, trying to keep it centred on the bauds. */ if (s->baud_phase < (SAMPLE_RATE*50)) s->baud_phase += (s->baud_rate >> 3); else s->baud_phase -= (s->baud_rate >> 3); /*endif*/ } /*endif*/ if ((s->baud_phase += s->baud_rate) >= (SAMPLE_RATE*100)) { /* We should be in the middle of a baud now, so report the current state as the next bit */ s->baud_phase -= (SAMPLE_RATE*100); s->put_bit(s->put_bit_user_data, baudstate); } /*endif*/ break; case FSK_FRAME_MODE_ASYNC: /* Fully asynchronous mode */ if (s->last_bit != baudstate) { /* On a transition we check our timing */ s->last_bit = baudstate; /* For async. operation, believe transitions completely, and sample appropriately. This allows instant start on the first transition. */ /* We must now be about half way to a sampling point. We do not do any fractional sample estimation of the transitions, so this is the most accurate baud alignment we can do. */ s->baud_phase = SAMPLE_RATE*50; } /*endif*/ if ((s->baud_phase += s->baud_rate) >= (SAMPLE_RATE*100)) { /* We should be in the middle of a baud now, so report the current state as the next bit */ s->baud_phase -= (SAMPLE_RATE*100); s->put_bit(s->put_bit_user_data, baudstate); } /*endif*/ break; case FSK_FRAME_MODE_5N1_FRAMES: case FSK_FRAME_MODE_7N1_FRAMES: case FSK_FRAME_MODE_7E1_FRAMES: case FSK_FRAME_MODE_7E2_FRAMES: default: /* Gather the specified number of bits, with robust checking to ensure reasonable voice immunity. The first bit should be a start bit (0), and the last bit should be a stop bit (1) */ if (s->frame_state == 0) { /* Looking for the start of a zero bit, which hopefully the start of a start bit */ if (baudstate == 0) { s->baud_phase = SAMPLE_RATE*(100 - 40)/2; s->frame_state = -1; s->frame_bits = 0; s->last_bit = -1; } /*endif*/ } else if (s->frame_state == -1) { /* Look for a continuous zero from the start of the start bit until beyond the middle */ if (baudstate != 0) { /* If we aren't looking at a stable start bit, restart */ s->frame_state = 0; } else { s->baud_phase += s->baud_rate; if (s->baud_phase >= SAMPLE_RATE*100) { s->frame_state = 1; s->last_bit = baudstate; } /*endif*/ } /*endif*/ } else { s->baud_phase += s->baud_rate; if (s->baud_phase >= SAMPLE_RATE*(100 - 40)) { if (s->last_bit < 0) s->last_bit = baudstate; /*endif*/ /* Look for the bit being consistent over the central 20% of the bit time. */ if (s->last_bit != baudstate) { s->frame_state = 0; } else if (s->baud_phase >= SAMPLE_RATE*100) { /* We should be in the middle of a baud now, so report the current state as the next bit */ if (s->last_bit == baudstate) { if (++s->frame_state > s->framing_mode) { /* Check we have a stop bit and a start bit */ if (baudstate == 1 && (s->frame_bits & 0x02) == 0) { /* Drop the start bit, and pass the rest back */ s->put_bit(s->put_bit_user_data, s->frame_bits >> 2); } /*endif*/ s->frame_state = 0; } else { s->frame_bits |= (baudstate << s->framing_mode); s->frame_bits >>= 1; } /*endif*/ s->baud_phase -= (SAMPLE_RATE*100); } else { s->frame_state = 0; } /*endif*/ s->last_bit = -1; } /*endif*/ } /*endif*/ } /*endif*/ break; } /*endswitch*/ if (++buf_ptr >= s->correlation_span) buf_ptr = 0; /*endif*/ } /*endfor*/ s->buf_ptr = buf_ptr; return 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) fsk_rx_fillin(fsk_rx_state_t *s, int len) { int buf_ptr; int i; int j; /* The valid choice here is probably to do nothing. We don't change state (i.e carrier on<->carrier off), and we'll just output less bits than we should. */ buf_ptr = s->buf_ptr; for (i = 0; i < len; i++) { for (j = 0; j < 2; j++) { s->dot[j].re -= s->window[j][buf_ptr].re; s->dot[j].im -= s->window[j][buf_ptr].im; dds_advance(&s->phase_acc[j], s->phase_rate[j]); s->window[j][buf_ptr].re = 0; s->window[j][buf_ptr].im = 0; s->dot[j].re += s->window[j][buf_ptr].re; s->dot[j].im += s->window[j][buf_ptr].im; } /*endfor*/ } /*endfor*/ s->buf_ptr = buf_ptr; return 0; } /*- End of function --------------------------------------------------------*/ /*- End of file ------------------------------------------------------------*/