/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "libyuv/compare.h" #include "libyuv/convert.h" #include "libyuv/convert_argb.h" #include "libyuv/convert_from.h" #include "libyuv/convert_from_argb.h" #include "libyuv/cpu_id.h" #include "libyuv/planar_functions.h" #include "libyuv/rotate.h" #include "libyuv/row.h" // For Sobel #include "../unit_test/unit_test.h" namespace libyuv { TEST_F(LibYUVPlanarTest, TestAttenuate) { const int kSize = 1280 * 4; align_buffer_64(orig_pixels, kSize); align_buffer_64(atten_pixels, kSize); align_buffer_64(unatten_pixels, kSize); align_buffer_64(atten2_pixels, kSize); // Test unattenuation clamps orig_pixels[0 * 4 + 0] = 200u; orig_pixels[0 * 4 + 1] = 129u; orig_pixels[0 * 4 + 2] = 127u; orig_pixels[0 * 4 + 3] = 128u; // Test unattenuation transparent and opaque are unaffected orig_pixels[1 * 4 + 0] = 16u; orig_pixels[1 * 4 + 1] = 64u; orig_pixels[1 * 4 + 2] = 192u; orig_pixels[1 * 4 + 3] = 0u; orig_pixels[2 * 4 + 0] = 16u; orig_pixels[2 * 4 + 1] = 64u; orig_pixels[2 * 4 + 2] = 192u; orig_pixels[2 * 4 + 3] = 255u; orig_pixels[3 * 4 + 0] = 16u; orig_pixels[3 * 4 + 1] = 64u; orig_pixels[3 * 4 + 2] = 192u; orig_pixels[3 * 4 + 3] = 128u; ARGBUnattenuate(orig_pixels, 0, unatten_pixels, 0, 4, 1); EXPECT_EQ(255u, unatten_pixels[0 * 4 + 0]); EXPECT_EQ(255u, unatten_pixels[0 * 4 + 1]); EXPECT_EQ(254u, unatten_pixels[0 * 4 + 2]); EXPECT_EQ(128u, unatten_pixels[0 * 4 + 3]); EXPECT_EQ(0u, unatten_pixels[1 * 4 + 0]); EXPECT_EQ(0u, unatten_pixels[1 * 4 + 1]); EXPECT_EQ(0u, unatten_pixels[1 * 4 + 2]); EXPECT_EQ(0u, unatten_pixels[1 * 4 + 3]); EXPECT_EQ(16u, unatten_pixels[2 * 4 + 0]); EXPECT_EQ(64u, unatten_pixels[2 * 4 + 1]); EXPECT_EQ(192u, unatten_pixels[2 * 4 + 2]); EXPECT_EQ(255u, unatten_pixels[2 * 4 + 3]); EXPECT_EQ(32u, unatten_pixels[3 * 4 + 0]); EXPECT_EQ(128u, unatten_pixels[3 * 4 + 1]); EXPECT_EQ(255u, unatten_pixels[3 * 4 + 2]); EXPECT_EQ(128u, unatten_pixels[3 * 4 + 3]); for (int i = 0; i < 1280; ++i) { orig_pixels[i * 4 + 0] = i; orig_pixels[i * 4 + 1] = i / 2; orig_pixels[i * 4 + 2] = i / 3; orig_pixels[i * 4 + 3] = i; } ARGBAttenuate(orig_pixels, 0, atten_pixels, 0, 1280, 1); ARGBUnattenuate(atten_pixels, 0, unatten_pixels, 0, 1280, 1); for (int i = 0; i < benchmark_pixels_div1280_; ++i) { ARGBAttenuate(unatten_pixels, 0, atten2_pixels, 0, 1280, 1); } for (int i = 0; i < 1280; ++i) { EXPECT_NEAR(atten_pixels[i * 4 + 0], atten2_pixels[i * 4 + 0], 2); EXPECT_NEAR(atten_pixels[i * 4 + 1], atten2_pixels[i * 4 + 1], 2); EXPECT_NEAR(atten_pixels[i * 4 + 2], atten2_pixels[i * 4 + 2], 2); EXPECT_NEAR(atten_pixels[i * 4 + 3], atten2_pixels[i * 4 + 3], 2); } // Make sure transparent, 50% and opaque are fully accurate. EXPECT_EQ(0, atten_pixels[0 * 4 + 0]); EXPECT_EQ(0, atten_pixels[0 * 4 + 1]); EXPECT_EQ(0, atten_pixels[0 * 4 + 2]); EXPECT_EQ(0, atten_pixels[0 * 4 + 3]); EXPECT_EQ(64, atten_pixels[128 * 4 + 0]); EXPECT_EQ(32, atten_pixels[128 * 4 + 1]); EXPECT_EQ(21, atten_pixels[128 * 4 + 2]); EXPECT_EQ(128, atten_pixels[128 * 4 + 3]); EXPECT_NEAR(255, atten_pixels[255 * 4 + 0], 1); EXPECT_NEAR(127, atten_pixels[255 * 4 + 1], 1); EXPECT_NEAR(85, atten_pixels[255 * 4 + 2], 1); EXPECT_EQ(255, atten_pixels[255 * 4 + 3]); free_aligned_buffer_64(atten2_pixels); free_aligned_buffer_64(unatten_pixels); free_aligned_buffer_64(atten_pixels); free_aligned_buffer_64(orig_pixels); } static int TestAttenuateI(int width, int height, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info, int invert, int off) { if (width < 1) { width = 1; } const int kBpp = 4; const int kStride = width * kBpp; align_buffer_64(src_argb, kStride * height + off); align_buffer_64(dst_argb_c, kStride * height); align_buffer_64(dst_argb_opt, kStride * height); for (int i = 0; i < kStride * height; ++i) { src_argb[i + off] = (fastrand() & 0xff); } memset(dst_argb_c, 0, kStride * height); memset(dst_argb_opt, 0, kStride * height); MaskCpuFlags(disable_cpu_flags); ARGBAttenuate(src_argb + off, kStride, dst_argb_c, kStride, width, invert * height); MaskCpuFlags(benchmark_cpu_info); for (int i = 0; i < benchmark_iterations; ++i) { ARGBAttenuate(src_argb + off, kStride, dst_argb_opt, kStride, width, invert * height); } int max_diff = 0; for (int i = 0; i < kStride * height; ++i) { int abs_diff = abs(static_cast(dst_argb_c[i]) - static_cast(dst_argb_opt[i])); if (abs_diff > max_diff) { max_diff = abs_diff; } } free_aligned_buffer_64(src_argb); free_aligned_buffer_64(dst_argb_c); free_aligned_buffer_64(dst_argb_opt); return max_diff; } TEST_F(LibYUVPlanarTest, ARGBAttenuate_Any) { int max_diff = TestAttenuateI(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_LE(max_diff, 2); } TEST_F(LibYUVPlanarTest, ARGBAttenuate_Unaligned) { int max_diff = TestAttenuateI(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 1); EXPECT_LE(max_diff, 2); } TEST_F(LibYUVPlanarTest, ARGBAttenuate_Invert) { int max_diff = TestAttenuateI(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, -1, 0); EXPECT_LE(max_diff, 2); } TEST_F(LibYUVPlanarTest, ARGBAttenuate_Opt) { int max_diff = TestAttenuateI(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_LE(max_diff, 2); } static int TestUnattenuateI(int width, int height, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info, int invert, int off) { if (width < 1) { width = 1; } const int kBpp = 4; const int kStride = width * kBpp; align_buffer_64(src_argb, kStride * height + off); align_buffer_64(dst_argb_c, kStride * height); align_buffer_64(dst_argb_opt, kStride * height); for (int i = 0; i < kStride * height; ++i) { src_argb[i + off] = (fastrand() & 0xff); } ARGBAttenuate(src_argb + off, kStride, src_argb + off, kStride, width, height); memset(dst_argb_c, 0, kStride * height); memset(dst_argb_opt, 0, kStride * height); MaskCpuFlags(disable_cpu_flags); ARGBUnattenuate(src_argb + off, kStride, dst_argb_c, kStride, width, invert * height); MaskCpuFlags(benchmark_cpu_info); for (int i = 0; i < benchmark_iterations; ++i) { ARGBUnattenuate(src_argb + off, kStride, dst_argb_opt, kStride, width, invert * height); } int max_diff = 0; for (int i = 0; i < kStride * height; ++i) { int abs_diff = abs(static_cast(dst_argb_c[i]) - static_cast(dst_argb_opt[i])); if (abs_diff > max_diff) { max_diff = abs_diff; } } free_aligned_buffer_64(src_argb); free_aligned_buffer_64(dst_argb_c); free_aligned_buffer_64(dst_argb_opt); return max_diff; } TEST_F(LibYUVPlanarTest, ARGBUnattenuate_Any) { int max_diff = TestUnattenuateI(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_LE(max_diff, 2); } TEST_F(LibYUVPlanarTest, ARGBUnattenuate_Unaligned) { int max_diff = TestUnattenuateI(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 1); EXPECT_LE(max_diff, 2); } TEST_F(LibYUVPlanarTest, ARGBUnattenuate_Invert) { int max_diff = TestUnattenuateI(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, -1, 0); EXPECT_LE(max_diff, 2); } TEST_F(LibYUVPlanarTest, ARGBUnattenuate_Opt) { int max_diff = TestUnattenuateI(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_LE(max_diff, 2); } TEST_F(LibYUVPlanarTest, TestARGBComputeCumulativeSum) { SIMD_ALIGNED(uint8 orig_pixels[16][16][4]); SIMD_ALIGNED(int32 added_pixels[16][16][4]); for (int y = 0; y < 16; ++y) { for (int x = 0; x < 16; ++x) { orig_pixels[y][x][0] = 1u; orig_pixels[y][x][1] = 2u; orig_pixels[y][x][2] = 3u; orig_pixels[y][x][3] = 255u; } } ARGBComputeCumulativeSum(&orig_pixels[0][0][0], 16 * 4, &added_pixels[0][0][0], 16 * 4, 16, 16); for (int y = 0; y < 16; ++y) { for (int x = 0; x < 16; ++x) { EXPECT_EQ((x + 1) * (y + 1), added_pixels[y][x][0]); EXPECT_EQ((x + 1) * (y + 1) * 2, added_pixels[y][x][1]); EXPECT_EQ((x + 1) * (y + 1) * 3, added_pixels[y][x][2]); EXPECT_EQ((x + 1) * (y + 1) * 255, added_pixels[y][x][3]); } } } TEST_F(LibYUVPlanarTest, TestARGBGray) { SIMD_ALIGNED(uint8 orig_pixels[1280][4]); memset(orig_pixels, 0, sizeof(orig_pixels)); // Test blue orig_pixels[0][0] = 255u; orig_pixels[0][1] = 0u; orig_pixels[0][2] = 0u; orig_pixels[0][3] = 128u; // Test green orig_pixels[1][0] = 0u; orig_pixels[1][1] = 255u; orig_pixels[1][2] = 0u; orig_pixels[1][3] = 0u; // Test red orig_pixels[2][0] = 0u; orig_pixels[2][1] = 0u; orig_pixels[2][2] = 255u; orig_pixels[2][3] = 255u; // Test black orig_pixels[3][0] = 0u; orig_pixels[3][1] = 0u; orig_pixels[3][2] = 0u; orig_pixels[3][3] = 255u; // Test white orig_pixels[4][0] = 255u; orig_pixels[4][1] = 255u; orig_pixels[4][2] = 255u; orig_pixels[4][3] = 255u; // Test color orig_pixels[5][0] = 16u; orig_pixels[5][1] = 64u; orig_pixels[5][2] = 192u; orig_pixels[5][3] = 224u; // Do 16 to test asm version. ARGBGray(&orig_pixels[0][0], 0, 0, 0, 16, 