410 lines
13 KiB
C
410 lines
13 KiB
C
/*
|
|
* SpanDSP - a series of DSP components for telephony
|
|
*
|
|
* v29tx.c - ITU V.29 modem transmit part
|
|
*
|
|
* Written by Steve Underwood <steveu@coppice.org>
|
|
*
|
|
* Copyright (C) 2003 Steve Underwood
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License version 2.1,
|
|
* as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
* $Id: v29tx.c,v 1.89 2009/06/02 16:03:56 steveu Exp $
|
|
*/
|
|
|
|
/*! \file */
|
|
|
|
#if defined(HAVE_CONFIG_H)
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <inttypes.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#if defined(HAVE_TGMATH_H)
|
|
#include <tgmath.h>
|
|
#endif
|
|
#if defined(HAVE_MATH_H)
|
|
#include <math.h>
|
|
#endif
|
|
#include "floating_fudge.h"
|
|
|
|
#include "spandsp/telephony.h"
|
|
#include "spandsp/fast_convert.h"
|
|
#include "spandsp/logging.h"
|
|
#include "spandsp/complex.h"
|
|
#include "spandsp/vector_float.h"
|
|
#include "spandsp/complex_vector_float.h"
|
|
#include "spandsp/async.h"
|
|
#include "spandsp/dds.h"
|
|
#include "spandsp/power_meter.h"
|
|
|
|
#include "spandsp/v29tx.h"
|
|
|
|
#include "spandsp/private/logging.h"
|
|
#include "spandsp/private/v29tx.h"
|
|
|
|
#include "v29tx_constellation_maps.h"
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
#include "v29tx_fixed_rrc.h"
|
|
#else
|
|
#include "v29tx_floating_rrc.h"
|
|
#endif
|
|
|
|
/*! The nominal frequency of the carrier, in Hertz */
|
|
#define CARRIER_NOMINAL_FREQ 1700.0f
|
|
|
|
/* Segments of the training sequence */
|
|
/*! The start of the optional TEP, that may preceed the actual training, in symbols */
|
|
#define V29_TRAINING_SEG_TEP 0
|
|
/*! The start of training segment 1, in symbols */
|
|
#define V29_TRAINING_SEG_1 (V29_TRAINING_SEG_TEP + 480)
|
|
/*! The start of training segment 2, in symbols */
|
|
#define V29_TRAINING_SEG_2 (V29_TRAINING_SEG_1 + 48)
|
|
/*! The start of training segment 3, in symbols */
|
|
#define V29_TRAINING_SEG_3 (V29_TRAINING_SEG_2 + 128)
|
|
/*! The start of training segment 4, in symbols */
|
|
#define V29_TRAINING_SEG_4 (V29_TRAINING_SEG_3 + 384)
|
|
/*! The end of the training, in symbols */
|
|
#define V29_TRAINING_END (V29_TRAINING_SEG_4 + 48)
|
|
/*! The end of the shutdown sequence, in symbols */
|
|
#define V29_TRAINING_SHUTDOWN_END (V29_TRAINING_END + 32)
|
|
|
|
static int fake_get_bit(void *user_data)
|
|
{
|
|
return 1;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
static __inline__ int get_scrambled_bit(v29_tx_state_t *s)
|
|
{
|
|
int bit;
|
|
int out_bit;
|
|
|
|
if ((bit = s->current_get_bit(s->get_bit_user_data)) == SIG_STATUS_END_OF_DATA)
|
|
{
|
|
/* End of real data. Switch to the fake get_bit routine, until we
|
|
have shut down completely. */
|
|
if (s->status_handler)
|
|
s->status_handler(s->status_user_data, SIG_STATUS_END_OF_DATA);
|
|
s->current_get_bit = fake_get_bit;
|
|
s->in_training = TRUE;
|
|
bit = 1;
|
|
}
|
|
out_bit = (bit ^ (s->scramble_reg >> 17) ^ (s->scramble_reg >> 22)) & 1;
|
|
s->scramble_reg = (s->scramble_reg << 1) | out_bit;
|
|
