
The Speex Codec Manual
Version 1.2 Beta 3

Jean-Marc Valin

December 8, 2007

Copyright c©2002-2007 Jean-Marc Valin/Xiph.org Foundation
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Section, with no Front-
Cover Texts, and with no Back-Cover. A copy of the license is included in the section entitled "GNU Free Documentation
License".

2

Contents

1 Introduction to Speex 6
1.1 Getting help 6
1.2 About this document 6

2 Codec description 7
2.1 Concepts 7
2.2 Codec 8
2.3 Preprocessor 8
2.4 Adaptive Jitter Buffer 9
2.5 Acoustic Echo Canceller 9
2.6 Resampler 9

3 Compiling and Porting 10
3.1 Platforms 10
3.2 Porting and Optimising 11

3.2.1 CPU optimisation 11
3.2.2 Memory optimisation 12

4 Command-line encoder/decoder 13
4.1 speexenc. 13
4.2 speexdec. 14

5 Using the Speex Codec API (libspeex) 15
5.1 Encoding 15
5.2 Decoding 16
5.3 Codec Options (speex_*_ctl) .. 16
5.4 Mode queries 18
5.5 Packing and in-band signalling .. 18

6 Speech Processing API (libspeexdsp) 19
6.1 Preprocessor 19

6.1.1 Preprocessor options 19
6.2 Echo Cancellation 20

6.2.1 Troubleshooting 21
6.3 Jitter Buffer 22
6.4 Resampler 23
6.5 Ring Buffer 23

7 Formats and standards 24
7.1 RTP Payload Format 24
7.2 MIME Type 24
7.3 Ogg file format 24

8 Introduction to CELP Coding 26
8.1 Source-Filter Model of Speech Prediction 26
8.2 Linear Prediction (LPC) 26
8.3 Pitch Prediction 27
8.4 Innovation Codebook 28
8.5 Noise Weighting 28
8.6 Analysis-by-Synthesis 28

3

Contents

9 Speex narrowband mode 30
9.1 Whole-Frame Analysis 30
9.2 Sub-Frame Analysis-by-Synthesis 30
9.3 Bit allocation 32
9.4 Perceptual enhancement 32

10 Speex wideband mode (sub-band CELP) 34
10.1 Linear Prediction 34
10.2 Pitch Prediction 34
10.3 Excitation Quantization .. 34
10.4 Bit allocation 34

A Sample code 36
A.1 sampleenc.c 36
A.2 sampledec.c 37

B Jitter Buffer for Speex 39

C IETF RTP Profile 41

D Speex License 60

E GNU Free Documentation License 61

4

List of Tables

5.1 In-band signalling codes 18

7.1 Ogg/Speex header packet 25

9.1 Bit allocation for narrowband modes 32
9.2 Quality versus bit-rate .. 33

10.1 Bit allocation for high-band in wideband mode 34
10.2 Quality versus bit-rate for the wideband encoder 35

5

1 Introduction to Speex

The Speex codec (http://www.speex.org/) exists because there is a need for a speech codec that is open-source and
free from software patent royalties. These are essential conditions for being usable in any open-source software. In essence,
Speex is to speech what Vorbis is to audio/music. Unlike manyother speech codecs, Speex is not designed for mobile phones
but rather for packet networks and voice over IP (VoIP) applications. File-based compression is of course also supported.

The Speex codec is designed to be very flexible and support a wide range of speech quality and bit-rate. Support for very
good quality speech also means that Speex can encode wideband speech (16 kHz sampling rate) in addition to narrowband
speech (telephone quality, 8 kHz sampling rate).

Designing for VoIP instead of mobile phones means that Speexis robust to lost packets, but not to corrupted ones. This is
based on the assumption that in VoIP, packets either arrive unaltered or don’t arrive at all. Because Speex is targeted ata wide
range of devices, it has modest (adjustable) complexity anda small memory footprint.

All the design goals led to the choice of CELP as the encoding technique. One of the main reasons is that CELP has long
proved that it could work reliably and scale well to both low bit-rates (e.g. DoD CELP @ 4.8 kbps) and high bit-rates (e.g.
G.728 @ 16 kbps).

1.1 Getting help

As for many open source projects, there are many ways to get help with Speex. These include:

• This manual

• Other documentation on the Speex website (http://www.speex.org/)

• Mailing list: Discuss any Speex-related topic on speex-dev@xiph.org (not just for developers)

• IRC: The main channel is #speex on irc.freenode.net. Note that due to time differences, it may take a while to get
someone, so please be patient.

• Email the author privately at jean-marc.valin@usherbrooke.caonly for private/delicate topics you do not wish to discuss
publically.

Before asking for help (mailing list or IRC),it is important to first read this manual (OK, so if you made it here it’s already
a good sign). It is generally considered rude to ask on a mailing list about topics that are clearly detailed in the documentation.
On the other hand, it’s perfectly OK (and encouraged) to ask for clarifications about something covered in the manual. This
manual does not (yet) cover everything about Speex, so everyone is encouraged to ask questions, send comments, feature
requests, or just let us know how Speex is being used.

Here are some additional guidelines related to the mailing list. Before reporting bugs in Speex to the list, it is strongly
recommended (if possible) to first test whether these bugs can be reproduced using the speexenc and speexdec (see Section4)
command-line utilities. Bugs reported based on 3rd party code are both harder to find and far too often caused by errors that
have nothing to do with Speex.

1.2 About this document

This document is divided in the following way. Section 2 describes the different Speex features and defines many basic terms
that are used throughout this manual. Section 4 documents the standard command-line tools provided in the Speex distribution.
Section 5 includes detailed instructions about programming using the libspeex API. Section 7 has some information related to
Speex and standards.

The three last sections describe the algorithms used in Speex. These sections require signal processing knowledge, butare
not required for merely using Speex. They are intended for people who want to understand how Speex really works and/or
want to do research based on Speex. Section 8 explains the general idea behind CELP, while sections 9 and 10 are specific to
Speex.

6

2 Codec description

This section describes Speex and its features into more details.

2.1 Concepts

Before introducing all the Speex features, here are some concepts in speech coding that help better understand the rest of the
manual. Although some are general concepts in speech/audioprocessing, others are specific to Speex.

Sampling rate

The sampling rate expressed in Hertz (Hz) is the number of samples taken from a signal per second. For a sampling rate
of Fs kHz, the highest frequency that can be represented is equal to Fs/2 kHz (Fs/2 is known as the Nyquist frequency).
This is a fundamental property in signal processing and is described by the sampling theorem. Speex is mainly designed for
three different sampling rates: 8 kHz, 16 kHz, and 32 kHz. These are respectively refered to as narrowband, wideband and
ultra-wideband.

Bit-rate

When encoding a speech signal, the bit-rate is defined as the number of bits per unit of time required to encode the speech. It
is measured inbits per second(bps), or generallykilobits per second. It is important to make the distinction betweenkilobits
per second(kbps) andkilobytes per second(kBps).

Quality (variable)

Speex is a lossy codec, which means that it achives compression at the expense of fidelity of the input speech signal. Unlike
some other speech codecs, it is possible to control the tradeoff made between quality and bit-rate. The Speex encoding process
is controlled most of the time by a quality parameter that ranges from 0 to 10. In constant bit-rate (CBR) operation, the quality
parameter is an integer, while for variable bit-rate (VBR),the parameter is a float.

Complexity (variable)

With Speex, it is possible to vary the complexity allowed forthe encoder. This is done by controlling how the search is
performed with an integer ranging from 1 to 10 in a way that’s similar to the -1 to -9 options togzipandbzip2compression
utilities. For normal use, the noise level at complexity 1 isbetween 1 and 2 dB higher than at complexity 10, but the CPU
requirements for complexity 10 is about 5 times higher than for complexity 1. In practice, the best trade-off is between
complexity 2 and 4, though higher settings are often useful when encoding non-speech sounds like DTMF tones.

Variable Bit-Rate (VBR)

Variable bit-rate (VBR) allows a codec to change its bit-rate dynamically to adapt to the “difficulty” of the audio being
encoded. In the example of Speex, sounds like vowels and high-energy transients require a higher bit-rate to achieve good
quality, while fricatives (e.g. s,f sounds) can be coded adequately with less bits. For this reason, VBR can achive lowerbit-rate
for the same quality, or a better quality for a certain bit-rate. Despite its advantages, VBR has two main drawbacks: first, by
only specifying quality, there’s no guaranty about the finalaverage bit-rate. Second, for some real-time applicationslike voice
over IP (VoIP), what counts is the maximum bit-rate, which must be low enough for the communication channel.

Average Bit-Rate (ABR)

Average bit-rate solves one of the problems of VBR, as it dynamically adjusts VBR quality in order to meet a specific target
bit-rate. Because the quality/bit-rate is adjusted in real-time (open-loop), the global quality will be slightly lower than that
obtained by encoding in VBR with exactly the right quality setting to meet the target average bit-rate.

7

2 Codec description

Voice Activity Detection (VAD)

When enabled, voice activity detection detects whether theaudio being encoded is speech or silence/background noise.VAD
is always implicitly activated when encoding in VBR, so the option is only useful in non-VBR operation. In this case, Speex
detects non-speech periods and encode them with just enoughbits to reproduce the background noise. This is called “comfort
noise generation” (CNG).

Discontinuous Transmission (DTX)

Discontinuous transmission is an addition to VAD/VBR operation, that allows to stop transmitting completely when the
background noise is stationary. In file-based operation, since we cannot just stop writing to the file, only 5 bits are usedfor
such frames (corresponding to 250 bps).

Perceptual enhancement

Perceptual enhancement is a part of the decoder which, when turned on, attempts to reduce the perception of the noise/dis-
tortion produced by the encoding/decoding process. In mostcases, perceptual enhancement brings the sound further from the
originalobjectively(e.g. considering only SNR), but in the end it stillsoundsbetter (subjective improvement).

Latency and algorithmic delay

Every speech codec introduces a delay in the transmission. For Speex, this delay is equal to the frame size, plus some amount
of “look-ahead” required to process each frame. In narrowband operation (8 kHz), the delay is 30 ms, while for wideband (16
kHz), the delay is 34 ms. These values don’t account for the CPU time it takes to encode or decode the frames.

2.2 Codec

The main characteristics of Speex can be summarized as follows:

• Free software/open-source, patent and royalty-free

• Integration of narrowband and wideband using an embedded bit-stream

• Wide range of bit-rates available (from 2.15 kbps to 44 kbps)

• Dynamic bit-rate switching (AMR) and Variable Bit-Rate (VBR) operation

• Voice Activity Detection (VAD, integrated with VBR) and discontinuous transmission (DTX)

• Variable complexity

• Embedded wideband structure (scalable sampling rate)

• Ultra-wideband sampling rate at 32 kHz

• Intensity stereo encoding option

• Fixed-point implementation

2.3 Preprocessor

This part refers to the preprocessor module introduced in the 1.1.x branch. The preprocessor is designed to be used on the
audiobeforerunning the encoder. The preprocessor provides three main functionalities:

• noise suppression

• automatic gain control (AGC)

• voice activity detection (VAD)

8

2 Codec description

Figure 2.1: Acoustic echo model

The denoiser can be used to reduce the amount of background noise present in the input signal. This provides higher quality
speech whether or not the denoised signal is encoded with Speex (or at all). However, when using the denoised signal with the
codec, there is an additional benefit. Speech codecs in general (Speex included) tend to perform poorly on noisy input, which
tends to amplify the noise. The denoiser greatly reduces this effect.

Automatic gain control (AGC) is a feature that deals with thefact that the recording volume may vary by a large amount
between different setups. The AGC provides a way to adjust a signal to a reference volume. This is useful for voice over
IP because it removes the need for manual adjustment of the microphone gain. A secondary advantage is that by setting the
microphone gain to a conservative (low) level, it is easier to avoid clipping.

The voice activity detector (VAD) provided by the preprocessor is more advanced than the one directly provided in the
codec.

2.4 Adaptive Jitter Buffer

When transmitting voice (or any content for that matter) over UDP or RTP, packet may be lost, arrive with different delay,
or even out of order. The purpose of a jitter buffer is to reorder packets and buffer them long enough (but no longer than
necessary) so they can be sent to be decoded.