1); EXPECT_EQ(30u, orig_pixels[0][0]); EXPECT_EQ(30u, orig_pixels[0][1]); EXPECT_EQ(30u, orig_pixels[0][2]); EXPECT_EQ(128u, orig_pixels[0][3]); EXPECT_EQ(149u, orig_pixels[1][0]); EXPECT_EQ(149u, orig_pixels[1][1]); EXPECT_EQ(149u, orig_pixels[1][2]); EXPECT_EQ(0u, orig_pixels[1][3]); EXPECT_EQ(76u, orig_pixels[2][0]); EXPECT_EQ(76u, orig_pixels[2][1]); EXPECT_EQ(76u, orig_pixels[2][2]); EXPECT_EQ(255u, orig_pixels[2][3]); EXPECT_EQ(0u, orig_pixels[3][0]); EXPECT_EQ(0u, orig_pixels[3][1]); EXPECT_EQ(0u, orig_pixels[3][2]); EXPECT_EQ(255u, orig_pixels[3][3]); EXPECT_EQ(255u, orig_pixels[4][0]); EXPECT_EQ(255u, orig_pixels[4][1]); EXPECT_EQ(255u, orig_pixels[4][2]); EXPECT_EQ(255u, orig_pixels[4][3]); EXPECT_EQ(96u, orig_pixels[5][0]); EXPECT_EQ(96u, orig_pixels[5][1]); EXPECT_EQ(96u, orig_pixels[5][2]); EXPECT_EQ(224u, orig_pixels[5][3]); for (int i = 0; i < 1280; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i; } for (int i = 0; i < benchmark_pixels_div1280_; ++i) { ARGBGray(&orig_pixels[0][0], 0, 0, 0, 1280, 1); } } TEST_F(LibYUVPlanarTest, TestARGBGrayTo) { SIMD_ALIGNED(uint8 orig_pixels[1280][4]); SIMD_ALIGNED(uint8 gray_pixels[1280][4]); memset(orig_pixels, 0, sizeof(orig_pixels)); // Test blue orig_pixels[0][0] = 255u; orig_pixels[0][1] = 0u; orig_pixels[0][2] = 0u; orig_pixels[0][3] = 128u; // Test green orig_pixels[1][0] = 0u; orig_pixels[1][1] = 255u; orig_pixels[1][2] = 0u; orig_pixels[1][3] = 0u; // Test red orig_pixels[2][0] = 0u; orig_pixels[2][1] = 0u; orig_pixels[2][2] = 255u; orig_pixels[2][3] = 255u; // Test black orig_pixels[3][0] = 0u; orig_pixels[3][1] = 0u; orig_pixels[3][2] = 0u; orig_pixels[3][3] = 255u; // Test white orig_pixels[4][0] = 255u; orig_pixels[4][1] = 255u; orig_pixels[4][2] = 255u; orig_pixels[4][3] = 255u; // Test color orig_pixels[5][0] = 16u; orig_pixels[5][1] = 64u; orig_pixels[5][2] = 192u; orig_pixels[5][3] = 224u; // Do 16 to test asm version. ARGBGrayTo(&orig_pixels[0][0], 0, &gray_pixels[0][0], 0, 16, 1); EXPECT_EQ(30u, gray_pixels[0][0]); EXPECT_EQ(30u, gray_pixels[0][1]); EXPECT_EQ(30u, gray_pixels[0][2]); EXPECT_EQ(128u, gray_pixels[0][3]); EXPECT_EQ(149u, gray_pixels[1][0]); EXPECT_EQ(149u, gray_pixels[1][1]); EXPECT_EQ(149u, gray_pixels[1][2]); EXPECT_EQ(0u, gray_pixels[1][3]); EXPECT_EQ(76u, gray_pixels[2][0]); EXPECT_EQ(76u, gray_pixels[2][1]); EXPECT_EQ(76u, gray_pixels[2][2]); EXPECT_EQ(255u, gray_pixels[2][3]); EXPECT_EQ(0u, gray_pixels[3][0]); EXPECT_EQ(0u, gray_pixels[3][1]); EXPECT_EQ(0u, gray_pixels[3][2]); EXPECT_EQ(255u, gray_pixels[3][3]); EXPECT_EQ(255u, gray_pixels[4][0]); EXPECT_EQ(255u, gray_pixels[4][1]); EXPECT_EQ(255u, gray_pixels[4][2]); EXPECT_EQ(255u, gray_pixels[4][3]); EXPECT_EQ(96u, gray_pixels[5][0]); EXPECT_EQ(96u, gray_pixels[5][1]); EXPECT_EQ(96u, gray_pixels[5][2]); EXPECT_EQ(224u, gray_pixels[5][3]); for (int i = 0; i < 1280; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i; } for (int i = 0; i < benchmark_pixels_div1280_; ++i) { ARGBGrayTo(&orig_pixels[0][0], 0, &gray_pixels[0][0], 0, 1280, 1); } } TEST_F(LibYUVPlanarTest, TestARGBSepia) { SIMD_ALIGNED(uint8 orig_pixels[1280][4]); memset(orig_pixels, 0, sizeof(orig_pixels)); // Test blue orig_pixels[0][0] = 255u; orig_pixels[0][1] = 0u; orig_pixels[0][2] = 0u; orig_pixels[0][3] = 128u; // Test green orig_pixels[1][0] = 0u; orig_pixels[1][1] = 255u; orig_pixels[1][2] = 0u; orig_pixels[1][3] = 0u; // Test red orig_pixels[2][0] = 0u; orig_pixels[2][1] = 0u; orig_pixels[2][2] = 255u; orig_pixels[2][3] = 255u; // Test black orig_pixels[3][0] = 0u; orig_pixels[3][1] = 0u; orig_pixels[3][2] = 0u; orig_pixels[3][3] = 255u; // Test white orig_pixels[4][0] = 255u; orig_pixels[4][1] = 255u; orig_pixels[4][2] = 255u; orig_pixels[4][3] = 255u; // Test color orig_pixels[5][0] = 16u; orig_pixels[5][1] = 64u; orig_pixels[5][2] = 192u; orig_pixels[5][3] = 224u; // Do 16 to test asm version. ARGBSepia(&orig_pixels[0][0], 0, 0, 0, 16, 1); EXPECT_EQ(33u, orig_pixels[0][0]); EXPECT_EQ(43u, orig_pixels[0][1]); EXPECT_EQ(47u, orig_pixels[0][2]); EXPECT_EQ(128u, orig_pixels[0][3]); EXPECT_EQ(135u, orig_pixels[1][0]); EXPECT_EQ(175u, orig_pixels[1][1]); EXPECT_EQ(195u, orig_pixels[1][2]); EXPECT_EQ(0u, orig_pixels[1][3]); EXPECT_EQ(69u, orig_pixels[2][0]); EXPECT_EQ(89u, orig_pixels[2][1]); EXPECT_EQ(99u, orig_pixels[2][2]); EXPECT_EQ(255u, orig_pixels[2][3]); EXPECT_EQ(0u, orig_pixels[3][0]); EXPECT_EQ(0u, orig_pixels[3][1]); EXPECT_EQ(0u, orig_pixels[3][2]); EXPECT_EQ(255u, orig_pixels[3][3]); EXPECT_EQ(239u, orig_pixels[4][0]); EXPECT_EQ(255u, orig_pixels[4][1]); EXPECT_EQ(255u, orig_pixels[4][2]); EXPECT_EQ(255u, orig_pixels[4][3]); EXPECT_EQ(88u, orig_pixels[5][0]); EXPECT_EQ(114u, orig_pixels[5][1]); EXPECT_EQ(127u, orig_pixels[5][2]); EXPECT_EQ(224u, orig_pixels[5][3]); for (int i = 0; i < 1280; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i; } for (int i = 0; i < benchmark_pixels_div1280_; ++i) { ARGBSepia(&orig_pixels[0][0], 0, 0, 0, 1280, 1); } } TEST_F(LibYUVPlanarTest, TestARGBColorMatrix) { SIMD_ALIGNED(uint8 orig_pixels[1280][4]); SIMD_ALIGNED(uint8 dst_pixels_opt[1280][4]); SIMD_ALIGNED(uint8 dst_pixels_c[1280][4]); // Matrix for Sepia. SIMD_ALIGNED(static const int8 kRGBToSepia[]) = { 17 / 2, 68 / 2, 35 / 2, 0, 22 / 2, 88 / 2, 45 / 2, 0, 24 / 2, 98 / 2, 50 / 2, 0, 0, 0, 0, 64, // Copy alpha. }; memset(orig_pixels, 0, sizeof(orig_pixels)); // Test blue orig_pixels[0][0] = 255u; orig_pixels[0][1] = 0u; orig_pixels[0][2] = 0u; orig_pixels[0][3] = 128u; // Test green orig_pixels[1][0] = 0u; orig_pixels[1][1] = 255u; orig_pixels[1][2] = 0u; orig_pixels[1][3] = 0u; // Test red orig_pixels[2][0] = 0u; orig_pixels[2][1] = 0u; orig_pixels[2][2] = 255u; orig_pixels[2][3] = 255u; // Test color orig_pixels[3][0] = 16u; orig_pixels[3][1] = 64u; orig_pixels[3][2] = 192u; orig_pixels[3][3] = 224u; // Do 16 to test asm version. ARGBColorMatrix(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0, &kRGBToSepia[0], 16, 1); EXPECT_EQ(31u, dst_pixels_opt[0][0]); EXPECT_EQ(43u, dst_pixels_opt[0][1]); EXPECT_EQ(47u, dst_pixels_opt[0][2]); EXPECT_EQ(128u, dst_pixels_opt[0][3]); EXPECT_EQ(135u, dst_pixels_opt[1][0]); EXPECT_EQ(175u, dst_pixels_opt[1][1]); EXPECT_EQ(195u, dst_pixels_opt[1][2]); EXPECT_EQ(0u, dst_pixels_opt[1][3]); EXPECT_EQ(67u, dst_pixels_opt[2][0]); EXPECT_EQ(87u, dst_pixels_opt[2][1]); EXPECT_EQ(99u, dst_pixels_opt[2][2]); EXPECT_EQ(255u, dst_pixels_opt[2][3]); EXPECT_EQ(87u, dst_pixels_opt[3][0]); EXPECT_EQ(112u, dst_pixels_opt[3][1]); EXPECT_EQ(127u, dst_pixels_opt[3][2]); EXPECT_EQ(224u, dst_pixels_opt[3][3]); for (int i = 0; i < 1280; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i; } MaskCpuFlags(disable_cpu_flags_); ARGBColorMatrix(&orig_pixels[0][0], 0, &dst_pixels_c[0][0], 0, &kRGBToSepia[0], 1280, 1); MaskCpuFlags(benchmark_cpu_info_); for (int i = 0; i < benchmark_pixels_div1280_; ++i) { ARGBColorMatrix(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0, &kRGBToSepia[0], 1280, 1); } for (int i = 0; i < 1280; ++i) { EXPECT_EQ(dst_pixels_c[i][0], dst_pixels_opt[i][0]); EXPECT_EQ(dst_pixels_c[i][1], dst_pixels_opt[i][1]); EXPECT_EQ(dst_pixels_c[i][2], dst_pixels_opt[i][2]); EXPECT_EQ(dst_pixels_c[i][3], dst_pixels_opt[i][3]); } } TEST_F(LibYUVPlanarTest, TestRGBColorMatrix) { SIMD_ALIGNED(uint8 orig_pixels[1280][4]); // Matrix for Sepia. SIMD_ALIGNED(static const int8 kRGBToSepia[]) = { 17, 68, 35, 0, 22, 88, 45, 0, 24, 98, 50, 0, 0, 0, 0, 0, // Unused but makes matrix 16 bytes. }; memset(orig_pixels, 0, sizeof(orig_pixels)); // Test blue orig_pixels[0][0] = 255u; orig_pixels[0][1] = 0u; orig_pixels[0][2] = 0u; orig_pixels[0][3] = 128u; // Test green orig_pixels[1][0] = 0u; orig_pixels[1][1] = 255u; orig_pixels[1][2] = 0u; orig_pixels[1][3] = 0u; // Test red orig_pixels[2][0] = 0u; orig_pixels[2][1] = 0u; orig_pixels[2][2] = 255u; orig_pixels[2][3] = 255u; // Test color orig_pixels[3][0] = 16u; orig_pixels[3][1] = 64u; orig_pixels[3][2] = 192u; orig_pixels[3][3] = 224u; // Do 16 to test asm version. RGBColorMatrix(&orig_pixels[0][0], 0, &kRGBToSepia[0], 0, 0, 16, 1); EXPECT_EQ(31u, orig_pixels[0][0]); EXPECT_EQ(43u, orig_pixels[0][1]); EXPECT_EQ(47u, orig_pixels[0][2]); EXPECT_EQ(128u, orig_pixels[0][3]); EXPECT_EQ(135u, orig_pixels[1][0]); EXPECT_EQ(175u, orig_pixels[1][1]); EXPECT_EQ(195u, orig_pixels[1][2]); EXPECT_EQ(0u, orig_pixels[1][3]); EXPECT_EQ(67u, orig_pixels[2][0]); EXPECT_EQ(87u, orig_pixels[2][1]); EXPECT_EQ(99u, orig_pixels[2][2]); EXPECT_EQ(255u, orig_pixels[2][3]); EXPECT_EQ(87u, orig_pixels[3][0]); EXPECT_EQ(112u, orig_pixels[3][1]); EXPECT_EQ(127u, orig_pixels[3][2]); EXPECT_EQ(224u, orig_pixels[3][3]); for (int i = 0; i < 1280; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i; } for (int i = 0; i < benchmark_pixels_div1280_; ++i) { RGBColorMatrix(&orig_pixels[0][0], 0, &kRGBToSepia[0], 0, 0, 1280, 1); } } TEST_F(LibYUVPlanarTest, TestARGBColorTable) { SIMD_ALIGNED(uint8 