/* * math.h * * crypto math operations and data types * * David A. McGrew * Cisco Systems, Inc. */ /* * * Copyright (c) 2001-2005 Cisco Systems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef MATH_H #define MATH_H #include "datatypes.h" unsigned char v32_weight(v32_t a); unsigned char v32_distance(v32_t x, v32_t y); unsigned int v32_dot_product(v32_t a, v32_t b); char * v16_bit_string(v16_t x); char * v32_bit_string(v32_t x); char * v64_bit_string(const v64_t *x); char * octet_hex_string(uint8_t x); char * v16_hex_string(v16_t x); char * v32_hex_string(v32_t x); char * v64_hex_string(const v64_t *x); int hex_char_to_nibble(uint8_t c); int is_hex_string(char *s); v16_t hex_string_to_v16(char *s); v32_t hex_string_to_v32(char *s); v64_t hex_string_to_v64(char *s); /* the matrix A[] is stored in column format, i.e., A[i] is the ith column of the matrix */ uint8_t A_times_x_plus_b(uint8_t A[8], uint8_t x, uint8_t b); void v16_copy_octet_string(v16_t *x, const uint8_t s[2]); void v32_copy_octet_string(v32_t *x, const uint8_t s[4]); void v64_copy_octet_string(v64_t *x, const uint8_t s[8]); void v128_add(v128_t *z, v128_t *x, v128_t *y); int octet_string_is_eq(uint8_t *a, uint8_t *b, int len); void octet_string_set_to_zero(uint8_t *s, int len); /* * the matrix A[] is stored in column format, i.e., A[i] is the ith * column of the matrix */ uint8_t A_times_x_plus_b(uint8_t A[8], uint8_t x, uint8_t b); #if 0 #if WORDS_BIGENDIAN #define _v128_add(z, x, y) { \ uint64_t tmp; \ \ tmp = x->v32[3] + y->v32[3]; \ z->v32[3] = (uint32_t) tmp; \ \ tmp = x->v32[2] + y->v32[2] + (tmp >> 32); \ z->v32[2] = (uint32_t) tmp; \ \ tmp = x->v32[1] + y->v32[1] + (tmp >> 32); \ z->v32[1] = (uint32_t) tmp; \ \ tmp = x->v32[0] + y->v32[0] + (tmp >> 32); \ z->v32[0] = (uint32_t) tmp; \ } #else /* assume little endian architecture */ #define _v128_add(z, x, y) { \ uint64_t tmp; \ \ tmp = htonl(x->v32[3]) + htonl(y->v32[3]); \ z->v32[3] = ntohl((uint32_t) tmp); \ \ tmp = htonl(x->v32[2]) + htonl(y->v32[2]) \ + htonl(tmp >> 32); \ z->v32[2] = ntohl((uint32_t) tmp); \ \ tmp = htonl(x->v32[1]) + htonl(y->v32[1]) \ + htonl(tmp >> 32); \ z->v32[1] = ntohl((uint32_t) tmp); \ \ tmp = htonl(x->v32[0]) + htonl(y->v32[0]) \ + htonl(tmp >> 32); \ z->v32[0] = ntohl((uint32_t) tmp); \ } #endif /* WORDS_BIGENDIAN */ #endif #ifdef DATATYPES_USE_MACROS /* little functions are really macros */ #define v128_set_to_zero(z) _v128_set_to_zero(z) #define v128_copy(z, x) _v128_copy(z, x) #define v128_xor(z, x, y) _v128_xor(z, x, y) #define v128_and(z, x, y) _v128_and(z, x, y) #define v128_or(z, x, y) _v128_or(z, x, y) #define v128_complement(x) _v128_complement(x) #define v128_is_eq(x, y) _v128_is_eq(x, y) #define v128_xor_eq(x, y) _v128_xor_eq(x, y) #define v128_get_bit(x, i) _v128_get_bit(x, i) #define v128_set_bit(x, i) _v128_set_bit(x, i) #define v128_clear_bit(x, i) _v128_clear_bit(x, i) #define v128_set_bit_to(x, i, y) _v128_set_bit_to(x, i, y) #else void v128_set_to_zero(v128_t *x); int v128_is_eq(const v128_t *x, const v128_t *y); void v128_copy(v128_t *x, const v128_t *y); void v128_xor(v128_t *z, v128_t *x, v128_t *y); void v128_and(v128_t *z, v128_t *x, v128_t *y); void v128_or(v128_t *z, v128_t *x, v128_t *y); void v128_complement(v128_t *x); int v128_get_bit(const v128_t *x, int i); void v128_set_bit(v128_t *x, int i) ; void v128_clear_bit(v128_t *x, int i); void v128_set_bit_to(v128_t *x, int i, int y); #endif /* DATATYPES_USE_MACROS */ /* * octet_string_is_eq(a,b, len) returns 1 if the length len strings a * and b are not equal, returns 0 otherwise */ int octet_string_is_eq(uint8_t *a, uint8_t *b, int len); void octet_string_set_to_zero(uint8_t *s, int len); /* * functions manipulating bit_vector_t * * A bitvector_t consists of an array of words and an integer * representing the number of significant bits stored in the array. * The bits are packed as follows: the least significant bit is that * of word[0], while the most significant bit is the nth most * significant bit of word[m], where length = bits_per_word * m + n. * */ #define bits_per_word 32 #define bytes_per_word 4 typedef struct { uint32_t length; uint32_t *word; } bitvector_t; int bitvector_alloc(bitvector_t *v, unsigned long length); void bitvector_set_bit(bitvector_t *v, int bit_index); int bitvector_get_bit(const bitvector_t *v, int bit_index); int bitvector_print_hex(const bitvector_t *v, FILE *stream); int bitvector_set_from_hex(bitvector_t *v, char *string); #endif /* MATH_H */