freeswitch/libs/openzap/src/zap_threadmutex.c

455 lines
9.9 KiB
C

/*
* Cross Platform Thread/Mutex abstraction
* Copyright(C) 2007 Michael Jerris
*
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
* copies of the Soozware, and permit persons to whom the Soozware is
* furnished to do so.
*
* This work is provided under this license on an "as is" basis, without warranty of any kind,
* either expressed or implied, including, without limitation, warranties that the covered code
* is free of defects, merchantable, fit for a particular purpose or non-infringing. The entire
* risk as to the quality and performance of the covered code is with you. Should any covered
* code prove defective in any respect, you (not the initial developer or any other contributor)
* assume the cost of any necessary servicing, repair or correction. This disclaimer of warranty
* constitutes an essential part of this license. No use of any covered code is authorized hereunder
* except under this disclaimer.
*
* Contributors:
*
* Moises Silva <moy@sangoma.com>
*
*/
#ifdef WIN32
/* required for TryEnterCriticalSection definition. Must be defined before windows.h include */
#define _WIN32_WINNT 0x0400
#endif
#include "openzap.h"
#include "zap_threadmutex.h"
#ifdef WIN32
#include <process.h>
#define ZAP_THREAD_CALLING_CONVENTION __stdcall
struct zap_mutex {
CRITICAL_SECTION mutex;
};
#else
#include <pthread.h>
#include <poll.h>
#define ZAP_THREAD_CALLING_CONVENTION
struct zap_mutex {
pthread_mutex_t mutex;
};
#endif
struct zap_interrupt {
zap_socket_t device;
#ifdef WIN32
/* for generic interruption */
HANDLE event;
#else
/* for generic interruption */
int readfd;
int writefd;
#endif
};
struct zap_thread {
#ifdef WIN32
void *handle;
#else
pthread_t handle;
#endif
void *private_data;
zap_thread_function_t function;
zap_size_t stack_size;
#ifndef WIN32
pthread_attr_t attribute;
#endif
};
zap_size_t thread_default_stacksize = 0;
OZ_DECLARE(void) zap_thread_override_default_stacksize(zap_size_t size)
{
thread_default_stacksize = size;
}
static void * ZAP_THREAD_CALLING_CONVENTION thread_launch(void *args)
{
void *exit_val;
zap_thread_t *thread = (zap_thread_t *)args;
exit_val = thread->function(thread, thread->private_data);
#ifndef WIN32
pthread_attr_destroy(&thread->attribute);
#endif
zap_safe_free(thread);
return exit_val;
}
OZ_DECLARE(zap_status_t) zap_thread_create_detached(zap_thread_function_t func, void *data)
{
return zap_thread_create_detached_ex(func, data, thread_default_stacksize);
}
OZ_DECLARE(zap_status_t) zap_thread_create_detached_ex(zap_thread_function_t func, void *data, zap_size_t stack_size)
{
zap_thread_t *thread = NULL;
zap_status_t status = ZAP_FAIL;
if (!func || !(thread = (zap_thread_t *)malloc(sizeof(zap_thread_t)))) {
goto done;
}
thread->private_data = data;
thread->function = func;
thread->stack_size = stack_size;
#if defined(WIN32)
thread->handle = (void *)_beginthreadex(NULL, (unsigned)thread->stack_size, (unsigned int (__stdcall *)(void *))thread_launch, thread, 0, NULL);
if (!thread->handle) {
goto fail;
}
CloseHandle(thread->handle);
status = ZAP_SUCCESS;
goto done;
#else
if (pthread_attr_init(&thread->attribute) != 0) goto fail;
if (pthread_attr_setdetachstate(&thread->attribute, PTHREAD_CREATE_DETACHED) != 0) goto failpthread;