2.5 Acoustic Echo Canceller

In any hands-free communication system (Fig. 2.1), speech from the remote end is played in the local loudspeaker, propagates
in the room and is captured by the microphone. If the audio captured from the microphone is sent directly to the remote end,
then the remove user hears an echo of his voice. An acoustic echo canceller is designed to remove the acoustic echo before it
is sent to the remote end. It is important to understand that the echo canceller is meant to improve the quality on theremote
end.

2.6 Resampler

In some cases, it may be useful to convert audio from one sampling rate to another. There are many reasons for that. It can
be for mixing streams that have different sampling rates, for supporting sampling rates that the soundcard doesn’t support, for
transcoding, etc. That’s why there is now a resampler that ispart of the Speex project. This resampler can be used to convert
between any two arbitrary rates (the ratio must only be a rational number) and there is control over the quality/complexity
tradeoff.

9

3 Compiling and Porting

Compiling Speex under UNIX/Linux or any other platform supported by autoconf (e.g. Win32/cygwin) is as easy as typing:

% ./configure [options]
% make
% make install

The options supported by the Speex configure script are:

–prefix=<path> Specifies the base path for installing Speex (e.g. /usr)

–enable-shared/–disable-shared Whether to compile shared libraries

–enable-static/–disable-static Whether to compile static libraries

–disable-wideband Disable the wideband part of Speex (typically to save space)

–enable-valgrind Enable extra hits for valgrind for debugging purposes (do not use by default)

–enable-sse Enable use of SSE instructions (x86/float only)

–enable-fixed-point Compile Speex for a processor that does not have a floating point unit (FPU)

–enable-arm4-asm Enable assembly specific to the ARMv4 architecture (gcc only)

–enable-arm5e-asm Enable assembly specific to the ARMv5E architecture (gcc only)

–enable-fixed-point-debug Use only for debugging the fixed-point code (very slow)

–enable-epic-48k Enable a special (and non-compatible) 4.8 kbps narrowband mode (broken in 1.1.x and 1.2beta)

–enable-ti-c55x Enable support for the TI C5x family

–enable-blackfin-asm Enable assembly specific to the Blackfin DSP architecture (gcc only)

–enable-vorbis-psycho Make the encoder use the Vorbis psycho-acoustic model. Thisis very experimental and may be
removed in the future.

3.1 Platforms

Speex is known to compile and work on a large number of architectures, both floating-point and fixed-point. In general, any
architecture that can natively compute the multiplicationof two signed 16-bit numbers (32-bit result) and runs at a sufficient
clock rate (architecture-dependent) is capable of runningSpeex. Architectures on which Speex isknown to work (it probably
works on many others) are:

• x86 & x86-64

• Power

• SPARC

• ARM

• Blackfin

• Coldfire (68k family)

• TI C54xx & C55xx

10

3 Compiling and Porting

• TI C6xxx

• TriMedia (experimental)

Operating systems on top of which Speex is known to work include (it probably works on many others):

• Linux

• µClinux

• MacOS X

• BSD

• Other UNIX/POSIX variants

• Symbian

The source code directory include additional information for compiling on certain architectures or operating systemsin
README.xxx files.

3.2 Porting and Optimising

Here are a few things to consider when porting or optimising Speex for a new platform or an existing one.

3.2.1 CPU optimisation

The single that will affect the CPU usage of Speex the most is whether it is compiled for floating point or fixed-point. If your
CPU/DSP does not have a floating-point unit FPU, then compiling as fixed-point will be orders of magnitudes faster. If there
is an FPU present, then it is important to test which version is faster. On the x86 architecture, floating-point isgenerally
faster, but not always. To compile Speex as fixed-point, you need to pass –fixed-point to the configure script or define the
FIXED_POINT macro for the compiler. As of 1.2beta3, it is nowpossible to disable the floating-point compatibility API,
which means that your code can link without a float emulation library. To do that configure with –disable-float-api or define
the DISABLE_FLOAT_API macro. Until the VBR feature is ported to fixed-point, you will also need to configure with
–disable-vbr or define DISABLE_VBR.

Other important things to check on some DSP architectures are:

• Make sure the cache is set to write-back mode

• If the chip has SRAM instead of cache, make sure as much code and data are in SRAM, rather than in RAM

If you are going to be writing assembly, then the following functions areusually the first ones you should consider optimising:

• filter_mem16()

• iir_mem16()

• vq_nbest()

• pitch_xcorr()

• interp_pitch()

The filtering functionsfilter_mem16() andiir_mem16() are implemented in the direct form II transposed (DF2T).
However, for architectures based on multiply-accumulate (MAC), DF2T requires frequent reload of the accumulator, which
can make the code very slow. For these architectures (e.g. Blackfin and Coldfire), a better approach is to implement those
functions as direct form I (DF1), which is easier to express in terms of MAC. When doing that however,it is important to
make sure that the DF1 implementation still behaves like theoriginal DF2T behaviour when it comes to filter values.
This is necessary because the filter is time-varrying and must compute exactly the same value (not counting machine rounding)
on any encoder or decoder.

11

3 Compiling and Porting

3.2.2 Memory optimisation

Memory optimisation is mainly something that should be considered for small embedded platforms. For PCs, Speex is already
so tiny that it’s just not worth doing any of the things suggested here. There are several ways to reduce the memory usage of
Speex, both in terms of code size and data size. For optimising code size, the trick is to first remove features you do not need.
Some examples of things that can easily be disabledif you don’t need themare:

• Wideband support (–disable-wideband)

• Support for stereo (removing stereo.c)

• VBR support (–disable-vbr or DISABLE_VBR)

• Static codebooks that are not needed for the bit-rates you are using (*_table.c files)

Speex also has several methods for allocating temporary arrays. When using a compiler that supports C99 properly (as of 2007,
Microsoft compilers don’t, but gcc does), it is best to defineVAR_ARRAYS. That makes use of the variable-size array feature
of C99. The next best is to define USE_ALLOCA so that Speex can use alloca() to allocate the temporary arrays. Note that on
many systems, alloca() is buggy so it may not work. If none of VAR_ARRAYS and USE_ALLOCA are defined, then Speex
falls back to allocating a large “scratch space” and doing its own internal allocation. The main disadvantage of this solution
is that it is wasteful. It needs to allocate enough stack for the worst case scenario (worst bit-rate, highest complexitysetting,
...) and by default, the memory isn’t shared between multiple encoder/decoder states. Still, if the “manual” allocation is the
only option left, there are a few things that can be improved.By overriding the speex_alloc_scratch() call in os_support.h, it
is possible to always return the same memory area for all states1. In addition to that, by redefining the NB_ENC_STACK and
NB_DEC_STACK (or similar for wideband), it is possible to only allocate memory for a scenario that is known in advange.
In this case, it is important to measure the amount of memory required for the specific sampling rate, bit-rate and complexity
level being used.

1In this case, one must be careful with threads

12

4 Command-line encoder/decoder
The base Speex distribution includes a command-line encoder (speexenc) and decoder (speexdec). Those tools produce and
read Speex files encapsulated in the Ogg container. Althoughit is possible to encapsulate Speex in any container, Ogg is the
recommended container for files. This section describes howto use the command line tools for Speex files in Ogg.

4.1 speexenc

Thespeexencutility is used to create Speex files from raw PCM or wave files.It can be used by calling:

speexenc [options] input_file output_file

The value ’-’ for input_file or output_file corresponds respectively to stdin and stdout. The valid options are:

–narrowband (-n) Tell Speex to treat the input as narrowband (8 kHz). This is the default

–wideband (-w) Tell Speex to treat the input as wideband (16 kHz)

–ultra-wideband (-u) Tell Speex to treat the input as “ultra-wideband” (32 kHz)

–quality n Set the encoding quality (0-10), default is 8

–bitrate n Encoding bit-rate (use bit-rate n or lower)

–vbr Enable VBR (Variable Bit-Rate), disabled by default

–abr n Enable ABR (Average Bit-Rate) at n kbps, disabled by default

–vad Enable VAD (Voice Activity Detection), disabled by default

–dtx Enable DTX (Discontinuous Transmission), disabled by default

–nframes n Pack n frames in each Ogg packet (this saves space at low bit-rates)

–comp n Set encoding speed/quality tradeoff. The higher the value of n, the slower the encoding (default is 3)

-V Verbose operation, print bit-rate currently in use

–help (-h) Print the help

–version (-v) Print version information

Speex comments

–comment Add the given string as an extra comment. This may be used multiple times.

–author Author of this track.

–title Title for this track.

Raw input options

–rate n Sampling rate for raw input

–stereo Consider raw input as stereo

–le Raw input is little-endian

–be Raw input is big-endian

–8bit Raw input is 8-bit unsigned

–16bit Raw input is 16-bit signed

13

4 Command-line encoder/decoder

4.2 speexdec

Thespeexdecutility is used to decode Speex files and can be used by calling:

speexdec [options] speex_file [output_file]

The value ’-’ for input_file or output_file corresponds respectively to stdin and stdout. Also, when no output_file is specified,
the file is played to the soundcard. The valid options are:

–enh enable post-filter (default)

–no-enh disable post-filter

–force-nb Force decoding in narrowband

–force-wb Force decoding in wideband

–force-uwb Force decoding in ultra-wideband

–mono Force decoding in mono

–stereo Force decoding in stereo

–rate n Force decoding at n Hz sampling rate

–packet-loss n Simulate n % random packet loss

-V Verbose operation, print bit-rate currently in use

–help (-h) Print the help

–version (-v) Print version information

14

5 Using the Speex Codec API (libspeex)

The libspeexlibrary contains all the functions for encoding and decoding speech with the Speex codec. When linking on a
UNIX system, one must add-lspeex -lmto the compiler command line. One important thing to know is thatlibspeex calls are
reentrant, but not thread-safe. That means that it is fine to use calls from many threads, butcalls using the same state from
multiple threads must be protected by mutexes. Examples of code can also be found in Appendix A and the complete API
documentation is included in the Documentation section of the Speex website (http://www.speex.org/).

5.1 Encoding

In order to encode speech using Speex, one first needs to:

#include <speex/speex.h>

Then in the code, a Speex bit-packing struct must be declared, along with a Speex encoder state:

SpeexBits bits;
void *enc_state;

The two are initialized by:

speex_bits_init(&bits);
enc_state = speex_encoder_init(&speex_nb_mode);

For wideband coding,speex_nb_modewill be replaced byspeex_wb_mode. In most cases, you will need to know the frame
size used at the sampling rate you are using. You can get that value in theframe_sizevariable (expressed insamples, not
bytes) with:

speex_encoder_ctl(enc_state,SPEEX_GET_FRAME_SIZE,&frame_size);

In practice,frame_sizewill correspond to 20 ms when using 8, 16, or 32 kHz sampling rate. There are many parameters that
can be set for the Speex encoder, but the most useful one is thequality parameter that controls the quality vs bit-rate tradeoff.
This is set by:

speex_encoder_ctl(enc_state,SPEEX_SET_QUALITY,&quality);

wherequality is an integer value ranging from 0 to 10 (inclusively). The mapping between quality and bit-rate is described
in Fig. 9.2 for narrowband.

Once the initialization is done, for every input frame:

speex_bits_reset(&bits);
speex_encode_int(enc_state, input_frame, &bits);
nbBytes = speex_bits_write(&bits, byte_ptr, MAX_NB_BYTES);

whereinput_frameis a(short*) pointing to the beginning of a speech frame,byte_ptris a(char *) where the encoded frame
will be written,MAX_NB_BYTESis the maximum number of bytes that can be written tobyte_ptrwithout causing an overflow
andnbBytesis the number of bytes actually written tobyte_ptr(the encoded size in bytes). Before calling speex_bits_write,
it is possible to find the number of bytes that need to be written by callingspeex_bits_nbytes(&bits), which returns
a number of bytes.

