/* * SpanDSP - a series of DSP components for telephony * * oki_adpcm_tests.c - Test the Oki (Dialogic) ADPCM encode and decode * software at 24kbps and 32kbps. * * Written by Steve Underwood * * Copyright (C) 2004 Steve Underwood * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /*! \file */ /*! \page oki_adpcm_tests_page OKI (Dialogic) ADPCM tests \section oki_adpcm_tests_page_sec_1 What does it do? To perform a general audio quality test, oki_adpcm_tests should be run. The test file ../test-data/local/short_nb_voice.wav will be compressed to the specified bit rate, decompressed, and the resulting audio stored in post_oki_adpcm.wav. A simple SNR test is automatically performed. Listening tests may be used for a more detailed evaluation of the degradation in quality caused by the compression. Both 32k bps and 24k bps compression may be tested. \section oki_adpcm_tests_page_sec_2 How is it used? */ #if defined(HAVE_CONFIG_H) #include "config.h" #endif #include #include #include #include #include #include #include //#if defined(WITH_SPANDSP_INTERNALS) #define SPANDSP_EXPOSE_INTERNAL_STRUCTURES //#endif #include "spandsp.h" #include "spandsp-sim.h" #define IN_FILE_NAME "../test-data/local/short_nb_voice.wav" #define OUT_FILE_NAME "post_oki_adpcm.wav" #define HIST_LEN 1000 int main(int argc, char *argv[]) { int i; SNDFILE *inhandle; SNDFILE *outhandle; int frames; int dec_frames; int oki_bytes; int bit_rate; double pre_energy; double post_energy; double diff_energy; int16_t pre_amp[HIST_LEN]; int16_t post_amp[HIST_LEN]; uint8_t oki_data[HIST_LEN]; int16_t history[HIST_LEN]; int hist_in; int hist_out; oki_adpcm_state_t *oki_enc_state; oki_adpcm_state_t *oki_dec_state; oki_adpcm_state_t *oki_dec_state2; int xx; int total_pre_samples; int total_compressed_bytes; int total_post_samples; int successive_08_bytes; int successive_80_bytes; int encoded_fd; const char *encoded_file_name; const char *in_file_name; int log_encoded_data; int opt; bit_rate = 32000; encoded_file_name = NULL; in_file_name = IN_FILE_NAME; log_encoded_data = FALSE; while ((opt = getopt(argc, argv, "2d:i:l")) != -1) { switch (opt) { case '2': bit_rate = 24000; break; case 'd': encoded_file_name = optarg; break; case 'i': in_file_name = optarg; break; case 'l': log_encoded_data = TRUE; break; default: //usage(); exit(2); break; } } encoded_fd = -1; inhandle = NULL; oki_enc_state = NULL; if (encoded_file_name) { if ((encoded_fd = open(encoded_file_name, O_RDONLY)) < 0) { fprintf(stderr, " Cannot open encoded file '%s'\n", encoded_file_name); exit(2); } } else { if ((inhandle = sf_open_telephony_read(in_file_name, 1)) == NULL) { fprintf(stderr, " Cannot open audio file '%s'\n", in_file_name); exit(2); } if ((oki_enc_state = oki_adpcm_init(NULL, bit_rate)) == NULL) { fprintf(stderr, " Cannot create encoder\n"); exit(2); } } if ((outhandle = sf_open_telephony_write(OUT_FILE_NAME, 1)) == NULL) { fprintf(stderr, " Cannot create audio file '%s'\n", OUT_FILE_NAME); exit(2); } if ((oki_dec_state = oki_adpcm_init(NULL, bit_rate)) == NULL) { fprintf(stderr, " Cannot create decoder\n"); exit(2); } if ((oki_dec_state2 = oki_adpcm_init(NULL, bit_rate)) == NULL) { fprintf(stderr, " Cannot create decoder\n"); exit(2); } hist_in = 0; if (bit_rate == 32000) hist_out = 0; else hist_out = HIST_LEN - 27; memset(history, 0, sizeof(history)); pre_energy = 0.0; post_energy = 0.0; diff_energy = 0.0; total_pre_samples = 0; total_compressed_bytes = 