orig_pixels[1280][4]); memset(orig_pixels, 0, sizeof(orig_pixels)); // Matrix for Sepia. static const uint8 kARGBTable[256 * 4] = { 1u, 2u, 3u, 4u, 5u, 6u, 7u, 8u, 9u, 10u, 11u, 12u, 13u, 14u, 15u, 16u, }; orig_pixels[0][0] = 0u; orig_pixels[0][1] = 0u; orig_pixels[0][2] = 0u; orig_pixels[0][3] = 0u; orig_pixels[1][0] = 1u; orig_pixels[1][1] = 1u; orig_pixels[1][2] = 1u; orig_pixels[1][3] = 1u; orig_pixels[2][0] = 2u; orig_pixels[2][1] = 2u; orig_pixels[2][2] = 2u; orig_pixels[2][3] = 2u; orig_pixels[3][0] = 0u; orig_pixels[3][1] = 1u; orig_pixels[3][2] = 2u; orig_pixels[3][3] = 3u; // Do 16 to test asm version. ARGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 16, 1); EXPECT_EQ(1u, orig_pixels[0][0]); EXPECT_EQ(2u, orig_pixels[0][1]); EXPECT_EQ(3u, orig_pixels[0][2]); EXPECT_EQ(4u, orig_pixels[0][3]); EXPECT_EQ(5u, orig_pixels[1][0]); EXPECT_EQ(6u, orig_pixels[1][1]); EXPECT_EQ(7u, orig_pixels[1][2]); EXPECT_EQ(8u, orig_pixels[1][3]); EXPECT_EQ(9u, orig_pixels[2][0]); EXPECT_EQ(10u, orig_pixels[2][1]); EXPECT_EQ(11u, orig_pixels[2][2]); EXPECT_EQ(12u, orig_pixels[2][3]); EXPECT_EQ(1u, orig_pixels[3][0]); EXPECT_EQ(6u, orig_pixels[3][1]); EXPECT_EQ(11u, orig_pixels[3][2]); EXPECT_EQ(16u, orig_pixels[3][3]); for (int i = 0; i < 1280; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i; } for (int i = 0; i < benchmark_pixels_div1280_; ++i) { ARGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 1280, 1); } } // Same as TestARGBColorTable except alpha does not change. TEST_F(LibYUVPlanarTest, TestRGBColorTable) { SIMD_ALIGNED(uint8 orig_pixels[1280][4]); memset(orig_pixels, 0, sizeof(orig_pixels)); // Matrix for Sepia. static const uint8 kARGBTable[256 * 4] = { 1u, 2u, 3u, 4u, 5u, 6u, 7u, 8u, 9u, 10u, 11u, 12u, 13u, 14u, 15u, 16u, }; orig_pixels[0][0] = 0u; orig_pixels[0][1] = 0u; orig_pixels[0][2] = 0u; orig_pixels[0][3] = 0u; orig_pixels[1][0] = 1u; orig_pixels[1][1] = 1u; orig_pixels[1][2] = 1u; orig_pixels[1][3] = 1u; orig_pixels[2][0] = 2u; orig_pixels[2][1] = 2u; orig_pixels[2][2] = 2u; orig_pixels[2][3] = 2u; orig_pixels[3][0] = 0u; orig_pixels[3][1] = 1u; orig_pixels[3][2] = 2u; orig_pixels[3][3] = 3u; // Do 16 to test asm version. RGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 16, 1); EXPECT_EQ(1u, orig_pixels[0][0]); EXPECT_EQ(2u, orig_pixels[0][1]); EXPECT_EQ(3u, orig_pixels[0][2]); EXPECT_EQ(0u, orig_pixels[0][3]); // Alpha unchanged. EXPECT_EQ(5u, orig_pixels[1][0]); EXPECT_EQ(6u, orig_pixels[1][1]); EXPECT_EQ(7u, orig_pixels[1][2]); EXPECT_EQ(1u, orig_pixels[1][3]); // Alpha unchanged. EXPECT_EQ(9u, orig_pixels[2][0]); EXPECT_EQ(10u, orig_pixels[2][1]); EXPECT_EQ(11u, orig_pixels[2][2]); EXPECT_EQ(2u, orig_pixels[2][3]); // Alpha unchanged. EXPECT_EQ(1u, orig_pixels[3][0]); EXPECT_EQ(6u, orig_pixels[3][1]); EXPECT_EQ(11u, orig_pixels[3][2]); EXPECT_EQ(3u, orig_pixels[3][3]); // Alpha unchanged. for (int i = 0; i < 1280; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i; } for (int i = 0; i < benchmark_pixels_div1280_; ++i) { RGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 1280, 1); } } TEST_F(LibYUVPlanarTest, TestARGBQuantize) { SIMD_ALIGNED(uint8 orig_pixels[1280][4]); for (int i = 0; i < 1280; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i; } ARGBQuantize(&orig_pixels[0][0], 0, (65536 + (8 / 2)) / 8, 8, 8 / 2, 0, 0, 1280, 1); for (int i = 0; i < 1280; ++i) { EXPECT_EQ((i / 8 * 8 + 8 / 2) & 255, orig_pixels[i][0]); EXPECT_EQ((i / 2 / 8 * 8 + 8 / 2) & 255, orig_pixels[i][1]); EXPECT_EQ((i / 3 / 8 * 8 + 8 / 2) & 255, orig_pixels[i][2]); EXPECT_EQ(i & 255, orig_pixels[i][3]); } for (int i = 0; i < benchmark_pixels_div1280_; ++i) { ARGBQuantize(&orig_pixels[0][0], 0, (65536 + (8 / 2)) / 8, 8, 8 / 2, 0, 0, 1280, 1); } } TEST_F(LibYUVPlanarTest, TestARGBMirror) { SIMD_ALIGNED(uint8 orig_pixels[1280][4]); SIMD_ALIGNED(uint8 dst_pixels[1280][4]); for (int i = 0; i < 1280; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i / 4; } ARGBMirror(&orig_pixels[0][0], 0, &dst_pixels[0][0], 0, 1280, 1); for (int i = 0; i < 1280; ++i) { EXPECT_EQ(i & 255, dst_pixels[1280 - 1 - i][0]); EXPECT_EQ((i / 2) & 255, dst_pixels[1280 - 1 - i][1]); EXPECT_EQ((i / 3) & 255, dst_pixels[1280 - 1 - i][2]); EXPECT_EQ((i / 4) & 255, dst_pixels[1280 - 1 - i][3]); } for (int i = 0; i < benchmark_pixels_div1280_; ++i) { ARGBMirror(&orig_pixels[0][0], 0, &dst_pixels[0][0], 0, 1280, 1); } } TEST_F(LibYUVPlanarTest, TestShade) { SIMD_ALIGNED(uint8 orig_pixels[1280][4]); SIMD_ALIGNED(uint8 shade_pixels[1280][4]); memset(orig_pixels, 0, sizeof(orig_pixels)); orig_pixels[0][0] = 10u; orig_pixels[0][1] = 20u; orig_pixels[0][2] = 40u; orig_pixels[0][3] = 80u; orig_pixels[1][0] = 0u; orig_pixels[1][1] = 0u; orig_pixels[1][2] = 0u; orig_pixels[1][3] = 255u; orig_pixels[2][0] = 0u; orig_pixels[2][1] = 0u; orig_pixels[2][2] = 0u; orig_pixels[2][3] = 0u; orig_pixels[3][0] = 0u; orig_pixels[3][1] = 0u; orig_pixels[3][2] = 0u; orig_pixels[3][3] = 0u; // Do 8 pixels to allow opt version to be used. ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 8, 1, 0x80ffffff); EXPECT_EQ(10u, shade_pixels[0][0]); EXPECT_EQ(20u, shade_pixels[0][1]); EXPECT_EQ(40u, shade_pixels[0][2]); EXPECT_EQ(40u, shade_pixels[0][3]); EXPECT_EQ(0u, shade_pixels[1][0]); EXPECT_EQ(0u, shade_pixels[1][1]); EXPECT_EQ(0u, shade_pixels[1][2]); EXPECT_EQ(128u, shade_pixels[1][3]); EXPECT_EQ(0u, shade_pixels[2][0]); EXPECT_EQ(0u, shade_pixels[2][1]); EXPECT_EQ(0u, shade_pixels[2][2]); EXPECT_EQ(0u, shade_pixels[2][3]); EXPECT_EQ(0u, shade_pixels[3][0]); EXPECT_EQ(0u, shade_pixels[3][1]); EXPECT_EQ(0u, shade_pixels[3][2]); EXPECT_EQ(0u, shade_pixels[3][3]); ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 8, 1, 0x80808080); EXPECT_EQ(5u, shade_pixels[0][0]); EXPECT_EQ(10u, shade_pixels[0][1]); EXPECT_EQ(20u, shade_pixels[0][2]); EXPECT_EQ(40u, shade_pixels[0][3]); ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 8, 1, 0x10204080); EXPECT_EQ(5u, shade_pixels[0][0]); EXPECT_EQ(5u, shade_pixels[0][1]); EXPECT_EQ(5u, shade_pixels[0][2]); EXPECT_EQ(5u, shade_pixels[0][3]); for (int i = 0; i < benchmark_pixels_div1280_; ++i) { ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 1280, 1, 0x80808080); } } TEST_F(LibYUVPlanarTest, TestARGBInterpolate) { SIMD_ALIGNED(uint8 orig_pixels_0[1280][4]); SIMD_ALIGNED(uint8 orig_pixels_1[1280][4]); SIMD_ALIGNED(uint8 interpolate_pixels[1280][4]); memset(orig_pixels_0, 0, sizeof(orig_pixels_0)); memset(orig_pixels_1, 0, sizeof(orig_pixels_1)); orig_pixels_0[0][0] = 16u; orig_pixels_0[0][1] = 32u; orig_pixels_0[0][2] = 64u; orig_pixels_0[0][3] = 128u; orig_pixels_0[1][0] = 0u; orig_pixels_0[1][1] = 0u; orig_pixels_0[1][2] = 0u; orig_pixels_0[1][3] = 255u; orig_pixels_0[2][0] = 0u; orig_pixels_0[2][1] = 0u; orig_pixels_0[2][2] = 0u; orig_pixels_0[2][3] = 0u; orig_pixels_0[3][0] = 0u; orig_pixels_0[3][1] = 0u; orig_pixels_0[3][2] = 0u; orig_pixels_0[3][3] = 0u; orig_pixels_1[0][0] = 0u; orig_pixels_1[0][1] = 0u; orig_pixels_1[0][2] = 0u; orig_pixels_1[0][3] = 0u; orig_pixels_1[1][0] = 0u; orig_pixels_1[1][1] = 0u; orig_pixels_1[1][2] = 0u; orig_pixels_1[1][3] = 0u; orig_pixels_1[2][0] = 0u; orig_pixels_1[2][1] = 0u; orig_pixels_1[2][2] = 0u; orig_pixels_1[2][3] = 0u; orig_pixels_1[3][0] = 255u; orig_pixels_1[3][1] = 255u; orig_pixels_1[3][2] = 255u; orig_pixels_1[3][3] = 255u; ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0, &interpolate_pixels[0][0], 0, 4, 1, 128); EXPECT_EQ(8u, interpolate_pixels[0][0]); EXPECT_EQ(16u, interpolate_pixels[0][1]); EXPECT_EQ(32u, interpolate_pixels[0][2]); EXPECT_EQ(64u, interpolate_pixels[0][3]); EXPECT_EQ(0u, interpolate_pixels[1][0]); EXPECT_EQ(0u, interpolate_pixels[1][1]); EXPECT_EQ(0u, interpolate_pixels[1][2]); EXPECT_EQ(128u, interpolate_pixels[1][3]); EXPECT_EQ(0u, interpolate_pixels[2][0]); EXPECT_EQ(0u, interpolate_pixels[2][1]); EXPECT_EQ(0u, interpolate_pixels[2][2]); EXPECT_EQ(0u, interpolate_pixels[2][3]); EXPECT_EQ(128u, interpolate_pixels[3][0]); EXPECT_EQ(128u, interpolate_pixels[3][1]); EXPECT_EQ(128u, interpolate_pixels[3][2]); EXPECT_EQ(128u, interpolate_pixels[3][3]); ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0, &interpolate_pixels[0][0], 0, 4, 1, 0); EXPECT_EQ(16u, interpolate_pixels[0][0]); EXPECT_EQ(32u, interpolate_pixels[0][1]); EXPECT_EQ(64u, interpolate_pixels[0][2]); EXPECT_EQ(128u, interpolate_pixels[0][3]); ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0, &interpolate_pixels[0][0], 0, 4, 1, 192); EXPECT_EQ(4u, interpolate_pixels[0][0]); EXPECT_EQ(8u, interpolate_pixels[0][1]); EXPECT_EQ(16u, interpolate_pixels[0][2]); EXPECT_EQ(32u, interpolate_pixels[0][3]); for (int i = 0; i < benchmark_pixels_div1280_; ++i) { ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0, &interpolate_pixels[0][0], 