It is still possible to use thespeex_encode()function, which takes a(float *) for the audio. However, this would make an
eventual port to an FPU-less platform (like ARM) more complicated. Internally,speex_encode()andspeex_encode_int()are
processed in the same way. Whether the encoder uses the fixed-point version is only decided by the compile-time flags, not at
the API level.

After you’re done with the encoding, free all resources with:

speex_bits_destroy(&bits);
speex_encoder_destroy(enc_state);

That’s about it for the encoder.

15

5 Using the Speex Codec API (libspeex)

5.2 Decoding

In order to decode speech using Speex, you first need to:

#include <speex/speex.h>

You also need to declare a Speex bit-packing struct

SpeexBits bits;

and a Speex decoder state

void *dec_state;

The two are initialized by:

speex_bits_init(&bits);
dec_state = speex_decoder_init(&speex_nb_mode);

For wideband decoding,speex_nb_modewill be replaced byspeex_wb_mode. If you need to obtain the size of the frames
that will be used by the decoder, you can get that value in theframe_sizevariable (expressed insamples, not bytes) with:

speex_decoder_ctl(dec_state, SPEEX_GET_FRAME_SIZE, &frame_size);

There is also a parameter that can be set for the decoder: whether or not to use a perceptual enhancer. This can be set by:

speex_decoder_ctl(dec_state, SPEEX_SET_ENH, &enh);

whereenhis an int with value 0 to have the enhancer disabled and 1 to have it enabled. As of 1.2-beta1, the default is now
to enable the enhancer.

Again, once the decoder initialization is done, for every input frame:

speex_bits_read_from(&bits, input_bytes, nbBytes);
speex_decode_int(dec_state, &bits, output_frame);

where input_bytes is a(char *) containing the bit-stream data received for a frame,nbBytesis the size (in bytes) of that
bit-stream, andoutput_frameis a (short *) and points to the area where the decoded speech frame will be written. A NULL
value as the second argument indicates that we don’t have thebits for the current frame. When a frame is lost, the Speex
decoder will do its best to "guess" the correct signal.

As for the encoder, thespeex_decode()function can still be used, with a(float *) as the output for the audio. After you’re
done with the decoding, free all resources with:

speex_bits_destroy(&bits);
speex_decoder_destroy(dec_state);

5.3 Codec Options (speex_*_ctl)

Entities should not be multiplied beyond necessity – William of Ockham.

Just because there’s an option for it doesn’t mean you have toturn it on – me.

The Speex encoder and decoder support many options and requests that can be accessed through thespeex_encoder_ctland
speex_decoder_ctlfunctions. These functions are similar to theioctl system call and their prototypes are:

void speex_encoder_ctl(void *encoder, int request, void *ptr);
void speex_decoder_ctl(void *encoder, int request, void *ptr);

Despite those functions, the defaults are usually good for many applications andoptional settings should only be used
when one understands them and knows that they are needed. A common error is to attempt to set many unnecessary
settings.

Here is a list of the values allowed for the requests. Some only apply to the encoder or the decoder. Because the last argument
is of typevoid *, the_ctl() functions arenot type safe, and shoud thus be used with care. The typespx_int32_t is
the same as the C99int32_t type.

SPEEX_SET_ENH‡ Set perceptual enhancer to on (1) or off (0) (spx_int32_t, default is on)

16

5 Using the Speex Codec API (libspeex)

SPEEX_GET_ENH‡ Get perceptual enhancer status (spx_int32_t)

SPEEX_GET_FRAME_SIZE Get the number of samples per frame for the current mode (spx_int32_t)

SPEEX_SET_QUALITY† Set the encoder speech quality (spx_int32_t from 0 to 10, default is 8)

SPEEX_GET_QUALITY† Get the current encoder speech quality (spx_int32_t from 0 to 10)

SPEEX_SET_MODE† Set the mode number, as specified in the RTP spec (spx_int32_t)

SPEEX_GET_MODE† Get the current mode number, as specified in the RTP spec (spx_int32_t)

SPEEX_SET_VBR† Set variable bit-rate (VBR) to on (1) or off (0) (spx_int32_t, default is off)

SPEEX_GET_VBR† Get variable bit-rate (VBR) status (spx_int32_t)

SPEEX_SET_VBR_QUALITY † Set the encoder VBR speech quality (float 0.0 to 10.0, default is 8.0)

SPEEX_GET_VBR_QUALITY † Get the current encoder VBR speech quality (float 0 to 10)

SPEEX_SET_COMPLEXITY† Set the CPU resources allowed for the encoder (spx_int32_t from 1 to 10, default is 2)

SPEEX_GET_COMPLEXITY† Get the CPU resources allowed for the encoder (spx_int32_t from 1 to 10, default is
2)

SPEEX_SET_BITRATE† Set the bit-rate to use the closest value not exceeding the parameter (spx_int32_t in bits per
second)

SPEEX_GET_BITRATE Get the current bit-rate in use (spx_int32_t in bits per second)

SPEEX_SET_SAMPLING_RATE Set real sampling rate (spx_int32_t in Hz)

SPEEX_GET_SAMPLING_RATE Get real sampling rate (spx_int32_t in Hz)

SPEEX_RESET_STATE Reset the encoder/decoder state to its original state, clearing all memories (no argument)

SPEEX_SET_VAD† Set voice activity detection (VAD) to on (1) or off (0) (spx_int32_t, default is off)

SPEEX_GET_VAD† Get voice activity detection (VAD) status (spx_int32_t)

SPEEX_SET_DTX† Set discontinuous transmission (DTX) to on (1) or off (0) (spx_int32_t, default is off)

SPEEX_GET_DTX† Get discontinuous transmission (DTX) status (spx_int32_t)

SPEEX_SET_ABR† Set average bit-rate (ABR) to a value n in bits per second (spx_int32_t in bits per second)

SPEEX_GET_ABR† Get average bit-rate (ABR) setting (spx_int32_t in bits per second)

SPEEX_SET_PLC_TUNING† Tell the encoder to optimize encoding for a certain percentage of packet loss (spx_int32_t
in percent)

SPEEX_GET_PLC_TUNING† Get the current tuning of the encoder for PLC (spx_int32_t in percent)

SPEEX_SET_VBR_MAX_BITRATE † Set the maximum bit-rate allowed in VBR operation (spx_int32_t in bits per
second)

SPEEX_GET_VBR_MAX_BITRATE † Get the current maximum bit-rate allowed in VBR operation (spx_int32_t in
bits per second)

SPEEX_SET_HIGHPASS Set the high-pass filter on (1) or off (0) (spx_int32_t, default is on)

SPEEX_GET_HIGHPASS Get the current high-pass filter status (spx_int32_t)

† applies only to the encoder

‡ applies only to the decoder

17

5 Using the Speex Codec API (libspeex)

5.4 Mode queries

Speex modes have a query system similar to the speex_encoder_ctl and speex_decoder_ctl calls. Since modes are read-only,
it is only possible to get information about a particular mode. The function used to do that is:

void speex_mode_query(SpeexMode *mode, int request, void *ptr);

The admissible values for request are (unless otherwise note, the values are returned throughptr):

SPEEX_MODE_FRAME_SIZE Get the frame size (in samples) for the mode

SPEEX_SUBMODE_BITRATE Get the bit-rate for a submode number specified throughptr (integer in bps).

5.5 Packing and in-band signalling

Sometimes it is desirable to pack more than one frame per packet (or other basic unit of storage). The proper way to do it is
to call speex_encodeN times before writing the stream with speex_bits_write. In cases where the number of frames is not
determined by an out-of-band mechanism, it is possible to include a terminator code. That terminator consists of the code 15
(decimal) encoded with 5 bits, as shown in Table 9.2. Note that as of version 1.0.2, calling speex_bits_write automatically
inserts the terminator so as to fill the last byte. This doesn’t involves any overhead and makes sure Speex can always detect
when there is no more frame in a packet.

It is also possible to send in-band “messages” to the other side. All these messages are encoded as “pseudo-frames” of
mode 14 which contain a 4-bit message type code, followed by the message. Table 5.1 lists the available codes, their meaning
and the size of the message that follows. Most of these messages are requests that are sent to the encoder or decoder on the
other end, which is free to comply or ignore them. By default,all in-band messages are ignored.

Code Size (bits) Content

0 1 Asks decoder to set perceptual enhancement off (0) or on(1)
1 1 Asks (if 1) the encoder to be less “agressive” due to high packet loss
2 4 Asks encoder to switch to mode N
3 4 Asks encoder to switch to mode N for low-band
4 4 Asks encoder to switch to mode N for high-band
5 4 Asks encoder to switch to quality N for VBR
6 4 Request acknowloedge (0=no, 1=all, 2=only for in-band data)
7 4 Asks encoder to set CBR (0), VAD(1), DTX(3), VBR(5), VBR+DTX(7)
8 8 Transmit (8-bit) character to the other end
9 8 Intensity stereo information
10 16 Announce maximum bit-rate acceptable (N in bytes/second)
11 16 reserved
12 32 Acknowledge receiving packet N
13 32 reserved
14 64 reserved
15 64 reserved

Table 5.1: In-band signalling codes

Finally, applications may define custom in-band messages using mode 13. The size of the message in bytes is encoded with
5 bits, so that the decoder can skip it if it doesn’t know how tointerpret it.

18

6 Speech Processing API (libspeexdsp)

As of version 1.2beta3, the non-codec parts of the Speex package are now in a separate library calledlibspeexdsp. This library
includes the preprocessor, the acoustic echo canceller, the jitter buffer, and the resampler. In a UNIX environment, itcan be
linked into a program by adding-lspeexdsp -lmto the compiler command line. Just like for libspeex,libspeexdsp calls are
reentrant, but not thread-safe. That means that it is fine to use calls from many threads, butcalls using the same state from
multiple threads must be protected by mutexes.

6.1 Preprocessor

In order to use the Speex preprocessor, you first need to:

#include <speex/speex_preprocess.h>

Then, a preprocessor state can be created as:

SpeexPreprocessState *preprocess_state = speex_preprocess_state_init(frame_size,
sampling_rate);

and it is recommended to use the same value forframe_size as is used by the encoder (20ms).
For each input frame, you need to call:

speex_preprocess_run(preprocess_state, audio_frame);

whereaudio_frame is used both as input and output. In cases where the output audio is not useful for a certain frame, it is
possible to use instead:

speex_preprocess_estimate_update(preprocess_state, audio_frame);

This call will update all the preprocessor internal state variables without computing the output audio, thus saving some CPU
cycles.