return out_bit;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
static __inline__ complexi16_t getbaud(v29_tx_state_t *s)
|
|
#else
|
|
static __inline__ complexf_t getbaud(v29_tx_state_t *s)
|
|
#endif
|
|
{
|
|
static const int phase_steps_9600[8] =
|
|
{
|
|
1, 0, 2, 3, 6, 7, 5, 4
|
|
};
|
|
static const int phase_steps_4800[4] =
|
|
{
|
|
0, 2, 6, 4
|
|
};
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
static const complexi16_t zero = {0, 0};
|
|
#else
|
|
static const complexf_t zero = {0.0f, 0.0f};
|
|
#endif
|
|
int bits;
|
|
int amp;
|
|
int bit;
|
|
|
|
if (s->in_training)
|
|
{
|
|
/* Send the training sequence */
|
|
if (++s->training_step <= V29_TRAINING_SEG_4)
|
|
{
|
|
if (s->training_step <= V29_TRAINING_SEG_3)
|
|
{
|
|
if (s->training_step <= V29_TRAINING_SEG_1)
|
|
{
|
|
/* Optional segment: Unmodulated carrier (talker echo protection) */
|
|
return v29_9600_constellation[0];
|
|
}
|
|
if (s->training_step <= V29_TRAINING_SEG_2)
|
|
{
|
|
/* Segment 1: silence */
|
|
return zero;
|
|
}
|
|
/* Segment 2: ABAB... */
|
|
return v29_abab_constellation[(s->training_step & 1) + s->training_offset];
|
|
}
|
|
/* Segment 3: CDCD... */
|
|
/* Apply the 1 + x^-6 + x^-7 training scrambler */
|
|
bit = s->training_scramble_reg & 1;
|
|
s->training_scramble_reg >>= 1;
|
|
s->training_scramble_reg |= (((bit ^ s->training_scramble_reg) & 1) << 6);
|
|
return v29_cdcd_constellation[bit + s->training_offset];
|
|
}
|
|
/* We should be in the block of test ones, or shutdown ones, if we get here. */
|
|
/* There is no graceful shutdown procedure defined for V.29. Just
|
|
send some ones, to ensure we get the real data bits through, even
|
|
with bad ISI. */
|
|
if (s->training_step == V29_TRAINING_END + 1)
|
|
{
|
|
/* Switch from the fake get_bit routine, to the user supplied real
|
|
one, and we are up and running. */
|
|
s->current_get_bit = s->get_bit;
|
|
s->in_training = FALSE;
|
|
}
|
|
if (s->training_step == V29_TRAINING_SHUTDOWN_END)
|
|
{
|
|
if (s->status_handler)
|
|
s->status_handler(s->status_user_data, SIG_STATUS_SHUTDOWN_COMPLETE);
|
|
}
|
|
}
|
|
/* 9600bps uses the full constellation.
|
|
7200bps uses only the first half of the full constellation.
|
|
4800bps uses the smaller constellation. */
|
|
amp = 0;
|
|
/* We only use an amplitude bit at 9600bps */
|
|
if (s->bit_rate == 9600 && get_scrambled_bit(s))
|
|
amp = 8;
|
|
/*endif*/
|
|
bits = get_scrambled_bit(s);
|
|
bits = (bits << 1) | get_scrambled_bit(s);
|
|
if (s->bit_rate == 4800)
|
|
{
|
|
bits = phase_steps_4800[bits];
|
|
}
|
|
else
|
|
{
|
|
bits = (bits << 1) | get_scrambled_bit(s);
|
|
bits = phase_steps_9600[bits];
|
|
}
|
|
s->constellation_state = (s->constellation_state + bits) & 7;
|
|
return v29_9600_constellation[amp | s->constellation_state];
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE_NONSTD(int) v29_tx(v29_tx_state_t *s, int16_t amp[], int len)
|
|
{
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
complexi_t x;
|
|
complexi_t z;
|
|
#else
|
|
complexf_t x;
|
|
complexf_t z;
|
|
#endif
|
|
int i;
|
|
int sample;
|
|
|
|
if (s->training_step >= V29_TRAINING_SHUTDOWN_END)
