/* * SpanDSP - a series of DSP components for telephony * * super_tone_rx.c - Flexible telephony supervisory tone detection. * * Written by Steve Underwood * * Copyright (C) 2003 Steve Underwood * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License version 2.1, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /*! \file */ #if defined(HAVE_CONFIG_H) #include "config.h" #endif #include #include #include #include #include #include #include #if defined(HAVE_TGMATH_H) #include #endif #if defined(HAVE_MATH_H) #include #endif #include "floating_fudge.h" #include "spandsp/telephony.h" #include "spandsp/fast_convert.h" #include "spandsp/complex.h" #include "spandsp/vector_float.h" #include "spandsp/complex_vector_float.h" #include "spandsp/tone_detect.h" #include "spandsp/tone_generate.h" #include "spandsp/super_tone_rx.h" #include "spandsp/private/super_tone_rx.h" #if defined(SPANDSP_USE_FIXED_POINT) #define DETECTION_THRESHOLD 16439 /* -42dBm0 */ #define TONE_TWIST 4 /* 6dB */ #define TONE_TO_TOTAL_ENERGY 64 /* -3dB */ #else #define DETECTION_THRESHOLD 269338317.0f /* -42dBm0 [((128.0*32768.0/1.4142)*10^((-42 - DBM0_MAX_SINE_POWER)/20.0))^2 => 269338317.0] */ #define TONE_TWIST 3.981f /* 6dB */ #define TONE_TO_TOTAL_ENERGY 1.995f /* 3dB */ #define DTMF_TO_TOTAL_ENERGY 64.152f /* -3dB [BINS*10^(-3/10.0)] */ #endif static int add_super_tone_freq(super_tone_rx_descriptor_t *desc, int freq) { int i; if (freq == 0) return -1; /* Look for an existing frequency */ for (i = 0; i < desc->used_frequencies; i++) { if (desc->pitches[i][0] == freq) return desc->pitches[i][1]; } /* Look for an existing tone which is very close. We may need to merge the detectors. */ for (i = 0; i < desc->used_frequencies; i++) { if ((desc->pitches[i][0] - 10) <= freq && freq <= (desc->pitches[i][0] + 10)) { /* Merge these two */ desc->pitches[desc->used_frequencies][0] = freq; desc->pitches[desc->used_frequencies][1] = i; make_goertzel_descriptor(&desc->desc[desc->pitches[i][1]], (float) (freq + desc->pitches[i][0])/2, BINS); desc->used_frequencies++; return desc->pitches[i][1]; } } desc->pitches[i][0] = freq; desc->pitches[i][1] = desc->monitored_frequencies; if (desc->monitored_frequencies%5 == 0) { desc->desc = (goertzel_descriptor_t *) realloc(desc->desc, (desc->monitored_frequencies + 5)*sizeof(goertzel_descriptor_t)); } make_goertzel_descriptor(&desc->desc[desc->monitored_frequencies++], (float) freq, BINS); desc->used_frequencies++; return desc->pitches[i][1]; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) super_tone_rx_add_tone(super_tone_rx_descriptor_t *desc) { if (desc->tones%5 == 0) { desc->tone_list = (super_tone_rx_segment_t **) realloc(desc->tone_list, (desc->tones + 5)*sizeof(super_tone_rx_segment_t *)); desc->tone_segs = (int *) realloc(desc->tone_segs, (desc->tones + 5)*sizeof(int)); } desc->tone_list[desc->tones] = NULL; desc->tone_segs[desc->tones] = 0; desc->tones++; return desc->tones - 1; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) super_tone_rx_add_element(super_tone_rx_descriptor_t *desc, int tone, int f1, int f2, int min, int max) { int step; step = desc->tone_segs[tone]; if (step%5 == 0) { desc->tone_list[tone] = (super_tone_rx_segment_t *) realloc(desc->tone_list[tone], (step + 5)*sizeof(super_tone_rx_segment_t)); } desc->tone_list[tone][step].f1 = add_super_tone_freq(desc, f1); desc->tone_list[tone][step].f2 = add_super_tone_freq(desc, f2); desc->tone_list[tone][step].min_duration = min*8; desc->tone_list[tone][step].max_duration = (max == 0) ? 