The behaviour of the preprocessor can be changed using:

speex_preprocess_ctl(preprocess_state, request, ptr);

which is used in the same way as the encoder and decoder equivalent. Options are listed in Section 6.1.1.
The preprocessor state can be destroyed using:

speex_preprocess_state_destroy(preprocess_state);

6.1.1 Preprocessor options

As with the codec, the preprocessor also has options that canbe controlled using an ioctl()-like call. The available options are:

SPEEX_PREPROCESS_SET_DENOISE Turns denoising on(1) or off(2) (spx_int32_t)

SPEEX_PREPROCESS_GET_DENOISE Get denoising status (spx_int32_t)

SPEEX_PREPROCESS_SET_AGC Turns automatic gain control (AGC) on(1) or off(2) (spx_int32_t)

SPEEX_PREPROCESS_GET_AGC Get AGC status (spx_int32_t)

SPEEX_PREPROCESS_SET_VAD Turns voice activity detector (VAD) on(1) or off(2) (spx_int32_t)

SPEEX_PREPROCESS_GET_VAD Get VAD status (spx_int32_t)

SPEEX_PREPROCESS_SET_AGC_LEVEL

SPEEX_PREPROCESS_GET_AGC_LEVEL

19

6 Speech Processing API (libspeexdsp)

SPEEX_PREPROCESS_SET_DEREVERB Turns reverberation removal on(1) or off(2) (spx_int32_t)

SPEEX_PREPROCESS_GET_DEREVERB Get reverberation removal status (spx_int32_t)

SPEEX_PREPROCESS_SET_DEREVERB_LEVEL Not working yet, do not use

SPEEX_PREPROCESS_GET_DEREVERB_LEVEL Not working yet, do not use

SPEEX_PREPROCESS_SET_DEREVERB_DECAY Not working yet, do not use

SPEEX_PREPROCESS_GET_DEREVERB_DECAY Not working yet, do not use

SPEEX_PREPROCESS_SET_PROB_START

SPEEX_PREPROCESS_GET_PROB_START

SPEEX_PREPROCESS_SET_PROB_CONTINUE

SPEEX_PREPROCESS_GET_PROB_CONTINUE

SPEEX_PREPROCESS_SET_NOISE_SUPPRESS Set maximum attenuation of the noise in dB (negativespx_int32_t
)

SPEEX_PREPROCESS_GET_NOISE_SUPPRESS Get maximum attenuation of the noise in dB (negativespx_int32_t
)

SPEEX_PREPROCESS_SET_ECHO_SUPPRESS Set maximum attenuation of the residual echo in dB (negativespx_int32_t
)

SPEEX_PREPROCESS_GET_ECHO_SUPPRESS Set maximum attenuation of the residual echo in dB (negativespx_int32_t
)

SPEEX_PREPROCESS_SET_ECHO_SUPPRESS_ACTIVE Set maximum attenuation of the echo in dB when near
end is active (negativespx_int32_t)

SPEEX_PREPROCESS_GET_ECHO_SUPPRESS_ACTIVE Set maximum attenuation of the echo in dB when near
end is active (negativespx_int32_t)

SPEEX_PREPROCESS_SET_ECHO_STATE Set the associated echo canceller for residual echo suppression (pointer
or NULL for no residual echo suppression)

SPEEX_PREPROCESS_GET_ECHO_STATE Get the associated echo canceller (pointer)

6.2 Echo Cancellation

The Speex library now includes an echo cancellation algorithm suitable for Acoustic Echo Cancellation (AEC). In order to
use the echo canceller, you first need to

#include <speex/speex_echo.h>

Then, an echo canceller state can be created by:

SpeexEchoState *echo_state = speex_echo_state_init(frame_size, filter_length);

whereframe_size is the amount of data (in samples) you want to process at once andfilter_length is the length
(in samples) of the echo cancelling filter you want to use (also known astail length). It is recommended to use a frame size in
the order of 20 ms (or equal to the codec frame size) and make sure it is easy to perform an FFT of that size (powers of two are
better than prime sizes). The recommended tail length is approximately the third of the room reverberation time. For example,
in a small room, reverberation time is in the order of 300 ms, so a tail length of 100 ms is a good choice (800 samples at 8000
Hz sampling rate).

Once the echo canceller state is created, audio can be processed by:

speex_echo_cancellation(echo_state, input_frame, echo_frame, output_frame);

20

6 Speech Processing API (libspeexdsp)

whereinput_frame is the audio as captured by the microphone,echo_frame is the signal that was played in the
speaker (and needs to be removed) andoutput_frame is the signal with echo removed.

One important thing to keep in mind is the relationship betweeninput_frame andecho_frame. It is important that,
at any time, any echo that is present in the input has already been sent to the echo canceller asecho_frame. In other words,
the echo canceller cannot remove a signal that it hasn’t yet received. On the other hand, the delay between the input signal
and the echo signal must be small enough because otherwise part of the echo cancellation filter is inefficient. In the idealcase,
you code would look like:

write_to_soundcard(echo_frame, frame_size);
read_from_soundcard(input_frame, frame_size);
speex_echo_cancellation(echo_state, input_frame, echo_frame, output_frame);

If you wish to further reduce the echo present in the signal, you can do so by associating the echo canceller to the prepro-
cessor (see Section 6.1). This is done by calling:

speex_preprocess_ctl(preprocess_state, SPEEX_PREPROCESS_SET_ECHO_STATE,echo_state);

in the initialisation.
As of version 1.2-beta2, there is an alternative, simpler API that can be used instead ofspeex_echo_cancellation(). When

audio capture and playback are handled asynchronously (e.g. in different threads or using thepoll() or select()system call),
it can be difficult to keep track of what input_frame comes with what echo_frame. Instead, the playback comtext/thread can
simply call:

speex_echo_playback(echo_state, echo_frame);

every time an audio frame is played. Then, the capture context/thread calls:

speex_echo_capture(echo_state, input_frame, output_frame);

for every frame captured. Internally,speex_echo_playback()simply buffers the playback frame so it can be used by
speex_echo_capture()to call speex_echo_cancel(). A side effect of using this alternate API is that the playback audio is
delayed by two frames, which is the normal delay caused by thesoundcard. When capture and playback are already synchro-
nised,speex_echo_cancellation()is preferable since it gives better control on the exact input/echo timing.

The echo cancellation state can be destroyed with:

speex_echo_state_destroy(echo_state);

It is also possible to reset the state of the echo canceller soit can be reused without the need to create another state with:

speex_echo_state_reset(echo_state);

6.2.1 Troubleshooting

There are several things that may prevent the echo cancellerfrom working properly. One of them is a bug (or something
suboptimal) in the code, but there are many others you shouldconsider first

• Using a different soundcard to do the capture and plaback will not work, regardless of what you may think. The only
exception to that is if the two cards can be made to have their sampling clock “locked” on the same clock source. If not,
the clocks will always have a small amount of drift, which will prevent the echo canceller from adapting.

• The delay between the record and playback signals must be minimal. Any signal played has to “appear” on the playback
(far end) signal slightly before the echo canceller “sees” it in the near end signal, but excessive delay means that part of
the filter length is wasted. In the worst situations, the delay is such that it is longer than the filter length, in which case,
no echo can be cancelled.

• When it comes to echo tail length (filter length), longer is *not* better. Actually, the longer the tail length, the longerit
takes for the filter to adapt. Of course, a tail length that is too short will not cancel enough echo, but the most common
problem seen is that people set a very long tail length and then wonder why no echo is being cancelled.

• Non-linear distortion cannot (by definition) be modeled by the linear adaptive filter used in the echo canceller and thus
cannot be cancelled. Use good audio gear and avoid saturation/clipping.

21

6 Speech Processing API (libspeexdsp)

Also useful is readingEcho Cancellation Demystifiedby Alexey Frunze1, which explains the fundamental principles of echo
cancellation. The details of the algorithm described in thearticle are different, but the general ideas of echo cancellation
through adaptive filters are the same.

As of version 1.2beta2, a newecho_diagnostic.m tool is included in the source distribution. The first step isto define
DUMP_ECHO_CANCEL_DATA during the build. This causes the echo canceller to automatically save the near-end, far-end
and output signals to files (aec_rec.sw aec_play.sw and aec_out.sw). These are exactly what the AEC receives and outputs.
From there, it is necessary to start Octave and type:

echo_diagnostic(’aec_rec.sw’, ’aec_play.sw’, ’aec_diagnostic.sw’, 1024);

The value of 1024 is the filter length and can be changed. Therewill be some (hopefully) useful messages printed and echo
cancelled audio will be saved to aec_diagnostic.sw . If eventhat output is bad (almost no cancellation) then there is probably
problem with the playback or recording process.

6.3 Jitter Buffer

The jitter buffer can be enabled by including:

#include <speex/speex_jitter.h>

and a new jitter buffer state can be initialised by:

JitterBuffer *state = jitter_buffer_init(step);

where thestep argument is the default time step (in timestamp units) used for adjusting the delay and doing concealment.
A value of 1 is always correct, but higher values may be more convenient sometimes. For example, if you are only able to do
concealment on 20ms frames, there is no point in the jitter buffer asking you to do it on one sample. Another example is that
for video, it makes no sense to adjust the delay by less than a full frame. The value provided can always be changed at a later
time.

The jitter buffer API is based on theJitterBufferPacket type, which is defined as:

typedef struct {
char *data; /* Data bytes contained in the packet */
spx_uint32_t len; /* Length of the packet in bytes */
spx_uint32_t timestamp; /* Timestamp for the packet */
spx_uint32_t span; /* Time covered by the packet (timestamp units) */

} JitterBufferPacket;

As an example, for audio the timestamp field would be what is obtained from the RTP timestamp field and the span would
be the number of samples that are encoded in the packet. For Speex narrowband, span would be 160 if only one frame is
included in the packet.

When a packet arrives, it need to be inserter into the jitter buffer by:

JitterBufferPacket packet;
/* Fill in each field in the packet struct */
jitter_buffer_put(state, &packet);

When the decoder is ready to decode a packet the packet to be decoded can be obtained by:

int start_offset;
err = jitter_buffer_get(state, &packet, desired_span, &start_offset);

If jitter_buffer_put() andjitter_buffer_get() are called from different threads, thenyou need to protect
the jitter buffer state with a mutex .

Because the jitter buffer is designed not to use an explicit timer, it needs to be told about the time explicitly. This is done
by calling:

jitter_buffer_tick(state);

This needs to be done periodically in the playing thread. This will be the last jitter buffer call before going to sleep (until
more data is played back). In some cases, it may be preferableto use

1http://www.embeddedstar.com/articles/2003/7/article20030720-1.html

22

6 Speech Processing API (libspeexdsp)

jitter_buffer_remaining_span(state, remaining);

The second argument is used to specify that we are still holding data that has not been written to the playback device.
For instance, if 256 samples were needed by the soundcard (specified bydesired_span), butjitter_buffer_get()
returned 320 samples, we would haveremaining=64.

6.4 Resampler

Speex includes a resampling modules. To make use of the resampler, it is necessary to include its header file:

#include <speex/speex_resampler.h>

For each stream that is to be resampled, it is necessary to create a resampler state with:

SpeexResamplerState *resampler;
resampler = speex_resampler_init(nb_channels, input_rate, output_rate, quality, &

err);

where nb_channels is the number of channels that will be used(either interleaved or non-interleaved), input_rate is the
sampling rate of the input stream, output_rate is the sampling rate of the output stream and quality is the requested quality
setting (0 to 10). The quality parameter is useful for controlling the quality/complexity/latency tradeoff. Using a higher
quality setting means less noise/aliasing, a higher complexity and a higher latency. Usually, a quality of 3 is acceptable for
most desktop uses and quality 10 is mostly recommended for pro audio work. Quality 0 usually has a decent sound (certainly
better than using linear interpolation resampling), but artifacts may be heard.

The actual resampling is performed using

err = speex_resampler_process_int(resampler, channelID, in, &in_length, out, &
out_length);

where channelID is the ID of the channel to be processed. For amono stream, use 0. Thein pointer points to the first sample
of the input buffer for the selected channel andout points to the first sample of the output. The size of the input and output
buffers are specified byin_lengthandout_lengthrespectively. Upon completion, these values are replaced by the number of
samples read and written by the resampler. Unless an error occurs, either all input samples will be read or all output samples
will be written to (or both). For floating-point samples, thefunction speex_resampler_process_float() behaves similarly.

It is also possible to process multiple channels at once.
To be continued...

6.5 Ring Buffer

Put some stuff there...

23

7 Formats and standards

Speex can encode speech in both narrowband and wideband and provides different bit-rates. However, not all features need
to be supported by a certain implementation or device. In order to be called “Speex compatible” (whatever that means), an
implementation must implement at least a basic set of features.

At the minimum, all narrowband modes of operation MUST be supported at the decoder. This includes the decoding of
a wideband bit-stream by the narrowband decoder1. If present, a wideband decoder MUST be able to decode a narrowband
stream, and MAY either be able to decode all wideband modes orbe able to decode the embedded narrowband part of all
modes (which includes ignoring the high-band bits).

For encoders, at least one narrowband or wideband mode MUST be supported. The main reason why all encoding modes
do not have to be supported is that some platforms may not be able to handle the complexity of encoding in some modes.

7.1 RTP Payload Format

The RTP payload draft is included in appendix C and the latestversion is available athttp://www.speex.org/drafts/
latest. This draft has been sent (2003/02/26) to the Internet Engineering Task Force (IETF) and will be discussed at the
March 18th meeting in San Francisco.

7.2 MIME Type

For now, you should use the MIME type audio/x-speex for Speex-in-Ogg. We will apply for typeaudio/speex in the near
future.