0, 1280, 1, 128); } } TEST_F(LibYUVPlanarTest, TestInterpolatePlane) { SIMD_ALIGNED(uint8 orig_pixels_0[1280]); SIMD_ALIGNED(uint8 orig_pixels_1[1280]); SIMD_ALIGNED(uint8 interpolate_pixels[1280]); memset(orig_pixels_0, 0, sizeof(orig_pixels_0)); memset(orig_pixels_1, 0, sizeof(orig_pixels_1)); orig_pixels_0[0] = 16u; orig_pixels_0[1] = 32u; orig_pixels_0[2] = 64u; orig_pixels_0[3] = 128u; orig_pixels_0[4] = 0u; orig_pixels_0[5] = 0u; orig_pixels_0[6] = 0u; orig_pixels_0[7] = 255u; orig_pixels_0[8] = 0u; orig_pixels_0[9] = 0u; orig_pixels_0[10] = 0u; orig_pixels_0[11] = 0u; orig_pixels_0[12] = 0u; orig_pixels_0[13] = 0u; orig_pixels_0[14] = 0u; orig_pixels_0[15] = 0u; orig_pixels_1[0] = 0u; orig_pixels_1[1] = 0u; orig_pixels_1[2] = 0u; orig_pixels_1[3] = 0u; orig_pixels_1[4] = 0u; orig_pixels_1[5] = 0u; orig_pixels_1[6] = 0u; orig_pixels_1[7] = 0u; orig_pixels_1[8] = 0u; orig_pixels_1[9] = 0u; orig_pixels_1[10] = 0u; orig_pixels_1[11] = 0u; orig_pixels_1[12] = 255u; orig_pixels_1[13] = 255u; orig_pixels_1[14] = 255u; orig_pixels_1[15] = 255u; InterpolatePlane(&orig_pixels_0[0], 0, &orig_pixels_1[0], 0, &interpolate_pixels[0], 0, 16, 1, 128); EXPECT_EQ(8u, interpolate_pixels[0]); EXPECT_EQ(16u, interpolate_pixels[1]); EXPECT_EQ(32u, interpolate_pixels[2]); EXPECT_EQ(64u, interpolate_pixels[3]); EXPECT_EQ(0u, interpolate_pixels[4]); EXPECT_EQ(0u, interpolate_pixels[5]); EXPECT_EQ(0u, interpolate_pixels[6]); EXPECT_EQ(128u, interpolate_pixels[7]); EXPECT_EQ(0u, interpolate_pixels[8]); EXPECT_EQ(0u, interpolate_pixels[9]); EXPECT_EQ(0u, interpolate_pixels[10]); EXPECT_EQ(0u, interpolate_pixels[11]); EXPECT_EQ(128u, interpolate_pixels[12]); EXPECT_EQ(128u, interpolate_pixels[13]); EXPECT_EQ(128u, interpolate_pixels[14]); EXPECT_EQ(128u, interpolate_pixels[15]); InterpolatePlane(&orig_pixels_0[0], 0, &orig_pixels_1[0], 0, &interpolate_pixels[0], 0, 16, 1, 0); EXPECT_EQ(16u, interpolate_pixels[0]); EXPECT_EQ(32u, interpolate_pixels[1]); EXPECT_EQ(64u, interpolate_pixels[2]); EXPECT_EQ(128u, interpolate_pixels[3]); InterpolatePlane(&orig_pixels_0[0], 0, &orig_pixels_1[0], 0, &interpolate_pixels[0], 0, 16, 1, 192); EXPECT_EQ(4u, interpolate_pixels[0]); EXPECT_EQ(8u, interpolate_pixels[1]); EXPECT_EQ(16u, interpolate_pixels[2]); EXPECT_EQ(32u, interpolate_pixels[3]); for (int i = 0; i < benchmark_pixels_div1280_; ++i) { InterpolatePlane(&orig_pixels_0[0], 0, &orig_pixels_1[0], 0, &interpolate_pixels[0], 0, 1280, 1, 123); } } #define TESTTERP(FMT_A, BPP_A, STRIDE_A, \ FMT_B, BPP_B, STRIDE_B, \ W1280, TERP, N, NEG, OFF) \ TEST_F(LibYUVPlanarTest, ARGBInterpolate##TERP##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ const int kStrideA = (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A; \ const int kStrideB = (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B; \ align_buffer_64(src_argb_a, kStrideA * kHeight + OFF); \ align_buffer_64(src_argb_b, kStrideA * kHeight + OFF); \ align_buffer_64(dst_argb_c, kStrideB * kHeight); \ align_buffer_64(dst_argb_opt, kStrideB * kHeight); \ for (int i = 0; i < kStrideA * kHeight; ++i) { \ src_argb_a[i + OFF] = (fastrand() & 0xff); \ src_argb_b[i + OFF] = (fastrand() & 0xff); \ } \ MaskCpuFlags(disable_cpu_flags_); \ ARGBInterpolate(src_argb_a + OFF, kStrideA, \ src_argb_b + OFF, kStrideA, \ dst_argb_c, kStrideB, \ kWidth, NEG kHeight, TERP); \ MaskCpuFlags(benchmark_cpu_info_); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ ARGBInterpolate(src_argb_a + OFF, kStrideA, \ src_argb_b + OFF, kStrideA, \ dst_argb_opt, kStrideB, \ kWidth, NEG kHeight, TERP); \ } \ for (int i = 0; i < kStrideB * kHeight; ++i) { \ EXPECT_EQ(dst_argb_c[i], dst_argb_opt[i]); \ } \ free_aligned_buffer_64(src_argb_a); \ free_aligned_buffer_64(src_argb_b); \ free_aligned_buffer_64(dst_argb_c); \ free_aligned_buffer_64(dst_argb_opt); \ } #define TESTINTERPOLATE(TERP) \ TESTTERP(ARGB, 4, 1, ARGB, 4, 1, benchmark_width_ - 1, TERP, _Any, +, 0) \ TESTTERP(ARGB, 4, 1, ARGB, 4, 1, benchmark_width_, TERP, _Unaligned, +, 1) \ TESTTERP(ARGB, 4, 1, ARGB, 4, 1, benchmark_width_, TERP, _Invert, -, 0) \ TESTTERP(ARGB, 4, 1, ARGB, 4, 1, benchmark_width_, TERP, _Opt, +, 0) TESTINTERPOLATE(0) TESTINTERPOLATE(64) TESTINTERPOLATE(128) TESTINTERPOLATE(192) TESTINTERPOLATE(255) static int TestBlend(int width, int height, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info, int invert, int off) { if (width < 1) { width = 1; } const int kBpp = 4; const int kStride = width * kBpp; align_buffer_64(src_argb_a, kStride * height + off); align_buffer_64(src_argb_b, kStride * height + off); align_buffer_64(dst_argb_c, kStride * height); align_buffer_64(dst_argb_opt, kStride * height); for (int i = 0; i < kStride * height; ++i) { src_argb_a[i + off] = (fastrand() & 0xff); src_argb_b[i + off] = (fastrand() & 0xff); } ARGBAttenuate(src_argb_a + off, kStride, src_argb_a + off, kStride, width, height); ARGBAttenuate(src_argb_b + off, kStride, src_argb_b + off, kStride, width, height); memset(dst_argb_c, 255, kStride * height); memset(dst_argb_opt, 255, kStride * height); MaskCpuFlags(disable_cpu_flags); ARGBBlend(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_c, kStride, width, invert * height); MaskCpuFlags(benchmark_cpu_info); for (int i = 0; i < benchmark_iterations; ++i) { ARGBBlend(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_opt, kStride, width, invert * height); } int max_diff = 0; for (int i = 0; i < kStride * height; ++i) { int abs_diff = abs(static_cast(dst_argb_c[i]) - static_cast(dst_argb_opt[i])); if (abs_diff > max_diff) { max_diff = abs_diff; } } free_aligned_buffer_64(src_argb_a); free_aligned_buffer_64(src_argb_b); free_aligned_buffer_64(dst_argb_c); free_aligned_buffer_64(dst_argb_opt); return max_diff; } TEST_F(LibYUVPlanarTest, ARGBBlend_Any) { int max_diff = TestBlend(benchmark_width_ - 4, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBBlend_Unaligned) { int max_diff = TestBlend(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 1); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBBlend_Invert) { int max_diff = TestBlend(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, -1, 0); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBBlend_Opt) { int max_diff = TestBlend(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_LE(max_diff, 1); } static void TestBlendPlane(int width, int height, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info, int invert, int off) { if (width < 1) { width = 1; } const int kBpp = 1; const int kStride = width * kBpp; align_buffer_64(src_argb_a, kStride * height + off); align_buffer_64(src_argb_b, kStride * height + off); align_buffer_64(src_argb_alpha, kStride * height + off); align_buffer_64(dst_argb_c, kStride * height + off); align_buffer_64(dst_argb_opt, kStride * height + off); memset(dst_argb_c, 255, kStride * height + off); memset(dst_argb_opt, 255, kStride * height + off); // Test source is maintained exactly if alpha is 255. for (int i = 0; i < width; ++i) { src_argb_a[i + off] = i & 255; src_argb_b[i + off] = 255 - (i & 255); } memset(src_argb_alpha + off, 255, width); BlendPlane(src_argb_a + off, width, src_argb_b + off, width, src_argb_alpha + off, width, dst_argb_opt + off, width, width, 1); for (int i = 0; i < width; ++i) { EXPECT_EQ(src_argb_a[i + off], dst_argb_opt[i + off]); } // Test destination is maintained exactly if alpha is 0. memset(src_argb_alpha + off, 0, width); BlendPlane(src_argb_a + off, width, src_argb_b + off, width, src_argb_alpha + off, width, dst_argb_opt + off, width, width, 1); for (int i = 0; i < width; ++i) { EXPECT_EQ(src_argb_b[i + off], dst_argb_opt[i + off]); } for (int i = 0; i < kStride * height; ++i) { src_argb_a[i + off] = (fastrand() & 0xff); src_argb_b[i + off] = (fastrand() & 0xff); src_argb_alpha[i + off] = (fastrand() & 0xff); } MaskCpuFlags(disable_cpu_flags); BlendPlane(src_argb_a + off, width, src_argb_b + off, width, src_argb_alpha + off, width, dst_argb_c + off, width, width, height); MaskCpuFlags(benchmark_cpu_info); for (int i = 0; i < benchmark_iterations; ++i) { BlendPlane(src_argb_a + off, width, src_argb_b + off, width, src_argb_alpha + off, width, dst_argb_opt + off, width, width, height); } for (int i = 0; i < kStride * height; ++i) { EXPECT_EQ(dst_argb_c[i + off], dst_argb_opt[i + off]); } free_aligned_buffer_64(src_argb_a); free_aligned_buffer_64(src_argb_b); free_aligned_buffer_64(src_argb_alpha); free_aligned_buffer_64(dst_argb_c); free_aligned_buffer_64(dst_argb_opt); return; } TEST_F(LibYUVPlanarTest, BlendPlane_Opt) { TestBlendPlane(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); } TEST_F(LibYUVPlanarTest, BlendPlane_Unaligned) { TestBlendPlane(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 