if (thread->stack_size && pthread_attr_setstacksize(&thread->attribute, thread->stack_size) != 0) goto failpthread;
if (pthread_create(&thread->handle, &thread->attribute, thread_launch, thread) != 0) goto failpthread;
status = ZAP_SUCCESS;
goto done;
failpthread:
pthread_attr_destroy(&thread->attribute);
#endif
fail:
if (thread) {
zap_safe_free(thread);
}
done:
return status;
}
OZ_DECLARE(zap_status_t) zap_mutex_create(zap_mutex_t **mutex)
{
zap_status_t status = ZAP_FAIL;
#ifndef WIN32
pthread_mutexattr_t attr;
#endif
zap_mutex_t *check = NULL;
check = (zap_mutex_t *)malloc(sizeof(**mutex));
if (!check)
goto done;
#ifdef WIN32
InitializeCriticalSection(&check->mutex);
#else
if (pthread_mutexattr_init(&attr))
goto done;
if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE))
goto fail;
if (pthread_mutex_init(&check->mutex, &attr))
goto fail;
goto success;
fail:
pthread_mutexattr_destroy(&attr);
goto done;
success:
#endif
*mutex = check;
status = ZAP_SUCCESS;
done:
return status;
}
OZ_DECLARE(zap_status_t) zap_mutex_destroy(zap_mutex_t **mutex)
{
zap_mutex_t *mp = *mutex;
*mutex = NULL;
if (!mp) {
return ZAP_FAIL;
}
#ifdef WIN32
DeleteCriticalSection(&mp->mutex);
#else
if (pthread_mutex_destroy(&mp->mutex))
return ZAP_FAIL;
#endif
zap_safe_free(mp);
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) _zap_mutex_lock(zap_mutex_t *mutex)
{
#ifdef WIN32
EnterCriticalSection(&mutex->mutex);
#else
int err;
if ((err = pthread_mutex_lock(&mutex->mutex))) {
zap_log(ZAP_LOG_ERROR, "Failed to lock mutex %d:%s\n", err, strerror(err));
return ZAP_FAIL;
}
#endif
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) _zap_mutex_trylock(zap_mutex_t *mutex)
{
#ifdef WIN32
if (!TryEnterCriticalSection(&mutex->mutex))
return ZAP_FAIL;
#else
if (pthread_mutex_trylock(&mutex->mutex))
return ZAP_FAIL;
#endif
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) _zap_mutex_unlock(zap_mutex_t *mutex)
{
#ifdef WIN32
LeaveCriticalSection(&mutex->mutex);
#else
if (pthread_mutex_unlock(&mutex->mutex))
return ZAP_FAIL;
#endif
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_interrupt_create(zap_interrupt_t **ininterrupt, zap_socket_t device)
{
zap_interrupt_t *interrupt = NULL;
#ifndef WIN32
int fds[2];
#endif
interrupt = calloc(1, sizeof(*interrupt));
if (!interrupt) {
zap_log(ZAP_LOG_ERROR, "Failed to allocate interrupt memory\n");
return ZAP_FAIL;
}
interrupt->device = device;
#ifdef WIN32
interrupt->event = CreateEvent(NULL, FALSE, FALSE, NULL);
if (!interrupt->event) {
zap_log(ZAP_LOG_ERROR, "Failed to allocate interrupt event\n");
goto failed;
}
#else
if (pipe(fds)) {
zap_log(ZAP_LOG_ERROR, "Failed to allocate interrupt pipe: %s\n", strerror(errno));
goto failed;
}
interrupt->readfd = fds[0];
interrupt->writefd = fds[1];
#endif
*ininterrupt = interrupt;
return ZAP_SUCCESS;
failed:
if (interrupt) {
#ifndef WIN32
if (interrupt->readfd) {
close(interrupt->readfd);
close(interrupt->writefd);
interrupt->readfd = -1;
interrupt->writefd = -1;
}
#endif
zap_safe_free(interrupt);
}
return ZAP_FAIL;
}
#define ONE_BILLION 1000000000
OZ_DECLARE(zap_status_t) zap_interrupt_wait(zap_interrupt_t *interrupt, int ms)
{
int num = 1;
#ifdef WIN32
DWORD res = 0;
HANDLE ints[2];
#else
int res = 0;
struct pollfd ints[2];