7.3 Ogg file format

Speex bit-streams can be stored in Ogg files. In this case, thefirst packet of the Ogg file contains the Speex header described in
table 7.1. All integer fields in the headers are stored as little-endian. Thespeex_string field must contain the “Speex ”
(with 3 trailing spaces), which identifies the bit-stream. The next field,speex_version contains the version of Speex that
encoded the file. For now, refer to speex_header.[ch] for more info. Thebeginning of stream(b_o_s) flag is set to 1 for the
header. The header packet haspacketno=0 andgranulepos=0.

The second packet contains the Speex comment header. The format used is the Vorbis comment format described here:
http://www.xiph.org/ogg/vorbis/doc/v-comment.html . This packet haspacketno=1 andgranulepos=0.

The third and subsequent packets each contain one or more (number found in header) Speex frames. These are identified
with packetno starting from 2 and thegranulepos is the number of the last sample encoded in that packet. The last of
these packets has theend of stream(e_o_s) flag is set to 1.

1The wideband bit-stream contains an embedded narrowband bit-stream which can be decoded alone

24

7 Formats and standards

Field Type Size

speex_string char[] 8
speex_version char[] 20

speex_version_id int 4
header_size int 4

rate int 4
mode int 4

mode_bitstream_version int 4
nb_channels int 4

bitrate int 4
frame_size int 4

vbr int 4
frames_per_packet int 4

extra_headers int 4
reserved1 int 4
reserved2 int 4

Table 7.1: Ogg/Speex header packet

25

8 Introduction to CELP Coding

Do not meddle in the affairs of poles, for they are subtle and quick to leave the unit circle.

Speex is based on CELP, which stands for Code Excited Linear Prediction. This section attempts to introduce the principles
behind CELP, so if you are already familiar with CELP, you cansafely skip to section 9. The CELP technique is based on
three ideas:

1. The use of a linear prediction (LP) model to model the vocaltract

2. The use of (adaptive and fixed) codebook entries as input (excitation) of the LP model

3. The search performed in closed-loop in a “perceptually weighted domain”

This section describes the basic ideas behind CELP. This is still a work in progress.

8.1 Source-Filter Model of Speech Prediction

The source-filter model of speech production assumes that the vocal cords are the source of spectrally flat sound (the excitation
signal), and that the vocal tract acts as a filter to spectrally shape the various sounds of speech. While still an approximation,
the model is widely used in speech coding because of its simplicity.Its use is also the reason why most speech codecs (Speex
included) perform badly on music signals. The different phonemes can be distinguished by their excitation (source) and
spectral shape (filter). Voiced sounds (e.g. vowels) have anexcitation signal that is periodic and that can be approximated by
an impulse train in the time domain or by regularly-spaced harmonics in the frequency domain. On the other hand, fricatives
(such as the "s", "sh" and "f" sounds) have an excitation signal that is similar to white Gaussian noise. So called voice fricatives
(such as "z" and "v") have excitation signal composed of an harmonic part and a noisy part.

The source-filter model is usually tied with the use of Linearprediction. The CELP model is based on source-filter model,
as can be seen from the CELP decoder illustrated in Figure 8.1.

8.2 Linear Prediction (LPC)

Linear prediction is at the base of many speech coding techniques, including CELP. The idea behind it is to predict the signal
x[n] using a linear combination of its past samples:

y[n] =
N

∑
i=1

aix[n− i]

wherey[n] is the linear prediction ofx[n]. The prediction error is thus given by:

e[n] = x[n]−y[n] = x[n]−
N

∑
i=1

aix[n− i]

The goal of the LPC analysis is to find the best prediction coefficientsai which minimize the quadratic error function:

E =
L−1

∑
n=0

[e[n]]2 =
L−1

∑
n=0

[

x[n]−
N

∑
i=1

aix[n− i]

]2

That can be done by making all derivatives∂E
∂ai

equal to zero:

∂E
∂ai

=
∂

∂ai

L−1

∑
n=0

[

x[n]−
N

∑
i=1

aix[n− i]

]2

= 0

26

8 Introduction to CELP Coding

Figure 8.1: The CELP model of speech synthesis (decoder)

For an orderN filter, the filter coefficientsai are found by solving the systemN×N linear systemRa = r , where

R =











R(0) R(1) · · · R(N−1)
R(1) R(0) · · · R(N−2)

...
...

. . .
...

R(N−1) R(N−2) · · · R(0)











r =











R(1)
R(2)

...
R(N)











with R(m), the auto-correlation of the signalx[n], computed as:

R(m) =
N−1

∑
i=0

x[i]x[i −m]

BecauseR is Hermitian Toeplitz, the Levinson-Durbin algorithm can be used, making the solution to the problemO
(

N2
)

instead ofO
(

N3
)

. Also, it can be proven that all the roots ofA(z) are within the unit circle, which means that 1/A(z) is always
stable. This is in theory; in practice because of finite precision, there are two commonly used techniques to make sure we have
a stable filter. First, we multiplyR(0) by a number slightly above one (such as 1.0001), which is equivalent to adding noise
to the signal. Also, we can apply a window to the auto-correlation, which is equivalent to filtering in the frequency domain,
reducing sharp resonances.

8.3 Pitch Prediction

During voiced segments, the speech signal is periodic, so itis possible to take advantage of that property by approximating
the excitation signale[n] by a gain times the past of the excitation:

e[n] ≃ p[n] = βe[n−T] ,

whereT is the pitch period,β is the pitch gain. We call that long-term prediction since the excitation is predicted frome[n−T]
with T ≫ N.

27

8 Introduction to CELP Coding

-40

-30

-20

-10

 0

 10

 20

 30

 0 500 1000 1500 2000 2500 3000 3500 4000

R
es

po
ns

e
(d

B
)

Frequency (Hz)

Speech signal
LPC synthesis filter
Reference shaping

Figure 8.2: Standard noise shaping in CELP. Arbitrary y-axis offset.

8.4 Innovation Codebook

The final excitatione[n] will be the sum of the pitch prediction and aninnovationsignalc[n] taken from a fixed codebook,
hence the nameCodeExcited Linear Prediction. The final excitation is given by

e[n] = p[n]+c[n] = βe[n−T]+c[n] .

The quantization ofc[n] is where most of the bits in a CELP codec are allocated. It represents the information that couldn’t
be obtained either from linear prediction or pitch prediction. In thez-domain we can represent the final signalX(z) as

X(z) =
C(z)

A(z)(1−βz−T)

8.5 Noise Weighting

Most (if not all) modern audio codecs attempt to “shape” the noise so that it appears mostly in the frequency regions where
the ear cannot detect it. For example, the ear is more tolerant to noise in parts of the spectrum that are louder andvice versa.
In order to maximize speech quality, CELP codecs minimize the mean square of the error (noise) in the perceptually weighted
domain. This means that a perceptual noise weighting filterW(z) is applied to the error signal in the encoder. In most CELP
codecs,W(z) is a pole-zero weighting filter derived from the linear prediction coefficients (LPC), generally using bandwidth
expansion. Let the spectral envelope be represented by the synthesis filter 1/A(z), CELP codecs typically derive the noise
weighting filter as

W(z) =
A(z/γ1)

A(z/γ2)
, (8.1)

whereγ1 = 0.9 andγ2 = 0.6 in the Speex reference implementation. If a filterA(z) has (complex) poles atpi in thez-plane,
the filterA(z/γ) will have its poles atp′i = γ pi , making it a flatter version ofA(z).

The weighting filter is applied to the error signal used to optimize the codebook search through analysis-by-synthesis
(AbS). This results in a spectral shape of the noise that tends towards 1/W(z). While the simplicity of the model has been
an important reason for the success of CELP, it remains thatW(z) is a very rough approximation for the perceptually optimal
noise weighting function. Fig. 8.2 illustrates the noise shaping that results from Eq. 8.1. Throughout this paper, we refer to
W(z) as the noise weighting filter and to 1/W(z) as the noise shaping filter (or curve).

8.6 Analysis-by-Synthesis

One of the main principles behind CELP is called Analysis-by-Synthesis (AbS), meaning that the encoding (analysis) is
performed by perceptually optimising the decoded (synthesis) signal in a closed loop. In theory, the best CELP stream would

28

8 Introduction to CELP Coding

be produced by trying all possible bit combinations and selecting the one that produces the best-sounding decoded signal.
This is obviously not possible in practice for two reasons: the required complexity is beyond any currently available hardware
and the “best sounding” selection criterion implies a humanlistener.

In order to achieve real-time encoding using limited computing resources, the CELP optimisation is broken down into
smaller, more manageable, sequential searches using the perceptual weighting function described earlier.

29

9 Speex narrowband mode

This section looks at how Speex works for narrowband (8kHz sampling rate) operation. The frame size for this mode is 20ms,
corresponding to 160 samples. Each frame is also subdividedinto 4 sub-frames of 40 samples each.

Also many design decisions were based on the original goals and assumptions:

• Minimizing the amount of information extracted from past frames (for robustness to packet loss)

• Dynamically-selectable codebooks (LSP, pitch and innovation)

• sub-vector fixed (innovation) codebooks

9.1 Whole-Frame Analysis

In narrowband, Speex frames are 20 ms long (160 samples) and are subdivided in 4 sub-frames of 5 ms each (40 samples).
For most narrowband bit-rates (8 kbps and above), the only parameters encoded at the frame level are the Line Spectral Pairs
(LSP) and a global excitation gaingf rame, as shown in Fig. 9.1. All other parameters are encoded at thesub-frame level.

Linear prediction analysis is performed once per frame using an asymmetric Hamming window centered on the fourth sub-
frame. Because linear prediction coefficients (LPC) are notrobust to quantization, they are first are converted to line spectral
pairs (LSP). The LSP’s are considered to be associated to the4th sub-frames and the LSP’s associated to the first 3 sub-frames
are linearly interpolated using the current and previous LSP coefficients. The LSP coefficients and converted back to theLPC
filter Â(z). The non-quantized interpolated filter is denotedA(z) and can be used for the weighting filterW(z) because it does
not need to be available to the decoder.

To make Speex more robust to packet loss, no prediction is applied on the LSP coefficients prior to quantization. The LSPs
are encoded using vector quantizatin (VQ) with 30 bits for higher quality modes and 18 bits for lower quality.

9.2 Sub-Frame Analysis-by-Synthesis

The analysis-by-synthesis (AbS) encoder loop is describedin Fig. 9.2. There are three main aspects where Speex significantly
differs from most other CELP codecs. First, while most recent CELP codecs make use of fractional pitch estimation with a
single gain, Speex uses an integer to encode the pitch period, but uses a 3-tap predictor (3 gains). The adaptive codebook
contributionea[n] can thus be expressed as:

ea[n] = g0e[n−T−1]+g1e[n−T]+g2e[n−T +1] (9.1)

whereg0, g1 andg2 are the jointly quantized pitch gains ande[n] is the codec excitation memory. It is worth noting that when
the pitch is smaller than the sub-frame size, we repeat the excitation at a periodT. For example, whenn−T + 1 ≥ 0, we
usen−2T + 1 instead. In most modes, the pitch period is encoded with 7 bits in the[17,144] range and theβi coefficients
are vector-quantized using 7 bits at higher bit-rates (15 kbps narrowband and above) and 5 bits at lower bit-rates (11 kbps
narrowband and below).

Figure 9.1: Frame open-loop analysis

30

9 Speex narrowband mode

Figure 9.2: Analysis-by-synthesis closed-loop optimization on a sub-frame.

31

9 Speex narrowband mode

Many current CELP codecs use moving average (MA) predictionto encode the fixed codebook gain. This provides slightly
better coding at the expense of introducing a dependency on previously encoded frames. A second difference is that Speex
encodes the fixed codebook gain as the product of the global excitation gaingf rame with a sub-frame gain correctionsgsub f.
This increases robustness to packet loss by eliminating theinter-frame dependency. The sub-frame gain correction is encoded
before the fixed codebook is searched (not closed-loop optimized) and uses between 0 and 3 bits per sub-frame, depending on
the bit-rate.