1); } TEST_F(LibYUVPlanarTest, BlendPlane_Any) { TestBlendPlane(benchmark_width_ - 4, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 1); } TEST_F(LibYUVPlanarTest, BlendPlane_Invert) { TestBlendPlane(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, -1, 1); } #define SUBSAMPLE(v, a) ((((v) + (a) - 1)) / (a)) static void TestI420Blend(int width, int height, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info, int invert, int off) { width = ((width) > 0) ? (width) : 1; const int kStrideUV = SUBSAMPLE(width, 2); const int kSizeUV = kStrideUV * SUBSAMPLE(height, 2); align_buffer_64(src_y0, width * height + off); align_buffer_64(src_u0, kSizeUV + off); align_buffer_64(src_v0, kSizeUV + off); align_buffer_64(src_y1, width * height + off); align_buffer_64(src_u1, kSizeUV + off); align_buffer_64(src_v1, kSizeUV + off); align_buffer_64(src_a, width * height + off); align_buffer_64(dst_y_c, width * height + off); align_buffer_64(dst_u_c, kSizeUV + off); align_buffer_64(dst_v_c, kSizeUV + off); align_buffer_64(dst_y_opt, width * height + off); align_buffer_64(dst_u_opt, kSizeUV + off); align_buffer_64(dst_v_opt, kSizeUV + off); MemRandomize(src_y0, width * height + off); MemRandomize(src_u0, kSizeUV + off); MemRandomize(src_v0, kSizeUV + off); MemRandomize(src_y1, width * height + off); MemRandomize(src_u1, kSizeUV + off); MemRandomize(src_v1, kSizeUV + off); MemRandomize(src_a, width * height + off); memset(dst_y_c, 255, width * height + off); memset(dst_u_c, 255, kSizeUV + off); memset(dst_v_c, 255, kSizeUV + off); memset(dst_y_opt, 255, width * height + off); memset(dst_u_opt, 255, kSizeUV + off); memset(dst_v_opt, 255, kSizeUV + off); MaskCpuFlags(disable_cpu_flags); I420Blend(src_y0 + off, width, src_u0 + off, kStrideUV, src_v0 + off, kStrideUV, src_y1 + off, width, src_u1 + off, kStrideUV, src_v1 + off, kStrideUV, src_a + off, width, dst_y_c + off, width, dst_u_c + off, kStrideUV, dst_v_c + off, kStrideUV, width, height); MaskCpuFlags(benchmark_cpu_info); for (int i = 0; i < benchmark_iterations; ++i) { I420Blend(src_y0 + off, width, src_u0 + off, kStrideUV, src_v0 + off, kStrideUV, src_y1 + off, width, src_u1 + off, kStrideUV, src_v1 + off, kStrideUV, src_a + off, width, dst_y_opt + off, width, dst_u_opt + off, kStrideUV, dst_v_opt + off, kStrideUV, width, height); } for (int i = 0; i < width * height; ++i) { EXPECT_EQ(dst_y_c[i + off], dst_y_opt[i + off]); } for (int i = 0; i < kSizeUV; ++i) { EXPECT_EQ(dst_u_c[i + off], dst_u_opt[i + off]); EXPECT_EQ(dst_v_c[i + off], dst_v_opt[i + off]); } free_aligned_buffer_64(src_y0); free_aligned_buffer_64(src_u0); free_aligned_buffer_64(src_v0); free_aligned_buffer_64(src_y1); free_aligned_buffer_64(src_u1); free_aligned_buffer_64(src_v1); free_aligned_buffer_64(src_a); free_aligned_buffer_64(dst_y_c); free_aligned_buffer_64(dst_u_c); free_aligned_buffer_64(dst_v_c); free_aligned_buffer_64(dst_y_opt); free_aligned_buffer_64(dst_u_opt); free_aligned_buffer_64(dst_v_opt); return; } TEST_F(LibYUVPlanarTest, I420Blend_Opt) { TestI420Blend(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); } TEST_F(LibYUVPlanarTest, I420Blend_Unaligned) { TestI420Blend(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 1); } // TODO(fbarchard): DISABLED because _Any uses C. Avoid C and re-enable. TEST_F(LibYUVPlanarTest, DISABLED_I420Blend_Any) { TestI420Blend(benchmark_width_ - 4, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); } TEST_F(LibYUVPlanarTest, I420Blend_Invert) { TestI420Blend(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, -1, 0); } TEST_F(LibYUVPlanarTest, TestAffine) { SIMD_ALIGNED(uint8 orig_pixels_0[1280][4]); SIMD_ALIGNED(uint8 interpolate_pixels_C[1280][4]); for (int i = 0; i < 1280; ++i) { for (int j = 0; j < 4; ++j) { orig_pixels_0[i][j] = i; } } float uv_step[4] = { 0.f, 0.f, 0.75f, 0.f }; ARGBAffineRow_C(&orig_pixels_0[0][0], 0, &interpolate_pixels_C[0][0], uv_step, 1280); EXPECT_EQ(0u, interpolate_pixels_C[0][0]); EXPECT_EQ(96u, interpolate_pixels_C[128][0]); EXPECT_EQ(191u, interpolate_pixels_C[255][3]); #if defined(HAS_ARGBAFFINEROW_SSE2) SIMD_ALIGNED(uint8 interpolate_pixels_Opt[1280][4]); ARGBAffineRow_SSE2(&orig_pixels_0[0][0], 0, &interpolate_pixels_Opt[0][0], uv_step, 1280); EXPECT_EQ(0, memcmp(interpolate_pixels_Opt, interpolate_pixels_C, 1280 * 4)); int has_sse2 = TestCpuFlag(kCpuHasSSE2); if (has_sse2) { for (int i = 0; i < benchmark_pixels_div1280_; ++i) { ARGBAffineRow_SSE2(&orig_pixels_0[0][0], 0, &interpolate_pixels_Opt[0][0], uv_step, 1280); } } #endif } TEST_F(LibYUVPlanarTest, TestSobelX) { SIMD_ALIGNED(uint8 orig_pixels_0[1280 + 2]); SIMD_ALIGNED(uint8 orig_pixels_1[1280 + 2]); SIMD_ALIGNED(uint8 orig_pixels_2[1280 + 2]); SIMD_ALIGNED(uint8 sobel_pixels_c[1280]); SIMD_ALIGNED(uint8 sobel_pixels_opt[1280]); for (int i = 0; i < 1280 + 2; ++i) { orig_pixels_0[i] = i; orig_pixels_1[i] = i * 2; orig_pixels_2[i] = i * 3; } SobelXRow_C(orig_pixels_0, orig_pixels_1, orig_pixels_2, sobel_pixels_c, 1280); EXPECT_EQ(16u, sobel_pixels_c[0]); EXPECT_EQ(16u, sobel_pixels_c[100]); EXPECT_EQ(255u, sobel_pixels_c[255]); void (*SobelXRow)(const uint8* src_y0, const uint8* src_y1, const uint8* src_y2, uint8* dst_sobely, int width) = SobelXRow_C; #if defined(HAS_SOBELXROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { SobelXRow = SobelXRow_SSE2; } #endif #if defined(HAS_SOBELXROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { SobelXRow = SobelXRow_NEON; } #endif for (int i = 0; i < benchmark_pixels_div1280_; ++i) { SobelXRow(orig_pixels_0, orig_pixels_1, orig_pixels_2, sobel_pixels_opt, 1280); } for (int i = 0; i < 1280; ++i) { EXPECT_EQ(sobel_pixels_c[i], sobel_pixels_opt[i]); } } TEST_F(LibYUVPlanarTest, TestSobelY) { SIMD_ALIGNED(uint8 orig_pixels_0[1280 + 2]); SIMD_ALIGNED(uint8 orig_pixels_1[1280 + 2]); SIMD_ALIGNED(uint8 sobel_pixels_c[1280]); SIMD_ALIGNED(uint8 sobel_pixels_opt[1280]); for (int i = 0; i < 1280 + 2; ++i) { orig_pixels_0[i] = i; orig_pixels_1[i] = i * 2; } SobelYRow_C(orig_pixels_0, orig_pixels_1, sobel_pixels_c, 1280); EXPECT_EQ(4u, sobel_pixels_c[0]); EXPECT_EQ(255u, sobel_pixels_c[100]); EXPECT_EQ(0u, sobel_pixels_c[255]); void (*SobelYRow)(const uint8* src_y0, const uint8* src_y1, uint8* dst_sobely, int width) = SobelYRow_C; #if defined(HAS_SOBELYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { SobelYRow = SobelYRow_SSE2; } #endif #if defined(HAS_SOBELYROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { SobelYRow = SobelYRow_NEON; } #endif for (int i = 0; i < benchmark_pixels_div1280_; ++i) { SobelYRow(orig_pixels_0, orig_pixels_1, sobel_pixels_opt, 1280); } for (int i = 0; i < 1280; ++i) { EXPECT_EQ(sobel_pixels_c[i], sobel_pixels_opt[i]); } } TEST_F(LibYUVPlanarTest, TestSobel) { SIMD_ALIGNED(uint8 orig_sobelx[1280]); SIMD_ALIGNED(uint8 orig_sobely[1280]); SIMD_ALIGNED(uint8 sobel_pixels_c[1280 * 4]); SIMD_ALIGNED(uint8 sobel_pixels_opt[1280 * 4]); for (int i = 0; i < 1280; ++i) { orig_sobelx[i] = i; orig_sobely[i] = i * 2; } SobelRow_C(orig_sobelx, orig_sobely, sobel_pixels_c, 1280); EXPECT_EQ(0u, sobel_pixels_c[0]); EXPECT_EQ(3u, sobel_pixels_c[4]); EXPECT_EQ(3u, sobel_pixels_c[5]); EXPECT_EQ(3u, sobel_pixels_c[6]); EXPECT_EQ(255u, sobel_pixels_c[7]); EXPECT_EQ(6u, sobel_pixels_c[8]); EXPECT_EQ(6u, sobel_pixels_c[9]); EXPECT_EQ(6u, sobel_pixels_c[10]); EXPECT_EQ(255u, sobel_pixels_c[7]); EXPECT_EQ(255u, sobel_pixels_c[100 * 4 + 1]); EXPECT_EQ(255u, sobel_pixels_c[255 * 4 + 1]); void (*SobelRow)(const uint8* src_sobelx, const uint8* src_sobely, uint8* dst_argb, int width) = SobelRow_C; #if defined(HAS_SOBELROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { SobelRow = SobelRow_SSE2; } #endif #if defined(HAS_SOBELROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { SobelRow = SobelRow_NEON; } #endif for (int i = 0; i < benchmark_pixels_div1280_; ++i) { SobelRow(orig_sobelx, orig_sobely, sobel_pixels_opt, 1280); } for (int i = 0; i < 1280 * 4; ++i) { EXPECT_EQ(sobel_pixels_c[i], sobel_pixels_opt[i]); } } TEST_F(LibYUVPlanarTest, TestSobelToPlane) { SIMD_ALIGNED(uint8 orig_sobelx[1280]); SIMD_ALIGNED(uint8 orig_sobely[1280]); SIMD_ALIGNED(uint8 sobel_pixels_c[1280]); SIMD_ALIGNED(uint8 sobel_pixels_opt[1280]); for (int i = 0; i < 1280; ++i) { orig_sobelx[i] = i; orig_sobely[i] = i * 2; } SobelToPlaneRow_C(orig_sobelx, orig_sobely, sobel_pixels_c, 1280); EXPECT_EQ(0u, sobel_pixels_c[0]); EXPECT_EQ(3u, sobel_pixels_c[1]); EXPECT_EQ(6u, sobel_pixels_c[2]); EXPECT_EQ(99u, sobel_pixels_c[33]); EXPECT_EQ(255u, sobel_pixels_c[100]); void (*SobelToPlaneRow)(const uint8* src_sobelx, const uint8* src_sobely, uint8* dst_y, int width) = SobelToPlaneRow_C; #if defined(HAS_SOBELTOPLANEROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { SobelToPlaneRow = SobelToPlaneRow_SSE2; } #endif #if defined(HAS_SOBELTOPLANEROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { SobelToPlaneRow = SobelToPlaneRow_NEON; } #endif for (int i = 0; i < benchmark_pixels_div1280_; ++i) { SobelToPlaneRow(orig_sobelx, orig_sobely, sobel_pixels_opt, 1280); } for (int i = 0; i < 1280; ++i) { EXPECT_EQ(sobel_pixels_c[i], sobel_pixels_opt[i]); } } TEST_F(LibYUVPlanarTest, TestSobelXY) { SIMD_ALIGNED(uint8 orig_sobelx[1280]); SIMD_ALIGNED(uint8 orig_sobely[1280]); SIMD_ALIGNED(uint8 sobel_pixels_c[1280 * 4]); SIMD_ALIGNED(uint8 sobel_pixels_opt[1280 * 4]); for (int i = 0; i < 1280; ++i) { orig_sobelx[i] = i; orig_sobely[i] = i * 2; } SobelXYRow_C(orig_sobelx, orig_sobely, sobel_pixels_c, 1280); EXPECT_EQ(0u, sobel_pixels_c[0]); EXPECT_EQ(2u, sobel_pixels_c[4]); EXPECT_EQ(3u, sobel_pixels_c[5]); EXPECT_EQ(1u, sobel_pixels_c[6]); EXPECT_EQ(255u, sobel_pixels_c[7]); EXPECT_EQ(255u, sobel_pixels_c[100 * 4 + 1]); EXPECT_EQ(255u, sobel_pixels_c[255 * 4 + 1]); void (*SobelXYRow)(const uint8* src_sobelx, const uint8* src_sobely, uint8* dst_argb, int width) = SobelXYRow_C; #if defined(HAS_SOBELXYROW_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { SobelXYRow = SobelXYRow_SSE2; } #endif #if defined(HAS_SOBELXYROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { SobelXYRow = SobelXYRow_NEON; } #endif for (int i = 0; i < benchmark_pixels_div1280_; ++i) { SobelXYRow(orig_sobelx, orig_sobely, sobel_pixels_opt, 1280); } for (int i = 0; i < 1280 * 4; ++i) { EXPECT_EQ(sobel_pixels_c[i], sobel_pixels_opt[i]); } } TEST_F(LibYUVPlanarTest, TestCopyPlane) { int err = 0; int yw = benchmark_width_; int yh = benchmark_height_; int b = 12; int i, j; int y_plane_size = (yw + b * 2) * (yh + b * 2); align_buffer_64(orig_y, y_plane_size); align_buffer_64(dst_c, y_plane_size); align_buffer_64(dst_opt, y_plane_size); memset(orig_y, 0, y_plane_size); memset(dst_c, 0, y_plane_size); memset(dst_opt, 0, y_plane_size); // Fill image buffers with random data. for (i = b; i < (yh + b); ++i) { for (j = b; j < (yw + b); ++j) { orig_y[i * (yw + b * 2) + j] = fastrand() & 0xff; } } // Fill destination buffers with random data. for (i = 0; i < y_plane_size; ++i) { uint8 random_number = fastrand() & 0x7f; dst_c[i] = random_number; dst_opt[i] = dst_c[i]; } int y_off = b * (yw + b * 2) + b; int y_st = yw + b * 2; int stride = 8; // Disable all optimizations. MaskCpuFlags(disable_cpu_flags_); double c_time = get_time(); for (j = 0; j < benchmark_iterations_; j++) { CopyPlane(orig_y + y_off, y_st, dst_c + y_off, stride, yw, yh); } c_time = (get_time() - c_time) / benchmark_iterations_; // Enable optimizations. MaskCpuFlags(benchmark_cpu_info_); double opt_time = get_time(); for (j = 0; j < benchmark_iterations_; j++) { CopyPlane(orig_y + y_off, y_st, dst_opt + y_off, stride, yw, yh); } opt_time = (get_time() - opt_time) / benchmark_iterations_; for (i = 0; i < y_plane_size; ++i) { if (dst_c[i] != dst_opt[i]) ++err; } free_aligned_buffer_64(orig_y); free_aligned_buffer_64(dst_c); free_aligned_buffer_64(dst_opt); EXPECT_EQ(0, err); } static int TestMultiply(int width, int height, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info, int invert, int off) { if (width < 1) { width = 1; } const int kBpp = 4; const int kStride = width * kBpp; align_buffer_64(src_argb_a, kStride * height + off); align_buffer_64(src_argb_b, kStride * height + off); align_buffer_64(dst_argb_c, kStride * height); align_buffer_64(dst_argb_opt, kStride * height); for (int i = 0; i < kStride * height; ++i) { src_argb_a[i + off] = (fastrand() & 0xff); src_argb_b[i + off] = (fastrand() & 0xff); } memset(dst_argb_c, 0, kStride * height); memset(dst_argb_opt, 0, kStride * height); MaskCpuFlags(disable_cpu_flags); ARGBMultiply(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_c, kStride, width, invert * height); MaskCpuFlags(benchmark_cpu_info); for (int i = 0; i < benchmark_iterations; ++i) { ARGBMultiply(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_opt, kStride, width, invert * height); } int max_diff = 0; for (int i = 0; i < kStride * height; ++i) { int abs_diff = abs(static_cast(dst_argb_c[i]) - static_cast(dst_argb_opt[i])); if (abs_diff > max_diff) { max_diff = abs_diff; } } free_aligned_buffer_64(src_argb_a); free_aligned_buffer_64(src_argb_b); free_aligned_buffer_64(dst_argb_c); free_aligned_buffer_64(dst_argb_opt); return max_diff; } TEST_F(LibYUVPlanarTest, ARGBMultiply_Any) { int max_diff = TestMultiply(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBMultiply_Unaligned) { int max_diff = TestMultiply(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 1); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBMultiply_Invert) { int max_diff = TestMultiply(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, -1, 0); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBMultiply_Opt) { int max_diff = TestMultiply(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_LE(max_diff, 1); } static int TestAdd(int width, int height, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info, int invert, int off) { if (width < 1) { width = 1; } const int kBpp = 4; const int kStride = width * kBpp; align_buffer_64(src_argb_a, kStride * height + off); align_buffer_64(src_argb_b, kStride * height + off); align_buffer_64(dst_argb_c, kStride * height); align_buffer_64(dst_argb_opt, kStride * height); for (int i = 0; i < kStride * height; ++i) { src_argb_a[i + off] = (fastrand() & 0xff); src_argb_b[i + off] = (fastrand() & 0xff); } memset(dst_argb_c, 0, kStride * height); memset(dst_argb_opt, 0, kStride * height); MaskCpuFlags(disable_cpu_flags); ARGBAdd(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_c, kStride, width, invert * height); MaskCpuFlags(benchmark_cpu_info); for (int i = 0; i < benchmark_iterations; ++i) { ARGBAdd(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_opt, kStride, width, invert * height); } int max_diff = 0; for (int i = 0; i < kStride * height; ++i) { int abs_diff = abs(static_cast(dst_argb_c[i]) - static_cast(dst_argb_opt[i])); if (abs_diff > max_diff) { max_diff = abs_diff; } } free_aligned_buffer_64(src_argb_a); free_aligned_buffer_64(src_argb_b); free_aligned_buffer_64(dst_argb_c); free_aligned_buffer_64(dst_argb_opt); return max_diff; } TEST_F(LibYUVPlanarTest, ARGBAdd_Any) { int max_diff = TestAdd(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBAdd_Unaligned) { int max_diff = TestAdd(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 1); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBAdd_Invert) { int max_diff = TestAdd(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, -1, 0); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBAdd_Opt) { int max_diff = TestAdd(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_LE(max_diff, 1); } static int TestSubtract(int width, int height, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info, int invert, int off) { if (width < 1) { width = 1; } const int kBpp = 4; const int kStride = width * kBpp; align_buffer_64(src_argb_a, kStride * height + off); align_buffer_64(src_argb_b, kStride * height + off); align_buffer_64(dst_argb_c, kStride * height); align_buffer_64(dst_argb_opt, kStride * height); for (int i = 0; i < kStride * height; ++i) { src_argb_a[i + off] = (fastrand() & 0xff); src_argb_b[i + off] = (fastrand() & 0xff); } memset(dst_argb_c, 0, kStride * height); memset(dst_argb_opt, 0, kStride * height); MaskCpuFlags(disable_cpu_flags); ARGBSubtract(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_c, kStride, width, invert * height); MaskCpuFlags(benchmark_cpu_info); for (int i = 0; i < benchmark_iterations; ++i) { ARGBSubtract(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_opt, kStride, width, invert * height); } int max_diff = 0; for (int i = 0; i < kStride * height; ++i) { int abs_diff = abs(static_cast(dst_argb_c[i]) - static_cast(dst_argb_opt[i])); if (abs_diff > max_diff) { max_diff = abs_diff; } } free_aligned_buffer_64(src_argb_a); free_aligned_buffer_64(src_argb_b); free_aligned_buffer_64(dst_argb_c); free_aligned_buffer_64(dst_argb_opt); return max_diff; } TEST_F(LibYUVPlanarTest, ARGBSubtract_Any) { int max_diff = TestSubtract(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBSubtract_Unaligned) { int max_diff = TestSubtract(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 1); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBSubtract_Invert) { int max_diff = TestSubtract(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, -1, 0); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBSubtract_Opt) { int max_diff = TestSubtract(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_LE(max_diff, 1); } static int TestSobel(int width, int height, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info, int