0; total_post_samples = 0; if (encoded_file_name) { /* Decode a file of OKI ADPCM code to a linear wave file */ while ((oki_bytes = read(encoded_fd, oki_data, 80)) > 0) { total_compressed_bytes += oki_bytes; dec_frames = oki_adpcm_decode(oki_dec_state, post_amp, oki_data, oki_bytes); total_post_samples += dec_frames; for (i = 0; i < dec_frames; i++) { post_energy += (double) post_amp[i] * (double) post_amp[i]; xx = post_amp[i] - history[hist_out++]; if (hist_out >= HIST_LEN) hist_out = 0; diff_energy += (double) xx * (double) xx; } sf_writef_short(outhandle, post_amp, dec_frames); } close(encoded_fd); } else { /* Perform a linear wave file -> OKI ADPCM -> linear wave file cycle. Along the way check the decoder resets on the sequence specified for this codec, and the gain and worst case sample distortion. */ successive_08_bytes = 0; successive_80_bytes = 0; while ((frames = sf_readf_short(inhandle, pre_amp, 159))) { total_pre_samples += frames; oki_bytes = oki_adpcm_encode(oki_enc_state, oki_data, pre_amp, frames); if (log_encoded_data) write(1, oki_data, oki_bytes); total_compressed_bytes += oki_bytes; /* Look for a condition which is defined as something which should cause a reset of the decoder (48 samples of 0, 8, 0, 8, etc.), and verify that it really does. Use a second decode, which we feed byte by byte, for this. */ for (i = 0; i < oki_bytes; i++) { oki_adpcm_decode(oki_dec_state2, post_amp, &oki_data[i], 1); if (oki_data[i] == 0x08) successive_08_bytes++; else successive_08_bytes = 0; if (oki_data[i] == 0x80) successive_80_bytes++; else successive_80_bytes = 0; if (successive_08_bytes == 24 || successive_80_bytes == 24) { if (oki_dec_state2->step_index != 0) { fprintf(stderr, "Decoder reset failure\n"); exit(2); } } } dec_frames = oki_adpcm_decode(oki_dec_state, post_amp, oki_data, oki_bytes); total_post_samples += dec_frames; for (i = 0; i < frames; i++) { history[hist_in++] = pre_amp[i]; if (hist_in >= HIST_LEN) hist_in = 0; pre_energy += (double) pre_amp[i] * (double) pre_amp[i]; } for (i = 0; i < dec_frames; i++) { post_energy += (double) post_amp[i] * (double) post_amp[i]; xx = post_amp[i] - history[hist_out++]; if (hist_out >= HIST_LEN) hist_out = 0; diff_energy += (double) xx * (double) xx; //post_amp[i] = xx; } sf_writef_short(outhandle, post_amp, dec_frames); } printf("Pre samples: %d\n", total_pre_samples); printf("Compressed bytes: %d\n", total_compressed_bytes); printf("Post samples: %d\n", total_post_samples); printf("Output energy is %f%% of input energy.\n", 100.0*post_energy/pre_energy); printf("Residual energy is %f%% of the total.\n", 100.0*diff_energy/post_energy); if (bit_rate == 32000) { if (fabs(1.0 - post_energy/pre_energy) > 0.01 || fabs(diff_energy/post_energy) > 0.01) { printf("Tests failed.\n"); exit(2); } } else { if (fabs(1.0 - post_energy/pre_energy) > 0.11 || fabs(diff_energy/post_energy) > 0.05) { printf("Tests failed.\n"); exit(2); } } oki_adpcm_release(oki_enc_state); if (sf_close_telephony(inhandle)) { fprintf(stderr, " Cannot close audio file '%s'\n", in_file_name); exit(2); } } oki_adpcm_release(oki_dec_state); oki_adpcm_release(oki_dec_state2); if (sf_close_telephony(outhandle)) { fprintf(stderr, " Cannot close audio file '%s'\n", OUT_FILE_NAME); exit(2); } printf("Tests passed.\n"); return 0; } /*- End of function --------------------------------------------------------*/ /*- End of file ------------------------------------------------------------*/