The third difference is that Speex uses sub-vector quantization of the innovation (fixed codebook) signal instead of an
algebraic codebook. Each sub-frame is divided into sub-vectors of lengths ranging between 5 and 20 samples. Each sub-
vector is chosen from a bitrate-dependent codebook and all sub-vectors are concatenated to form a sub-frame. As an example,
the 3.95 kbps mode uses a sub-vector size of 20 samples with 32entries in the codebook (5 bits). This means that the
innovation is encoded with 10 bits per sub-frame, or 2000 bps. On the other hand, the 18.2 kbps mode uses a sub-vector size
of 5 samples with 256 entries in the codebook (8 bits), so the innovation uses 64 bits per sub-frame, or 12800 bps.

9.3 Bit allocation

There are 7 different narrowband bit-rates defined for Speex, ranging from 250 bps to 24.6 kbps, although the modes below
5.9 kbps should not be used for speech. The bit-allocation for each mode is detailed in table 9.1. Each frame starts with
the mode ID encoded with 4 bits which allows a range from 0 to 15, though only the first 7 values are used (the others are
reserved). The parameters are listed in the table in the order they are packed in the bit-stream. All frame-based parameters are
packed before sub-frame parameters. The parameters for a certain sub-frame are all packed before the following sub-frame
is packed. Note that the “OL” in the parameter description means that the parameter is an open loop estimation based on the
whole frame.

Parameter Update rate 0 1 2 3 4 5 6 7 8

Wideband bit frame 1 1 1 1 1 1 1 1 1
Mode ID frame 4 4 4 4 4 4 4 4 4

LSP frame 0 18 18 18 18 30 30 30 18
OL pitch frame 0 7 7 0 0 0 0 0 7

OL pitch gain frame 0 4 0 0 0 0 0 0 4
OL Exc gain frame 0 5 5 5 5 5 5 5 5
Fine pitch sub-frame 0 0 0 7 7 7 7 7 0
Pitch gain sub-frame 0 0 5 5 5 7 7 7 0

Innovation gain sub-frame 0 1 0 1 1 3 3 3 0
Innovation VQ sub-frame 0 0 16 20 35 48 64 96 10

Total frame 5 43 119 160 220 300 364 492 79

Table 9.1: Bit allocation for narrowband modes

So far, no MOS (Mean Opinion Score) subjective evaluation has been performed for Speex. In order to give an idea of
the quality achievable with it, table 9.2 presents my own subjective opinion on it. It sould be noted that different people
will perceive the quality differently and that the person that designed the codec often has a bias (one way or another) when
it comes to subjective evaluation. Last thing, it should be noted that for most codecs (including Speex) encoding quality
sometimes varies depending on the input. Note that the complexity is only approximate (within 0.5 mflops and using the lowest
complexity setting). Decoding requires approximately 0.5mflops in most modes (1 mflops with perceptual enhancement).

9.4 Perceptual enhancement

This section was only valid for version 1.1.12 and earlier. It does not apply to version 1.2-beta1 (and later), for which
the new perceptual enhancement is not yet documented.

This part of the codec only applies to the decoder and can evenbe changed without affecting inter-operability. For that
reason, the implementation provided and described here should only be considered as a reference implementation. The
enhancement system is divided into two parts. First, the synthesis filterS(z) = 1/A(z) is replaced by an enhanced filter:

S′(z) =
A(z/a2)A(z/a3)

A(z)A(z/a1)

32

9 Speex narrowband mode

Mode Quality Bit-rate (bps) mflops Quality/description

0 - 250 0 No transmission (DTX)
1 0 2,150 6 Vocoder (mostly for comfort noise)
2 2 5,950 9 Very noticeable artifacts/noise, good intelligibility
3 3-4 8,000 10 Artifacts/noise sometimes noticeable
4 5-6 11,000 14 Artifacts usually noticeable only with headphones
5 7-8 15,000 11 Need good headphones to tell the difference
6 9 18,200 17.5 Hard to tell the difference even with good headphones
7 10 24,600 14.5 Completely transparent for voice, good quality music
8 1 3,950 10.5 Very noticeable artifacts/noise, good intelligibility
9 - - - reserved
10 - - - reserved
11 - - - reserved
12 - - - reserved
13 - - - Application-defined, interpreted by callback or skipped
14 - - - Speex in-band signaling
15 - - - Terminator code

Table 9.2: Quality versus bit-rate

wherea1 anda2 depend on the mode in use anda3 = 1
r

(

1− 1−ra1
1−ra2

)

with r = .9. The second part of the enhancement consists

of using a comb filter to enhance the pitch in the excitation domain.

33

10 Speex wideband mode (sub-band CELP)

For wideband, the Speex approach uses aquadraturemirror f ilter (QMF) to split the band in two. The 16 kHz signal is thus
divided into two 8 kHz signals, one representing the low band(0-4 kHz), the other the high band (4-8 kHz). The low band is
encoded with the narrowband mode described in section 9 in such a way that the resulting “embedded narrowband bit-stream”
can also be decoded with the narrowband decoder. Since the low band encoding has already been described, only the high
band encoding is described in this section.

10.1 Linear Prediction

The linear prediction part used for the high-band is very similar to what is done for narrowband. The only difference is that
we use only 12 bits to encode the high-band LSP’s using a multi-stage vector quantizer (MSVQ). The first level quantizes the
10 coefficients with 6 bits and the error is then quantized using 6 bits, too.

10.2 Pitch Prediction

That part is easy: there’s no pitch prediction for the high-band. There are two reasons for that. First, there is usually little
harmonic structure in this band (above 4 kHz). Second, it would be very hard to implement since the QMF folds the 4-8 kHz
band into 4-0 kHz (reversing the frequency axis), which means that the location of the harmonics is no longer at multiplesof
the fundamental (pitch).

10.3 Excitation Quantization

The high-band excitation is coded in the same way as for narrowband.

10.4 Bit allocation

For the wideband mode, the entire narrowband frame is packedbefore the high-band is encoded. The narrowband part of the
bit-stream is as defined in table 9.1. The high-band follows,as described in table 10.1. For wideband, the mode ID is the same
as the Speex quality setting and is defined in table 10.2. Thisalso means that a wideband frame may be correctly decoded by
a narrowband decoder with the only caveat that if more than one frame is packed in the same packet, the decoder will need to
skip the high-band parts in order to sync with the bit-stream.

Parameter Update rate 0 1 2 3 4

Wideband bit frame 1 1 1 1 1
Mode ID frame 3 3 3 3 3

LSP frame 0 12 12 12 12
Excitation gain sub-frame 0 5 4 4 4
Excitation VQ sub-frame 0 0 20 40 80

Total frame 4 36 112 192 352

Table 10.1: Bit allocation for high-band in wideband mode

34

10 Speex wideband mode (sub-band CELP)

Mode/Quality Bit-rate (bps) Quality/description

0 3,950 Barely intelligible (mostly for comfort noise)
1 5,750 Very noticeable artifacts/noise, poor intelligibility
2 7,750 Very noticeable artifacts/noise, good intelligibility
3 9,800 Artifacts/noise sometimes annoying
4 12,800 Artifacts/noise usually noticeable
5 16,800 Artifacts/noise sometimes noticeable
6 20,600 Need good headphones to tell the difference
7 23,800 Need good headphones to tell the difference
8 27,800 Hard to tell the difference even with good headphones
9 34,200 Hard to tell the difference even with good headphones
10 42,200 Completely transparent for voice, good quality music

Table 10.2: Quality versus bit-rate for the wideband encoder

35

A Sample code

This section shows sample code for encoding and decoding speech using the Speex API. The commands can be used to encode
and decode a file by calling:
% sampleenc in_file.sw | sampledec out_file.sw
where both files are raw (no header) files encoded at 16 bits persample (in the machine natural endianness).

A.1 sampleenc.c

sampleenc takes a raw 16 bits/sample file, encodes it and outputs a Speex stream to stdout. Note that the packing used isnot
compatible with that of speexenc/speexdec.

Listing A.1: Source code for sampleenc

1 #include <speex/speex.h>
2 #include <stdio.h>
3

4 /*The frame size in hardcoded for this sample code but it doesn’t have to be*/
5 #define FRAME_SIZE 160
6 int main(int argc, char **argv)
7 {
8 char *inFile;
9 FILE *fin;

10 short in[FRAME_SIZE];
11 float input[FRAME_SIZE];
12 char cbits[200];
13 int nbBytes;
14 /*Holds the state of the encoder*/
15 void *state;
16 /*Holds bits so they can be read and written to by the Speex routines*/
17 SpeexBits bits;
18 int i, tmp;
19

20 /*Create a new encoder state in narrowband mode*/
21 state = speex_encoder_init(&speex_nb_mode);
22

23 /*Set the quality to 8 (15 kbps)*/
24 tmp=8;
25 speex_encoder_ctl(state, SPEEX_SET_QUALITY, &tmp);
26

27 inFile = argv[1];
28 fin = fopen(inFile, "r");
29

30 /*Initialization of the structure that holds the bits*/
31 speex_bits_init(&bits);
32 while (1)
33 {
34 /*Read a 16 bits/sample audio frame*/
35 fread(in, sizeof(short), FRAME_SIZE, fin);
36 if (feof(fin))
37 break;
38 /*Copy the 16 bits values to float so Speex can work on them*/

36

A Sample code

39 for (i=0;i<FRAME_SIZE;i++)
40 input[i]=in[i];
41

42 /*Flush all the bits in the struct so we can encode a new frame*/
43 speex_bits_reset(&bits);
44

45 /*Encode the frame*/
46 speex_encode(state, input, &bits);
47 /*Copy the bits to an array of char that can be written*/
48 nbBytes = speex_bits_write(&bits, cbits, 200);
49

50 /*Write the size of the frame first. This is what sampledec expects but
51 it’s likely to be different in your own application*/
52 fwrite(&nbBytes, sizeof(int), 1, stdout);
53 /*Write the compressed data*/
54 fwrite(cbits, 1, nbBytes, stdout);
55

56 }
57

58 /*Destroy the encoder state*/
59 speex_encoder_destroy(state);
60 /*Destroy the bit-packing struct*/
61 speex_bits_destroy(&bits);
62 fclose(fin);
63 return 0;
64 }

A.2 sampledec.c

sampledec reads a Speex stream from stdin, decodes it and outputs it to a raw 16 bits/sample file. Note that the packing used
is not compatible with that of speexenc/speexdec.

