/* * Compute the Jacobi symbol (small prime case only). * * Copyright (c) 1995 Colin Plumb. All rights reserved. * For licensing and other legal details, see the file legal.c. */ #include "bn.h" #include "jacobi.h" /* * For a small (usually prime, but not necessarily) prime p, * compute Jacobi(p,bn), which is -1, 0 or +1, using the following rules: * Jacobi(x, y) = Jacobi(x mod y, y) * Jacobi(0, y) = 0 * Jacobi(1, y) = 1 * Jacobi(2, y) = 0 if y is even, +1 if y is +/-1 mod 8, -1 if y = +/-3 mod 8 * Jacobi(x1*x2, y) = Jacobi(x1, y) * Jacobi(x2, y) (used with x1 = 2 & x1 = 4) * If x and y are both odd, then * Jacobi(x, y) = Jacobi(y, x) * (-1 if x = y = 3 mod 4, +1 otherwise) */ int bnJacobiQ(unsigned p, struct BigNum const *bn) { int j = 1; unsigned u = bnLSWord(bn); if (!(u & 1)) return 0; /* Don't *do* that */ /* First, get rid of factors of 2 in p */ while ((p & 3) == 0) p >>= 2; if ((p & 1) == 0) { p >>= 1; if ((u ^ u>>1) & 2) j = -j; /* 3 (011) or 5 (101) mod 8 */ } if (p == 1) return j; /* Then, apply quadratic reciprocity */ if (p & u & 2) /* p = u = 3 (mod 4? */ j = -j; /* And reduce u mod p */ u = bnModQ(bn, p); /* Now compute Jacobi(u,p), u < p */ while (u) { while ((u & 3) == 0) u >>= 2; if ((u & 1) == 0) { u >>= 1; if ((p ^ p>>1) & 2) j = -j; /* 3 (011) or 5 (101) mod 8 */ } if (u == 1) return j; /* Now both u and p are odd, so use quadratic reciprocity */ if (u < p) { unsigned t = u; u = p; p = t; if (u & p & 2) /* u = p = 3 (mod 4? */ j = -j; } /* Now u >= p, so it can be reduced */ u %= p; } return 0; }