char pipebuf[255];
#endif
/* start implementation */
#ifdef WIN32
ints[0] = interrupt->event;
if (interrupt->device != ZAP_INVALID_SOCKET) {
num++;
ints[1] = interrupt->device;
}
res = WaitForMultipleObjects(num, ints, FALSE, ms >= 0 ? ms : INFINITE);
switch (res) {
case WAIT_TIMEOUT:
return ZAP_TIMEOUT;
case WAIT_FAILED:
case WAIT_ABANDONED: /* is it right to fail with abandoned? */
return ZAP_FAIL;
default:
if (res >= (sizeof(ints)/sizeof(ints[0]))) {
zap_log(ZAP_LOG_ERROR, "Error waiting for openzap interrupt event (WaitForSingleObject returned %d)\n", res);
return ZAP_FAIL;
}
return ZAP_SUCCESS;
}
#else
ints[0].fd = interrupt->readfd;
ints[0].events = POLLIN;
ints[0].revents = 0;
if (interrupt->device != ZAP_INVALID_SOCKET) {
num++;
ints[1].fd = interrupt->device;
ints[1].events = POLLIN;
ints[1].revents = 0;
}
res = poll(ints, num, ms);
if (res == -1) {
zap_log(ZAP_LOG_CRIT, "interrupt poll failed (%s)\n", strerror(errno));
return ZAP_FAIL;
}
if (res == 0) {
return ZAP_TIMEOUT;
}
if (ints[0].revents & POLLIN) {
res = read(ints[0].fd, pipebuf, sizeof(pipebuf));
if (res == -1) {
zap_log(ZAP_LOG_CRIT, "reading interrupt descriptor failed (%s)\n", strerror(errno));
}
}
return ZAP_SUCCESS;
#endif
}
OZ_DECLARE(zap_status_t) zap_interrupt_signal(zap_interrupt_t *interrupt)
{
#ifdef WIN32
if (!SetEvent(interrupt->event)) {
zap_log(ZAP_LOG_ERROR, "Failed to signal interrupt\n");
return ZAP_FAIL;
}
#else
int err;
if ((err = write(interrupt->writefd, "w", 1)) != 1) {
zap_log(ZAP_LOG_ERROR, "Failed to signal interrupt: %s\n", errno, strerror(errno));
return ZAP_FAIL;
}
#endif
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_interrupt_destroy(zap_interrupt_t **ininterrupt)
{
zap_interrupt_t *interrupt = NULL;
interrupt = *ininterrupt;
#ifdef WIN32
CloseHandle(interrupt->event);
#else
close(interrupt->readfd);
close(interrupt->writefd);
interrupt->readfd = -1;
interrupt->writefd = -1;
#endif
zap_safe_free(interrupt);
*ininterrupt = NULL;
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_interrupt_multiple_wait(zap_interrupt_t *interrupts[], zap_size_t size, int ms)
{
#ifndef WIN32
int i;
int res = 0;
int numdevices = 0;
char pipebuf[255];
struct pollfd ints[size*2];
memset(&ints, 0, sizeof(ints));
for (i = 0; i < size; i++) {
ints[i].events = POLLIN;
ints[i].revents = 0;
ints[i].fd = interrupts[i]->readfd;
if (interrupts[i]->device != ZAP_INVALID_SOCKET) {
ints[size+numdevices].events = POLLIN;
ints[size+numdevices].revents = 0;
ints[size+numdevices].fd = interrupts[i]->device;
numdevices++;
}
}
res = poll(ints, size + numdevices, ms);
if (res == -1) {
zap_log(ZAP_LOG_CRIT, "interrupt poll failed (%s)\n", strerror(errno));
return ZAP_FAIL;
}
if (res == 0) {
return ZAP_TIMEOUT;
}
for (i = 0; i < size; i++) {
if (ints[i].revents & POLLIN) {
res = read(ints[i].fd, pipebuf, sizeof(pipebuf));
if (res == -1) {
zap_log(ZAP_LOG_CRIT, "reading interrupt descriptor failed (%s)\n", strerror(errno));
}
}
}
#elif defined(__WINDOWS__)
UNREFERENCED_PARAMETER(interrupts);
UNREFERENCED_PARAMETER(size);
UNREFERENCED_PARAMETER(ms);
#endif
return ZAP_SUCCESS;
}
/* For Emacs:
* Local Variables:
* mode:c
* indent-tabs-mode:t
* tab-width:4
* c-basic-offset:4
* End:
* For VIM:
* vim:set softtabstop=4 shiftwidth=4 tabstop=4:
*/