Listing A.2: Source code for sampledec

1 #include <speex/speex.h>
2 #include <stdio.h>
3

4 /*The frame size in hardcoded for this sample code but it doesn’t have to be*/
5 #define FRAME_SIZE 160
6 int main(int argc, char **argv)
7 {
8 char *outFile;
9 FILE *fout;

10 /*Holds the audio that will be written to file (16 bits per sample)*/
11 short out[FRAME_SIZE];
12 /*Speex handle samples as float, so we need an array of floats*/
13 float output[FRAME_SIZE];
14 char cbits[200];
15 int nbBytes;
16 /*Holds the state of the decoder*/
17 void *state;
18 /*Holds bits so they can be read and written to by the Speex routines*/
19 SpeexBits bits;
20 int i, tmp;
21

22 /*Create a new decoder state in narrowband mode*/
23 state = speex_decoder_init(&speex_nb_mode);

37

A Sample code

24

25 /*Set the perceptual enhancement on*/
26 tmp=1;
27 speex_decoder_ctl(state, SPEEX_SET_ENH, &tmp);
28

29 outFile = argv[1];
30 fout = fopen(outFile, "w");
31

32 /*Initialization of the structure that holds the bits*/
33 speex_bits_init(&bits);
34 while (1)
35 {
36 /*Read the size encoded by sampleenc, this part will likely be
37 different in your application*/
38 fread(&nbBytes, sizeof(int), 1, stdin);
39 fprintf (stderr, "nbBytes: %d\n", nbBytes);
40 if (feof(stdin))
41 break;
42

43 /*Read the "packet" encoded by sampleenc*/
44 fread(cbits, 1, nbBytes, stdin);
45 /*Copy the data into the bit-stream struct*/
46 speex_bits_read_from(&bits, cbits, nbBytes);
47

48 /*Decode the data*/
49 speex_decode(state, &bits, output);
50

51 /*Copy from float to short (16 bits) for output*/
52 for (i=0;i<FRAME_SIZE;i++)
53 out[i]=output[i];
54

55 /*Write the decoded audio to file*/
56 fwrite(out, sizeof(short), FRAME_SIZE, fout);
57 }
58

59 /*Destroy the decoder state*/
60 speex_decoder_destroy(state);
61 /*Destroy the bit-stream truct*/
62 speex_bits_destroy(&bits);
63 fclose(fout);
64 return 0;
65 }

38

B Jitter Buffer for Speex

Listing B.1: Example of using the jitter buffer for Speex packets

1 #include <speex/speex_jitter.h>
2 #include "speex_jitter_buffer.h"
3

4 #ifndef NULL
5 #define NULL 0
6 #endif
7

8

9 void speex_jitter_init(SpeexJitter *jitter, void *decoder, int sampling_rate)
10 {
11 jitter->dec = decoder;
12 speex_decoder_ctl(decoder, SPEEX_GET_FRAME_SIZE, &jitter->frame_size);
13

14 jitter->packets = jitter_buffer_init(jitter->frame_size);
15

16 speex_bits_init(&jitter->current_packet);
17 jitter->valid_bits = 0;
18

19 }
20

21 void speex_jitter_destroy(SpeexJitter *jitter)
22 {
23 jitter_buffer_destroy(jitter->packets);
24 speex_bits_destroy(&jitter->current_packet);
25 }
26

27 void speex_jitter_put(SpeexJitter *jitter, char *packet, int len, int timestamp)
28 {
29 JitterBufferPacket p;
30 p.data = packet;
31 p.len = len;
32 p.timestamp = timestamp;
33 p.span = jitter->frame_size;
34 jitter_buffer_put(jitter->packets, &p);
35 }
36

37 void speex_jitter_get(SpeexJitter *jitter, spx_int16_t *out, int *current_timestamp
)

38 {
39 int i;
40 int ret;
41 spx_int32_t activity;
42 char data[2048];
43 JitterBufferPacket packet;
44 packet.data = data;
45

46 if (jitter->valid_bits)
47 {

39

B Jitter Buffer for Speex

48 /* Try decoding last received packet */
49 ret = speex_decode_int(jitter->dec, &jitter->current_packet, out);
50 if (ret == 0)
51 {
52 jitter_buffer_tick(jitter->packets);
53 return;
54 } else {
55 jitter->valid_bits = 0;
56 }
57 }
58

59 ret = jitter_buffer_get(jitter->packets, &packet, jitter->frame_size, NULL);
60

61 if (ret != JITTER_BUFFER_OK)
62 {
63 /* No packet found */
64

65 /*fprintf (stderr, "lost/late frame\n");*/
66 /*Packet is late or lost*/
67 speex_decode_int(jitter->dec, NULL, out);
68 } else {
69 speex_bits_read_from(&jitter->current_packet, packet.data, packet.len);
70 /* Decode packet */
71 ret = speex_decode_int(jitter->dec, &jitter->current_packet, out);
72 if (ret == 0)
73 {
74 jitter->valid_bits = 1;
75 } else {
76 /* Error while decoding */
77 for (i=0;i<jitter->frame_size;i++)
78 out[i]=0;
79 }
80 }
81 speex_decoder_ctl(jitter->dec, SPEEX_GET_ACTIVITY, &activity);
82 if (activity < 30)
83 jitter_buffer_update_delay(jitter->packets, &packet, NULL);
84 jitter_buffer_tick(jitter->packets);
85 }
86

87 int speex_jitter_get_pointer_timestamp(SpeexJitter *jitter)
88 {
89 return jitter_buffer_get_pointer_timestamp(jitter->packets);
90 }

40

C IETF RTP Profile

AVT G. Herlein
Internet-Draft
Intended status: Standards Track J. Valin
Expires: October 24, 2007 University of Sherbrooke

A. Heggestad
April 22, 2007

RTP Payload Format for the Speex Codec
draft-ietf-avt-rtp-speex-01 (non-final)

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware
have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on October 24, 2007.

Copyright Notice

Copyright (C) The Internet Society (2007).

41

C IETF RTP Profile

Herlein, et al. Expires October 24, 2007 [Page 1]

Internet-Draft Speex April 2007

Abstract

Speex is an open-source voice codec suitable for use in Voice over IP
(VoIP) type applications. This document describes the payload format
for Speex generated bit streams within an RTP packet. Also included
here are the necessary details for the use of Speex with the Session
Description Protocol (SDP).

42

C IETF RTP Profile

Herlein, et al. Expires October 24, 2007 [Page 2]

Internet-Draft Speex April 2007

Editors Note

All references to RFC XXXX are to be replaced by references to the
RFC number of this memo, when published.

Table of Contents

1. Introduction . 4
2. Terminology . 5
3. RTP usage for Speex . 6

3.1. RTP Speex Header Fields 6
3.2. RTP payload format for Speex 6
3.3. Speex payload . 6
3.4. Example Speex packet 7
3.5. Multiple Speex frames in a RTP packet 7

4. IANA Considerations . 9
4.1. Media Type Registration 9
4.1.1. Registration of media type audio/speex 9

5. SDP usage of Speex . 11
6. Security Considerations 14
7. Acknowledgements . 15
8. References . 16

8.1. Normative References 16
8.2. Informative References 16

Authors’ Addresses . 17
Intellectual Property and Copyright Statements 18

43

C IETF RTP Profile

Herlein, et al. Expires October 24, 2007 [Page 3]

Internet-Draft Speex April 2007

1. Introduction

Speex is based on the CELP [CELP] encoding technique with support for
either narrowband (nominal 8kHz), wideband (nominal 16kHz) or ultra-
wideband (nominal 32kHz). The main characteristics can be summarized
as follows:

o Free software/open-source

o Integration of wideband and narrowband in the same bit-stream

o Wide range of bit-rates available

o Dynamic bit-rate switching and variable bit-rate (VBR)

o Voice Activity Detection (VAD, integrated with VBR)

o Variable complexity

To be compliant with this specification, implementations MUST support
8 kHz sampling rate (narrowband)" and SHOULD support 8 kbps bitrate.
The sampling rate MUST be 8, 16 or 32 kHz.

44

C IETF RTP Profile

Herlein, et al. Expires October 24, 2007 [Page 4]

Internet-Draft Speex April 2007

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC2119 [RFC2119] and
indicate requirement levels for compliant RTP implementations.

45

C IETF RTP Profile

Herlein, et al. Expires October 24, 2007 [Page 5]

Internet-Draft Speex April 2007

3. RTP usage for Speex

3.1. RTP Speex Header Fields

The RTP header is defined in the RTP specification [RFC3550]. This
section defines how fields in the RTP header are used.

Payload Type (PT): The assignment of an RTP payload type for this
packet format is outside the scope of this document; it is
specified by the RTP profile under which this payload format is
used, or signaled dynamically out-of-band (e.g., using SDP).

Marker (M) bit: The M bit is set to one to indicate that the RTP
packet payload contains at least one complete frame

Extension (X) bit: Defined by the RTP profile used.

Timestamp: A 32-bit word that corresponds to the sampling instant
for the first frame in the RTP packet.

3.2. RTP payload format for Speex

The RTP payload for Speex has the format shown in Figure 1. No
additional header fields specific to this payload format are
required. For RTP based transportation of Speex encoded audio the
standard RTP header [RFC3550] is followed by one or more payload data
blocks. An optional padding terminator may also be used.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| RTP Header |
+=+
| one or more frames of Speex |
+-+
| one or more frames of Speex | padding |
+-+

Figure 1: RTP payload for Speex

3.3. Speex payload

For the purposes of packetizing the bit stream in RTP, it is only
necessary to consider the sequence of bits as output by the Speex
encoder [speexenc], and present the same sequence to the decoder.
The payload format described here maintains this sequence.

46

C IETF RTP Profile

A typical Speex frame, encoded at the maximum bitrate, is approx. 110

Herlein, et al. Expires October 24, 2007 [Page 6]

Internet-Draft Speex April 2007

octets and the total number of Speex frames SHOULD be kept less than
the path MTU to prevent fragmentation. Speex frames MUST NOT be
fragmented across multiple RTP packets,

An RTP packet MAY contain Speex frames of the same bit rate or of
varying bit rates, since the bit-rate for a frame is conveyed in band
with the signal.

The encoding and decoding algorithm can change the bit rate at any 20
msec frame boundary, with the bit rate change notification provided
in-band with the bit stream. Each frame contains both "mode"
(narrowband, wideband or ultra-wideband) and "sub-mode" (bit-rate)
information in the bit stream. No out-of-band notification is
required for the decoder to process changes in the bit rate sent by
the encoder.

Sampling rate values of 8000, 16000 or 32000 Hz MUST be used. Any
other sampling rates MUST NOT be used.

The RTP payload MUST be padded to provide an integer number of octets
as the payload length. These padding bits are LSB aligned in network
octet order and consist of a 0 followed by all ones (until the end of
the octet). This padding is only required for the last frame in the
packet, and only to ensure the packet contents ends on an octet
boundary.

3.4. Example Speex packet

In the example below we have a single Speex frame with 5 bits of
padding to ensure the packet size falls on an octet boundary.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| RTP Header |
+=+
| ..speex data.. |
+-+
| ..speex data.. |0 1 1 1 1|
+-+

3.5. Multiple Speex frames in a RTP packet

Below is an example of two Speex frames contained within one RTP
packet. The Speex frame length in this example fall on an octet
boundary so there is no padding.

47

C IETF RTP Profile

Speex codecs [speexenc] are able to detect the bitrate from the

Herlein, et al. Expires October 24, 2007 [Page 7]

Internet-Draft Speex April 2007

payload and are responsible for detecting the 20 msec boundaries
between each frame.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| RTP Header |
+=+
| ..speex frame 1.. |
+-+
| ..speex frame 1.. | ..speex frame 2.. |
+-+
| ..speex frame 2.. |
+-+

48

C IETF RTP Profile

Herlein, et al. Expires October 24, 2007 [Page 8]

Internet-Draft Speex April 2007

4. IANA Considerations

This document defines the Speex media type.

4.1. Media Type Registration

This section describes the media types and names associated with this
payload format. The section registers the media types, as per
RFC4288 [RFC4288]

4.1.1. Registration of media type audio/speex

Media type name: audio

Media subtype name: speex

Required parameters:

None

Optional parameters:

ptime: see RFC 4566. SHOULD be a multiple of 20 msec.

maxptime: see RFC 4566. SHOULD be a multiple of 20 msec.

Encoding considerations:

This media type is framed and binary, see section 4.8 in
[RFC4288].

Security considerations: See Section 6

Interoperability considerations:

None.

Published specification: RFC XXXX [This RFC].

Applications which use this media type:

Audio streaming and conferencing applications.

Additional information: none

Person and email address to contact for further information :

49

C IETF RTP Profile

Herlein, et al. Expires October 24, 2007 [Page 9]

Internet-Draft Speex April 2007

Alfred E. Heggestad: aeh@db.org

Intended usage: COMMON

Restrictions on usage:

This media type depends on RTP framing, and hence is only defined
for transfer via RTP [RFC3550]. Transport within other framing
protocols is not defined at this time.

Author: Alfred E. Heggestad

Change controller:

IETF Audio/Video Transport working group delegated from the IESG.

50

C IETF RTP Profile

Herlein, et al. Expires October 24, 2007 [Page 10]

Internet-Draft Speex April 2007

5. SDP usage of Speex

When conveying information by SDP [RFC4566], the encoding name MUST
be set to "speex". An example of the media representation in SDP for
offering a single channel of Speex at 8000 samples per second might
be:

m=audio 8088 RTP/AVP 97
a=rtpmap:97 speex/8000

Note that the RTP payload type code of 97 is defined in this media
definition to be ’mapped’ to the speex codec at an 8kHz sampling
frequency using the ’a=rtpmap’ line. Any number from 96 to 127 could
have been chosen (the allowed range for dynamic types).