invert, int off) { if (width < 1) { width = 1; } const int kBpp = 4; const int kStride = width * kBpp; align_buffer_64(src_argb_a, kStride * height + off); align_buffer_64(dst_argb_c, kStride * height); align_buffer_64(dst_argb_opt, kStride * height); memset(src_argb_a, 0, kStride * height + off); for (int i = 0; i < kStride * height; ++i) { src_argb_a[i + off] = (fastrand() & 0xff); } memset(dst_argb_c, 0, kStride * height); memset(dst_argb_opt, 0, kStride * height); MaskCpuFlags(disable_cpu_flags); ARGBSobel(src_argb_a + off, kStride, dst_argb_c, kStride, width, invert * height); MaskCpuFlags(benchmark_cpu_info); for (int i = 0; i < benchmark_iterations; ++i) { ARGBSobel(src_argb_a + off, kStride, dst_argb_opt, kStride, width, invert * height); } int max_diff = 0; for (int i = 0; i < kStride * height; ++i) { int abs_diff = abs(static_cast(dst_argb_c[i]) - static_cast(dst_argb_opt[i])); if (abs_diff > max_diff) { max_diff = abs_diff; } } free_aligned_buffer_64(src_argb_a); free_aligned_buffer_64(dst_argb_c); free_aligned_buffer_64(dst_argb_opt); return max_diff; } TEST_F(LibYUVPlanarTest, ARGBSobel_Any) { int max_diff = TestSobel(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_EQ(0, max_diff); } TEST_F(LibYUVPlanarTest, ARGBSobel_Unaligned) { int max_diff = TestSobel(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 1); EXPECT_EQ(0, max_diff); } TEST_F(LibYUVPlanarTest, ARGBSobel_Invert) { int max_diff = TestSobel(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, -1, 0); EXPECT_EQ(0, max_diff); } TEST_F(LibYUVPlanarTest, ARGBSobel_Opt) { int max_diff = TestSobel(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_EQ(0, max_diff); } static int TestSobelToPlane(int width, int height, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info, int invert, int off) { if (width < 1) { width = 1; } const int kSrcBpp = 4; const int kDstBpp = 1; const int kSrcStride = (width * kSrcBpp + 15) & ~15; const int kDstStride = (width * kDstBpp + 15) & ~15; align_buffer_64(src_argb_a, kSrcStride * height + off); align_buffer_64(dst_argb_c, kDstStride * height); align_buffer_64(dst_argb_opt, kDstStride * height); memset(src_argb_a, 0, kSrcStride * height + off); for (int i = 0; i < kSrcStride * height; ++i) { src_argb_a[i + off] = (fastrand() & 0xff); } memset(dst_argb_c, 0, kDstStride * height); memset(dst_argb_opt, 0, kDstStride * height); MaskCpuFlags(disable_cpu_flags); ARGBSobelToPlane(src_argb_a + off, kSrcStride, dst_argb_c, kDstStride, width, invert * height); MaskCpuFlags(benchmark_cpu_info); for (int i = 0; i < benchmark_iterations; ++i) { ARGBSobelToPlane(src_argb_a + off, kSrcStride, dst_argb_opt, kDstStride, width, invert * height); } int max_diff = 0; for (int i = 0; i < kDstStride * height; ++i) { int abs_diff = abs(static_cast(dst_argb_c[i]) - static_cast(dst_argb_opt[i])); if (abs_diff > max_diff) { max_diff = abs_diff; } } free_aligned_buffer_64(src_argb_a); free_aligned_buffer_64(dst_argb_c); free_aligned_buffer_64(dst_argb_opt); return max_diff; } TEST_F(LibYUVPlanarTest, ARGBSobelToPlane_Any) { int max_diff = TestSobelToPlane(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_EQ(0, max_diff); } TEST_F(LibYUVPlanarTest, ARGBSobelToPlane_Unaligned) { int max_diff = TestSobelToPlane(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 1); EXPECT_EQ(0, max_diff); } TEST_F(LibYUVPlanarTest, ARGBSobelToPlane_Invert) { int max_diff = TestSobelToPlane(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, -1, 0); EXPECT_EQ(0, max_diff); } TEST_F(LibYUVPlanarTest, ARGBSobelToPlane_Opt) { int max_diff = TestSobelToPlane(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_EQ(0, max_diff); } static int TestSobelXY(int width, int height, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info, int invert, int off) { if (width < 1) { width = 1; } const int kBpp = 4; const int kStride = width * kBpp; align_buffer_64(src_argb_a, kStride * height + off); align_buffer_64(dst_argb_c, kStride * height); align_buffer_64(dst_argb_opt, kStride * height); memset(src_argb_a, 0, kStride * height + off); for (int i = 0; i < kStride * height; ++i) { src_argb_a[i + off] = (fastrand() & 0xff); } memset(dst_argb_c, 0, kStride * height); memset(dst_argb_opt, 0, kStride * height); MaskCpuFlags(disable_cpu_flags); ARGBSobelXY(src_argb_a + off, kStride, dst_argb_c, kStride, width, invert * height); MaskCpuFlags(benchmark_cpu_info); for (int i = 0; i < benchmark_iterations; ++i) { ARGBSobelXY(src_argb_a + off, kStride, dst_argb_opt, kStride, width, invert * height); } int max_diff = 0; for (int i = 0; i < kStride * height; ++i) { int abs_diff = abs(static_cast(dst_argb_c[i]) - static_cast(dst_argb_opt[i])); if (abs_diff > max_diff) { max_diff = abs_diff; } } free_aligned_buffer_64(src_argb_a); free_aligned_buffer_64(dst_argb_c); free_aligned_buffer_64(dst_argb_opt); return max_diff; } TEST_F(LibYUVPlanarTest, ARGBSobelXY_Any) { int max_diff = TestSobelXY(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_EQ(0, max_diff); } TEST_F(LibYUVPlanarTest, ARGBSobelXY_Unaligned) { int max_diff = TestSobelXY(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 1); EXPECT_EQ(0, max_diff); } TEST_F(LibYUVPlanarTest, ARGBSobelXY_Invert) { int max_diff = TestSobelXY(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, -1, 0); EXPECT_EQ(0, max_diff); } TEST_F(LibYUVPlanarTest, ARGBSobelXY_Opt) { int max_diff = TestSobelXY(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0); EXPECT_EQ(0, max_diff); } static int TestBlur(int width, int height, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info, int invert, int off, int radius) { if (width < 1) { width = 1; } const int kBpp = 4; const int kStride = width * kBpp; align_buffer_64(src_argb_a, kStride * height + off); align_buffer_64(dst_cumsum, width * height * 16); align_buffer_64(dst_argb_c, kStride * height); align_buffer_64(dst_argb_opt, kStride * height); for (int i = 0; i < kStride * height; ++i) { src_argb_a[i + off] = (fastrand() & 0xff); } memset(dst_cumsum, 0, width * height * 16); memset(dst_argb_c, 0, kStride * height); memset(dst_argb_opt, 0, kStride * height); MaskCpuFlags(disable_cpu_flags); ARGBBlur(src_argb_a + off, kStride, dst_argb_c, kStride, reinterpret_cast(dst_cumsum), width * 4, width, invert * height, radius); MaskCpuFlags(benchmark_cpu_info); for (int i = 0; i < benchmark_iterations; ++i) { ARGBBlur(src_argb_a + off, kStride, dst_argb_opt, kStride, reinterpret_cast(dst_cumsum), width * 4, width, invert * height, radius); } int max_diff = 0; for (int i = 0; i < kStride * height; ++i) { int abs_diff = abs(static_cast(dst_argb_c[i]) - static_cast(dst_argb_opt[i])); if (abs_diff > max_diff) { max_diff = abs_diff; } } free_aligned_buffer_64(src_argb_a); free_aligned_buffer_64(dst_cumsum); free_aligned_buffer_64(dst_argb_c); free_aligned_buffer_64(dst_argb_opt); return max_diff; } static const int kBlurSize = 55; TEST_F(LibYUVPlanarTest, ARGBBlur_Any) { int max_diff = TestBlur(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0, kBlurSize); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBBlur_Unaligned) { int max_diff = TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 1, kBlurSize); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBBlur_Invert) { int max_diff = TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, -1, 0, kBlurSize); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBBlur_Opt) { int max_diff = TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0, kBlurSize); EXPECT_LE(max_diff, 1); } static const int kBlurSmallSize = 5; TEST_F(LibYUVPlanarTest, ARGBBlurSmall_Any) { int max_diff = TestBlur(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0, kBlurSmallSize); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBBlurSmall_Unaligned) { int max_diff = TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 1, kBlurSmallSize); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBBlurSmall_Invert) { int max_diff = TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, -1, 0, kBlurSmallSize); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, ARGBBlurSmall_Opt) { int max_diff = TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0, kBlurSmallSize); EXPECT_LE(max_diff, 1); } TEST_F(LibYUVPlanarTest, TestARGBPolynomial) { SIMD_ALIGNED(uint8 orig_pixels[1280][4]); SIMD_ALIGNED(uint8 dst_pixels_opt[1280][4]); SIMD_ALIGNED(uint8 dst_pixels_c[1280][4]); memset(orig_pixels, 0, sizeof(orig_pixels)); SIMD_ALIGNED(static const float kWarmifyPolynomial[16]) = { 0.94230f, -3.03300f, -2.92500f, 0.f, // C0 0.584500f, 1.112000f, 1.535000f, 1.f, // C1 x 0.001313f, -0.002503f, -0.004496f, 0.f, // C2 x * x 0.0f, 0.000006965f, 0.000008781f, 0.f, // C3 x * x * x }; // Test blue orig_pixels[0][0] = 