0x7FFFFFFF : max*8; desc->tone_segs[tone]++; return step; } /*- End of function --------------------------------------------------------*/ static int test_cadence(super_tone_rx_segment_t *pattern, int steps, super_tone_rx_segment_t *test, int rotation) { int i; int j; if (rotation >= 0) { /* Check only for the sustaining of a tone in progress. This means we only need to check each block if the latest step is compatible with the tone template. */ if (steps < 0) { /* A -ve value for steps indicates we just changed step, and need to check the last one ended within spec. If we don't do this extra test a low duration segment might be accepted as OK. */ steps = -steps; j = (rotation + steps - 2)%steps; if (pattern[j].f1 != test[8].f1 || pattern[j].f2 != test[8].f2) return 0; if (pattern[j].min_duration > test[8].min_duration*BINS || pattern[j].max_duration < test[8].min_duration*BINS) { return 0; } } j = (rotation + steps - 1)%steps; if (pattern[j].f1 != test[9].f1 || pattern[j].f2 != test[9].f2) return 0; if (pattern[j].max_duration < test[9].min_duration*BINS) return 0; } else { /* Look for a complete template match. */ for (i = 0; i < steps; i++) { j = i + 10 - steps; if (pattern[i].f1 != test[j].f1 || pattern[i].f2 != test[j].f2) return 0; if (pattern[i].min_duration > test[j].min_duration*BINS || pattern[i].max_duration < test[j].min_duration*BINS) { return 0; } } } return 1; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(super_tone_rx_descriptor_t *) super_tone_rx_make_descriptor(super_tone_rx_descriptor_t *desc) { if (desc == NULL) { if ((desc = (super_tone_rx_descriptor_t *) malloc(sizeof(*desc))) == NULL) return NULL; } desc->tone_list = NULL; desc->tone_segs = NULL; desc->used_frequencies = 0; desc->monitored_frequencies = 0; desc->desc = NULL; desc->tones = 0; return desc; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) super_tone_rx_free_descriptor(super_tone_rx_descriptor_t *desc) { int i; if (desc) { for (i = 0; i < desc->tones; i++) { if (desc->tone_list[i]) free(desc->tone_list[i]); } if (desc->tone_list) free(desc->tone_list); if (desc->tone_segs) free(desc->tone_segs); if (desc->desc) free(desc->desc); free(desc); } return 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(void) super_tone_rx_segment_callback(super_tone_rx_state_t *s, void (*callback)(void *data, int f1, int f2, int duration)) { s->segment_callback = callback; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(super_tone_rx_state_t *) super_tone_rx_init(super_tone_rx_state_t *s, super_tone_rx_descriptor_t *desc, tone_report_func_t callback, void *user_data) { int i; if (desc == NULL) return NULL; if (callback == NULL) return NULL; if (s == NULL) { if ((s = (super_tone_rx_state_t *) malloc(sizeof(*s) + desc->monitored_frequencies*sizeof(goertzel_state_t))) == NULL) return NULL; } for (i = 0; i < 11; i++) { s->segments[i].f1 = -1; s->segments[i].f2 = -1; s->segments[i].min_duration = 0; } s->segment_callback = NULL; s->tone_callback = callback; s->callback_data = user_data; if (desc) s->desc = desc; s->detected_tone = -1; s->energy = 0.0f; for (i = 0; i < desc->monitored_frequencies; i++) goertzel_init(&s->state[i], &s->desc->desc[i]); return s; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) super_tone_rx_release(super_tone_rx_state_t *s) { return 0; } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) super_tone_rx_free(super_tone_rx_state_t *s) { if (s) free(s); return 0; } /*- End of function --------------------------------------------------------*/ static void super_tone_chunk(super_tone_rx_state_t *s) { int i; int j; int k1; int k2; #if defined(SPANDSP_USE_FIXED_POINT) int32_t res[BINS/2]; #else float res[BINS/2]; #endif for (i = 0; i < s->desc->monitored_frequencies; i++) res[i] = goertzel_result(&s->state[i]); /* Find our two best monitored frequencies, which also have adequate energy. */ if (s->energy < DETECTION_THRESHOLD) { k1 = -1; k2 = -1; } else { if (res[0] > res[1]) { k1 = 0; k2 = 1; } else { k1 = 1; k2 = 0; } for (j = 2; j < s->desc->monitored_frequencies; j++) { if (res[j] >= res[k1]) { k2 = k1; k1 = j; } else if (res[j] >= res[k2]) { k2 = j; } } if ((res[k1] + res[k2]) < TONE_TO_TOTAL_ENERGY*s->energy) { k1 = -1; k2 = -1; } else if (res[k1] > TONE_TWIST*res[k2]) { k2 = -1; } else if (k2 < k1) { j = k1; k1 = k2; k2 = j; } } /* See if this differs from last time. */ if (k1 != s->segments[10].f1 || k2 != s->segments[10].f2) { /* It is different, but this might just be a transitional quirk, or a one shot hiccup (eg due to noise). Only if this same thing is seen a second time should we change state. */ s->segments[10].f1 = k1; s->segments[10].f2 = k2; /* While things are hopping around, consider this a continuance of the previous state. */ s->segments[9].min_duration++; } else { if (k1 != s->segments[9].f1 || k2 != s->segments[9].f2) { if (s->detected_tone >= 0) { /* Test for the continuance of the existing tone pattern, based on our new knowledge of an entire segment length. */ if (!test_cadence(s->desc->tone_list[s->detected_tone], -s->desc->tone_segs[s->detected_tone], s->segments, s->rotation++)) { s->detected_tone = -1; s->tone_callback(s->callback_data, s->detected_tone, -10, 0); } } if (s->segment_callback) { s->segment_callback(s->callback_data, s->segments[9].f1, s->segments[9].f2, s->segments[9].min_duration*BINS/8); } memcpy (&s->segments[0], &s->segments[1], 9*sizeof(s->segments[0])); s->segments[9].f1 = k1; s->segments[9].f2 = k2; s->segments[9].min_duration = 1; } else { /* This is a continuance of the previous state */ if (s->detected_tone >= 0) { /* Test for the continuance of the existing tone pattern. We must do this here, so we can sense the discontinuance of the tone on an excessively long segment. */ if (!test_cadence(s->desc->tone_list[s->detected_tone], s->desc->tone_segs[s->detected_tone], s->segments, s->rotation)) { s->detected_tone = -1; s->tone_callback(s->callback_data, s->detected_tone, -10, 0); } } s->segments[9].min_duration++; } } if (s->detected_tone < 0) { /* Test for the start of any of the monitored tone patterns */ for (j = 0; j < s->desc->tones; j++) { if (test_cadence(s->desc->tone_list[j], s->desc->tone_segs[j], s->segments, -1)) { s->detected_tone = j; s->rotation = 0; s->tone_callback(s->callback_data, s->detected_tone, -10, 0); break; } } } #if defined(SPANDSP_USE_FIXED_POINT) s->energy = 0; #else s->energy = 0.0f; #endif } /*- End of function --------------------------------------------------------*/ SPAN_DECLARE(int) super_tone_rx(super_tone_rx_state_t *s, const int16_t amp[], int samples) { int i; int x; int sample; #if defined(SPANDSP_USE_FIXED_POINT) int16_t xamp; #else float xamp; #endif x = 0; for (sample = 0; sample < samples; sample += x) { for (i = 0; i < s->desc->monitored_frequencies; i++) x = goertzel_update(&s->state[i], amp + sample, samples - sample); for (i = 0; i < x; i++) { xamp = goertzel_preadjust_amp(amp[sample + i]); #if defined(SPANDSP_USE_FIXED_POINT) s->energy += ((int32_t) xamp*xamp); #else s->energy += xamp*xamp; #endif } if (s->state[0].current_sample >= BINS) { /* We have finished a Goertzel block. */ super_tone_chunk(s); s->energy = 0; } } return samples; } /*- End of function --------------------------------------------------------*/ /*- End of file ------------------------------------------------------------*/