The value of the sampling frequency is typically 8000 for narrow band
operation, 16000 for wide band operation, and 32000 for ultra-wide
band operation.

If for some reason the offerer has bandwidth limitations, the client
may use the "b=" header, as explained in SDP [RFC4566]. The
following example illustrates the case where the offerer cannot
receive more than 10 kbit/s.

m=audio 8088 RTP/AVP 97
b=AS:10
a=rtmap:97 speex/8000

In this case, if the remote part agrees, it should configure its
Speex encoder so that it does not use modes that produce more than 10
kbit/s. Note that the "b=" constraint also applies on all payload
types that may be proposed in the media line ("m=").

An other way to make recommendations to the remote Speex encoder is
to use its specific parameters via the a=fmtp: directive. The
following parameters are defined for use in this way:

ptime: duration of each packet in milliseconds.

sr: actual sample rate in Hz.

ebw: encoding bandwidth - either ’narrow’ or ’wide’ or ’ultra’
(corresponds to nominal 8000, 16000, and 32000 Hz sampling rates).

51

C IETF RTP Profile

Herlein, et al. Expires October 24, 2007 [Page 11]

Internet-Draft Speex April 2007

vbr: variable bit rate - either ’on’ ’off’ or ’vad’ (defaults to
off). If on, variable bit rate is enabled. If off, disabled. If
set to ’vad’ then constant bit rate is used but silence will be
encoded with special short frames to indicate a lack of voice for
that period.

cng: comfort noise generation - either ’on’ or ’off’. If off then
silence frames will be silent; if ’on’ then those frames will be
filled with comfort noise.

mode: Speex encoding mode. Can be {1,2,3,4,5,6,any} defaults to 3
in narrowband, 6 in wide and ultra-wide.

Examples:

m=audio 8008 RTP/AVP 97
a=rtpmap:97 speex/8000
a=fmtp:97 mode=4

This examples illustrate an offerer that wishes to receive a Speex
stream at 8000Hz, but only using speex mode 4.

Several Speex specific parameters can be given in a single a=fmtp
line provided that they are separated by a semi-colon:

a=fmtp:97 mode=any;mode=1

The offerer may indicate that it wishes to send variable bit rate
frames with comfort noise:

m=audio 8088 RTP/AVP 97
a=rtmap:97 speex/8000
a=fmtp:97 vbr=on;cng=on

The "ptime" attribute is used to denote the packetization interval
(ie, how many milliseconds of audio is encoded in a single RTP
packet). Since Speex uses 20 msec frames, ptime values of multiples
of 20 denote multiple Speex frames per packet. Values of ptime which
are not multiples of 20 MUST be ignored and clients MUST use the
default value of 20 instead.

Implementations SHOULD support ptime of 20 msec (i.e. one frame per
packet)

52

C IETF RTP Profile

In the example below the ptime value is set to 40, indicating that

Herlein, et al. Expires October 24, 2007 [Page 12]

Internet-Draft Speex April 2007

there are 2 frames in each packet.

m=audio 8008 RTP/AVP 97
a=rtpmap:97 speex/8000
a=ptime:40

Note that the ptime parameter applies to all payloads listed in the
media line and is not used as part of an a=fmtp directive.

Values of ptime not multiple of 20 msec are meaningless, so the
receiver of such ptime values MUST ignore them. If during the life
of an RTP session the ptime value changes, when there are multiple
Speex frames for example, the SDP value must also reflect the new
value.

Care must be taken when setting the value of ptime so that the RTP
packet size does not exceed the path MTU.

53

C IETF RTP Profile

Herlein, et al. Expires October 24, 2007 [Page 13]

Internet-Draft Speex April 2007

6. Security Considerations

RTP packets using the payload format defined in this specification
are subject to the security considerations discussed in the RTP
specification [RFC3550], and any appropriate RTP profile. This
implies that confidentiality of the media streams is achieved by
encryption. Because the data compression used with this payload
format is applied end-to-end, encryption may be performed after
compression so there is no conflict between the two operations.

A potential denial-of-service threat exists for data encodings using
compression techniques that have non-uniform receiver-end
computational load. The attacker can inject pathological datagrams
into the stream which are complex to decode and cause the receiver to
be overloaded. However, this encoding does not exhibit any
significant non-uniformity.

As with any IP-based protocol, in some circumstances a receiver may
be overloaded simply by the receipt of too many packets, either
desired or undesired. Network-layer authentication may be used to
discard packets from undesired sources, but the processing cost of
the authentication itself may be too high.

54

C IETF RTP Profile

Herlein, et al. Expires October 24, 2007 [Page 14]

Internet-Draft Speex April 2007

7. Acknowledgements

The authors would like to thank Equivalence Pty Ltd of Australia for
their assistance in attempting to standardize the use of Speex in
H.323 applications, and for implementing Speex in their open source
OpenH323 stack. The authors would also like to thank Brian C. Wiles
<brian@streamcomm.com> of StreamComm for his assistance in developing
the proposed standard for Speex use in H.323 applications.

The authors would also like to thank the following members of the
Speex and AVT communities for their input: Ross Finlayson, Federico
Montesino Pouzols, Henning Schulzrinne, Magnus Westerlund.

Thanks to former authors of this document; Simon Morlat, Roger
Hardiman, Phil Kerr

55

C IETF RTP Profile

Herlein, et al. Expires October 24, 2007 [Page 15]

Internet-Draft Speex April 2007

8. References

8.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
Jacobson, "RTP: A Transport Protocol for Real-Time
Applications", STD 64, RFC 3550, July 2003.

[RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
Description Protocol", RFC 4566, July 2006.

8.2. Informative References

[CELP] "CELP, U.S. Federal Standard 1016.", National Technical
Information Service (NTIS) website http://www.ntis.gov/.

[RFC4288] Freed, N. and J. Klensin, "Media Type Specifications and
Registration Procedures", BCP 13, RFC 4288, December 2005.

[speexenc]
Valin, J., "Speexenc/speexdec, reference command-line
encoder/decoder", Speex website http://www.speex.org/.

56

C IETF RTP Profile

Herlein, et al. Expires October 24, 2007 [Page 16]

Internet-Draft Speex April 2007

Authors’ Addresses

Greg Herlein
2034 Filbert Street
San Francisco, California 94123
United States

Email: gherlein@herlein.com

Jean-Marc Valin
University of Sherbrooke
Department of Electrical and Computer Engineering
University of Sherbrooke
2500 blvd Universite
Sherbrooke, Quebec J1K 2R1
Canada

Email: jean-marc.valin@usherbrooke.ca

Alfred E. Heggestad
Biskop J. Nilssonsgt. 20a
Oslo 0659
Norway

Email: aeh@db.org

57

C IETF RTP Profile

Herlein, et al. Expires October 24, 2007 [Page 17]

Internet-Draft Speex April 2007

Full Copyright Statement

Copyright (C) The Internet Society (2007).

This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.

Acknowledgment

Funding for the RFC Editor function is provided by the IETF
Administrative Support Activity (IASA).

58

C IETF RTP Profile

Herlein, et al. Expires October 24, 2007 [Page 18]

59

D Speex License

Copyright 2002-2007 Xiph.org Foundation
Copyright 2002-2007 Jean-Marc Valin
Copyright 2005-2007 Analog Devices Inc.
Copyright 2005-2007 Commonwealth Scientific and Industrial Research

Organisation (CSIRO)
Copyright 1993, 2002, 2006 David Rowe
Copyright 2003 EpicGames
Copyright 1992-1994 Jutta Degener, Carsten Bormann

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

- Neither the name of the Xiph.org Foundation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

60

E GNU Free Documentation License

Version 1.1, March 2000
Copyright (C) 2000 Free Software Foundation, Inc. 59 TemplePlace, Suite 330, Boston, MA 02111-1307 USA Everyone

is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it,with or without modifying it, either commercially or noncommer-
cially. Secondarily, this License preserves for the authorand publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documen-
tation: a free program should come with manuals providing the same freedoms that the software does. But this License is not
limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. The "Document", below, refers to any such manual or work. Any member of the
public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim,
or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document tothe Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (For example, if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in
the notice that says that the Document is released under thisLicense.

The "Cover Texts" are certain short passages of text that arelisted, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is
available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LATEX
input format, SGML or XML using a publicly available DTD, andstandard-conforming simple HTML designed for human
modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the
material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title
Page" means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

61

E GNU Free Documentation License

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this
License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in allcopies,
and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in
exchange for copies. If you distribute a large enough numberof copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering morethan 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts onthe
front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title equally prominent and visible. Youmay
add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated asverbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-
readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-
network location containing a complete Transparent copy ofthe Document, free of added material, which the general network-
using public has access to download anonymously at no chargeusing public-standard network protocols. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure thatthis
Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number
of copies, to give them a chance to provide you with an updatedversion of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Documentunder the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document,
thus licensing distribution and modification of the ModifiedVersion to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous
versions (which should, if there were any, be listed in the History section of the Document). You may use the same title
as a previous version if the original publisher of that version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if
it has less than five).

• C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

• D. Preserve all the copyright notices of the Document.

• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

• F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s
license notice.

• H. Include an unaltered copy of this License.

62

E GNU Free Documentation License

• I. Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If there is no section entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document,
and likewise the network locations given in the Document forprevious versions it was based on. These may be placed
in the "History" section. You may omit a network location fora work that was published at least four years before the
Document itself, or if the original publisher of the versionit refers to gives permission.

• K. In any section entitled "Acknowledgements" or "Dedications", preserve the section’s title, and preserve in the section
all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the
equivalent are not considered part of the section titles.

• M. Delete any section entitled "Endorsements". Such a section may not be included in the Modified Version.

• N. Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and containno
material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinctfrom any
other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by
various parties–for example, statements of peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text,
to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any oneentity. If the Document already includes a cover text for
the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by thisLicense give permission to use their names for publicity for
or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4
above for modified versions, provided that you include in thecombination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License,and multiple identical Invariant Sections may be replaced
with a single copy. If there are multiple Invariant Sectionswith the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that sectionif
known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents, forming one section
entitled "History"; likewise combine any sections entitled "Acknowledgements", and any sections entitled "Dedications". You
must delete all sections entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the
individual copies of this License in the various documents with a single copy that is included in the collection, provided that
you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, anddistribute it individually under this License, provided you
insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

63

E GNU Free Documentation License

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volumeof
a storage or distribution medium, does not as a whole count asa Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an "aggregate", and this License does not apply to
the other self-contained works thus compiled with the Document, on account of their being thus compiled, if they are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than
one quarter of the entire aggregate, the Document’s Cover Texts may be placed on covers that surround only the Document
within the aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of
section 4. Replacing Invariant Sections with translationsrequires special permission from their copyright holders,but you
may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License provided that you also include the original English version of this License. Incase
of a disagreement between the translation and the original English version of this License, the original English version will
prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any
other attempt to copy, modify, sublicense or distribute theDocument is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time.
Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered
version of this License "or any later version" applies to it,you have the option of following the terms and conditions either of
that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by
the Free Software Foundation.

64

Index

acoustic echo cancellation, 20
algorithmic delay, 8
analysis-by-synthesis, 28
auto-correlation, 27
average bit-rate, 7, 17

bit-rate, 33, 35

CELP, 6, 26
complexity, 7, 8, 32, 33
constant bit-rate, 7

discontinuous transmission, 8, 17
DTMF, 7

echo cancellation, 20
error weighting, 28

fixed-point, 10

in-band signalling, 18

Levinson-Durbin, 27
libspeex, 6, 15
line spectral pair, 30
linear prediction, 26, 30

mean opinion score, 32

narrowband, 7, 8, 30

Ogg, 24
open-source, 8

patent, 8
perceptual enhancement, 8, 16, 32
pitch, 27
preprocessor, 19

quadrature mirror filter, 34
quality, 7

RTP, 24

sampling rate, 7
speexdec, 14
speexenc, 13
standards, 24

tail length, 20

ultra-wideband, 7

variable bit-rate, 7, 8, 17
voice activity detection, 8, 17

wideband, 7, 8, 34

65