255u; orig_pixels[0][1] = 0u; orig_pixels[0][2] = 0u; orig_pixels[0][3] = 128u; // Test green orig_pixels[1][0] = 0u; orig_pixels[1][1] = 255u; orig_pixels[1][2] = 0u; orig_pixels[1][3] = 0u; // Test red orig_pixels[2][0] = 0u; orig_pixels[2][1] = 0u; orig_pixels[2][2] = 255u; orig_pixels[2][3] = 255u; // Test white orig_pixels[3][0] = 255u; orig_pixels[3][1] = 255u; orig_pixels[3][2] = 255u; orig_pixels[3][3] = 255u; // Test color orig_pixels[4][0] = 16u; orig_pixels[4][1] = 64u; orig_pixels[4][2] = 192u; orig_pixels[4][3] = 224u; // Do 16 to test asm version. ARGBPolynomial(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0, &kWarmifyPolynomial[0], 16, 1); EXPECT_EQ(235u, dst_pixels_opt[0][0]); EXPECT_EQ(0u, dst_pixels_opt[0][1]); EXPECT_EQ(0u, dst_pixels_opt[0][2]); EXPECT_EQ(128u, dst_pixels_opt[0][3]); EXPECT_EQ(0u, dst_pixels_opt[1][0]); EXPECT_EQ(233u, dst_pixels_opt[1][1]); EXPECT_EQ(0u, dst_pixels_opt[1][2]); EXPECT_EQ(0u, dst_pixels_opt[1][3]); EXPECT_EQ(0u, dst_pixels_opt[2][0]); EXPECT_EQ(0u, dst_pixels_opt[2][1]); EXPECT_EQ(241u, dst_pixels_opt[2][2]); EXPECT_EQ(255u, dst_pixels_opt[2][3]); EXPECT_EQ(235u, dst_pixels_opt[3][0]); EXPECT_EQ(233u, dst_pixels_opt[3][1]); EXPECT_EQ(241u, dst_pixels_opt[3][2]); EXPECT_EQ(255u, dst_pixels_opt[3][3]); EXPECT_EQ(10u, dst_pixels_opt[4][0]); EXPECT_EQ(59u, dst_pixels_opt[4][1]); EXPECT_EQ(188u, dst_pixels_opt[4][2]); EXPECT_EQ(224u, dst_pixels_opt[4][3]); for (int i = 0; i < 1280; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i; } MaskCpuFlags(disable_cpu_flags_); ARGBPolynomial(&orig_pixels[0][0], 0, &dst_pixels_c[0][0], 0, &kWarmifyPolynomial[0], 1280, 1); MaskCpuFlags(benchmark_cpu_info_); for (int i = 0; i < benchmark_pixels_div1280_; ++i) { ARGBPolynomial(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0, &kWarmifyPolynomial[0], 1280, 1); } for (int i = 0; i < 1280; ++i) { EXPECT_EQ(dst_pixels_c[i][0], dst_pixels_opt[i][0]); EXPECT_EQ(dst_pixels_c[i][1], dst_pixels_opt[i][1]); EXPECT_EQ(dst_pixels_c[i][2], dst_pixels_opt[i][2]); EXPECT_EQ(dst_pixels_c[i][3], dst_pixels_opt[i][3]); } } TEST_F(LibYUVPlanarTest, TestARGBLumaColorTable) { SIMD_ALIGNED(uint8 orig_pixels[1280][4]); SIMD_ALIGNED(uint8 dst_pixels_opt[1280][4]); SIMD_ALIGNED(uint8 dst_pixels_c[1280][4]); memset(orig_pixels, 0, sizeof(orig_pixels)); align_buffer_64(lumacolortable, 32768); int v = 0; for (int i = 0; i < 32768; ++i) { lumacolortable[i] = v; v += 3; } // Test blue orig_pixels[0][0] = 255u; orig_pixels[0][1] = 0u; orig_pixels[0][2] = 0u; orig_pixels[0][3] = 128u; // Test green orig_pixels[1][0] = 0u; orig_pixels[1][1] = 255u; orig_pixels[1][2] = 0u; orig_pixels[1][3] = 0u; // Test red orig_pixels[2][0] = 0u; orig_pixels[2][1] = 0u; orig_pixels[2][2] = 255u; orig_pixels[2][3] = 255u; // Test color orig_pixels[3][0] = 16u; orig_pixels[3][1] = 64u; orig_pixels[3][2] = 192u; orig_pixels[3][3] = 224u; // Do 16 to test asm version. ARGBLumaColorTable(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0, &lumacolortable[0], 16, 1); EXPECT_EQ(253u, dst_pixels_opt[0][0]); EXPECT_EQ(0u, dst_pixels_opt[0][1]); EXPECT_EQ(0u, dst_pixels_opt[0][2]); EXPECT_EQ(128u, dst_pixels_opt[0][3]); EXPECT_EQ(0u, dst_pixels_opt[1][0]); EXPECT_EQ(253u, dst_pixels_opt[1][1]); EXPECT_EQ(0u, dst_pixels_opt[1][2]); EXPECT_EQ(0u, dst_pixels_opt[1][3]); EXPECT_EQ(0u, dst_pixels_opt[2][0]); EXPECT_EQ(0u, dst_pixels_opt[2][1]); EXPECT_EQ(253u, dst_pixels_opt[2][2]); EXPECT_EQ(255u, dst_pixels_opt[2][3]); EXPECT_EQ(48u, dst_pixels_opt[3][0]); EXPECT_EQ(192u, dst_pixels_opt[3][1]); EXPECT_EQ(64u, dst_pixels_opt[3][2]); EXPECT_EQ(224u, dst_pixels_opt[3][3]); for (int i = 0; i < 1280; ++i) { orig_pixels[i][0] = i; orig_pixels[i][1] = i / 2; orig_pixels[i][2] = i / 3; orig_pixels[i][3] = i; } MaskCpuFlags(disable_cpu_flags_); ARGBLumaColorTable(&orig_pixels[0][0], 0, &dst_pixels_c[0][0], 0, lumacolortable, 1280, 1); MaskCpuFlags(benchmark_cpu_info_); for (int i = 0; i < benchmark_pixels_div1280_; ++i) { ARGBLumaColorTable(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0, lumacolortable, 1280, 1); } for (int i = 0; i < 1280; ++i) { EXPECT_EQ(dst_pixels_c[i][0], dst_pixels_opt[i][0]); EXPECT_EQ(dst_pixels_c[i][1], dst_pixels_opt[i][1]); EXPECT_EQ(dst_pixels_c[i][2], dst_pixels_opt[i][2]); EXPECT_EQ(dst_pixels_c[i][3], dst_pixels_opt[i][3]); } free_aligned_buffer_64(lumacolortable); } TEST_F(LibYUVPlanarTest, TestARGBCopyAlpha) { const int kSize = benchmark_width_ * benchmark_height_ * 4; align_buffer_64(orig_pixels, kSize); align_buffer_64(dst_pixels_opt, kSize); align_buffer_64(dst_pixels_c, kSize); MemRandomize(orig_pixels, kSize); MemRandomize(dst_pixels_opt, kSize); memcpy(dst_pixels_c, dst_pixels_opt, kSize); MaskCpuFlags(disable_cpu_flags_); ARGBCopyAlpha(orig_pixels, benchmark_width_ * 4, dst_pixels_c, benchmark_width_ * 4, benchmark_width_, benchmark_height_); MaskCpuFlags(benchmark_cpu_info_); for (int i = 0; i < benchmark_iterations_; ++i) { ARGBCopyAlpha(orig_pixels, benchmark_width_ * 4, dst_pixels_opt, benchmark_width_ * 4, benchmark_width_, benchmark_height_); } for (int i = 0; i < kSize; ++i) { EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]); } free_aligned_buffer_64(dst_pixels_c); free_aligned_buffer_64(dst_pixels_opt); free_aligned_buffer_64(orig_pixels); } TEST_F(LibYUVPlanarTest, TestARGBCopyYToAlpha) { const int kPixels = benchmark_width_ * benchmark_height_; align_buffer_64(orig_pixels, kPixels); align_buffer_64(dst_pixels_opt, kPixels * 4); align_buffer_64(dst_pixels_c, kPixels * 4); MemRandomize(orig_pixels, kPixels); MemRandomize(dst_pixels_opt, kPixels * 4); memcpy(dst_pixels_c, dst_pixels_opt, kPixels * 4); MaskCpuFlags(disable_cpu_flags_); ARGBCopyYToAlpha(orig_pixels, benchmark_width_, dst_pixels_c, benchmark_width_ * 4, benchmark_width_, benchmark_height_); MaskCpuFlags(benchmark_cpu_info_); for (int i = 0; i < benchmark_iterations_; ++i) { ARGBCopyYToAlpha(orig_pixels, benchmark_width_, dst_pixels_opt, benchmark_width_ * 4, benchmark_width_, benchmark_height_); } for (int i = 0; i < kPixels * 4; ++i) { EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]); } free_aligned_buffer_64(dst_pixels_c); free_aligned_buffer_64(dst_pixels_opt); free_aligned_buffer_64(orig_pixels); } static int TestARGBRect(int width, int height, int benchmark_iterations, int disable_cpu_flags, int benchmark_cpu_info, int invert, int off, int bpp) { if (width < 1) { width = 1; } const int kStride = width * bpp; const int kSize = kStride * height; const uint32 v32 = fastrand() & (bpp == 4 ? 0xffffffff : 0xff); align_buffer_64(dst_argb_c, kSize + off); align_buffer_64(dst_argb_opt, kSize + off); MemRandomize(dst_argb_c + off, kSize); memcpy(dst_argb_opt + off, dst_argb_c + off, kSize); MaskCpuFlags(disable_cpu_flags); if (bpp == 4) { ARGBRect(dst_argb_c + off, kStride, 0, 0, width, invert * height, v32); } else { SetPlane(dst_argb_c + off, kStride, width, invert * height, v32); } MaskCpuFlags(benchmark_cpu_info); for (int i = 0; i < benchmark_iterations; ++i) { if (bpp == 4) { ARGBRect(dst_argb_opt + off, kStride, 0, 0, width, invert * height, v32); } else { SetPlane(dst_argb_opt + off, kStride, width, invert * height, v32); } } int max_diff = 0; for (int i = 0; i < kStride * height; ++i) { int abs_diff = abs(static_cast(dst_argb_c[i + off]) - static_cast(dst_argb_opt[i + off])); if (abs_diff > max_diff) { max_diff = abs_diff; } } free_aligned_buffer_64(dst_argb_c); free_aligned_buffer_64(dst_argb_opt); return max_diff; } TEST_F(LibYUVPlanarTest, ARGBRect_Any) { int max_diff = TestARGBRect(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0, 4); EXPECT_EQ(0, max_diff); } TEST_F(LibYUVPlanarTest, ARGBRect_Unaligned) { int max_diff = TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 1, 4); EXPECT_EQ(0, max_diff); } TEST_F(LibYUVPlanarTest, ARGBRect_Invert) { int max_diff = TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, -1, 0, 4); EXPECT_EQ(0, max_diff); } TEST_F(LibYUVPlanarTest, ARGBRect_Opt) { int max_diff = TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0, 4); EXPECT_EQ(0, max_diff); } TEST_F(LibYUVPlanarTest, SetPlane_Any) { int max_diff = TestARGBRect(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0, 1); EXPECT_EQ(0, max_diff); } TEST_F(LibYUVPlanarTest, SetPlane_Unaligned) { int max_diff = TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 1, 1); EXPECT_EQ(0, max_diff); } TEST_F(LibYUVPlanarTest, SetPlane_Invert) { int max_diff = TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, -1, 0, 1); EXPECT_EQ(0, max_diff); } TEST_F(LibYUVPlanarTest, SetPlane_Opt) { int max_diff = TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_, disable_cpu_flags_, benchmark_cpu_info_, +1, 0, 1); EXPECT_EQ(0, max_diff); } } // namespace libyuv