|
|
{
|
|
/* Once we have sent the shutdown symbols, we stop sending completely. */
|
|
return 0;
|
|
}
|
|
for (sample = 0; sample < len; sample++)
|
|
{
|
|
if ((s->baud_phase += 3) >= 10)
|
|
{
|
|
s->baud_phase -= 10;
|
|
s->rrc_filter[s->rrc_filter_step] =
|
|
s->rrc_filter[s->rrc_filter_step + V29_TX_FILTER_STEPS] = getbaud(s);
|
|
if (++s->rrc_filter_step >= V29_TX_FILTER_STEPS)
|
|
s->rrc_filter_step = 0;
|
|
}
|
|
/* Root raised cosine pulse shaping at baseband */
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
x = complex_seti(0, 0);
|
|
for (i = 0; i < V29_TX_FILTER_STEPS; i++)
|
|
{
|
|
x.re += (int32_t) tx_pulseshaper[TX_PULSESHAPER_COEFF_SETS - 1 - s->baud_phase][i]*(int32_t) s->rrc_filter[i + s->rrc_filter_step].re;
|
|
x.im += (int32_t) tx_pulseshaper[TX_PULSESHAPER_COEFF_SETS - 1 - s->baud_phase][i]*(int32_t) s->rrc_filter[i + s->rrc_filter_step].im;
|
|
}
|
|
/* Now create and modulate the carrier */
|
|
x.re >>= 4;
|
|
x.im >>= 4;
|
|
z = dds_complexi(&(s->carrier_phase), s->carrier_phase_rate);
|
|
/* Don't bother saturating. We should never clip. */
|
|
i = (x.re*z.re - x.im*z.im) >> 15;
|
|
amp[sample] = (int16_t) ((i*s->gain) >> 15);
|
|
#else
|
|
x = complex_setf(0.0f, 0.0f);
|
|
for (i = 0; i < V29_TX_FILTER_STEPS; i++)
|
|
{
|
|
x.re += tx_pulseshaper[TX_PULSESHAPER_COEFF_SETS - 1 - s->baud_phase][i]*s->rrc_filter[i + s->rrc_filter_step].re;
|
|
x.im += tx_pulseshaper[TX_PULSESHAPER_COEFF_SETS - 1 - s->baud_phase][i]*s->rrc_filter[i + s->rrc_filter_step].im;
|
|
}
|
|
/* Now create and modulate the carrier */
|
|
z = dds_complexf(&(s->carrier_phase), s->carrier_phase_rate);
|
|
/* Don't bother saturating. We should never clip. */
|
|
amp[sample] = (int16_t) lfastrintf((x.re*z.re - x.im*z.im)*s->gain);
|
|
#endif
|
|
}
|
|
return sample;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
static void set_working_gain(v29_tx_state_t *s)
|
|
{
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
switch (s->bit_rate)
|
|
{
|
|
case 9600:
|
|
s->gain = 0.387f*s->base_gain*16.0f*32767.0f/30672.52f;
|
|
break;
|
|
case 7200:
|
|
s->gain = 0.605f*s->base_gain*16.0f*32767.0f/30672.52f;
|
|
break;
|
|
case 4800:
|
|
s->gain = 0.470f*s->base_gain*16.0f*32767.0f/30672.52f;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#else
|
|
switch (s->bit_rate)
|
|
{
|
|
case 9600:
|
|
s->gain = 0.387f*s->base_gain;
|
|
break;
|
|
case 7200:
|
|
s->gain = 0.605f*s->base_gain;
|
|
break;
|
|
case 4800:
|
|
s->gain = 0.470f*s->base_gain;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(void) v29_tx_power(v29_tx_state_t *s, float power)
|
|
{
|
|
/* The constellation does not maintain constant average power as we change bit rates.
|
|
We need to scale the gain we get here by a bit rate specific scaling factor each
|
|
time we restart the modem. */
|
|
s->base_gain = powf(10.0f, (power - DBM0_MAX_POWER)/20.0f)*32768.0f/TX_PULSESHAPER_GAIN;
|
|
set_working_gain(s);
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(void) v29_tx_set_get_bit(v29_tx_state_t *s, get_bit_func_t get_bit, void *user_data)
|
|
{
|
|
if (s->get_bit == s->current_get_bit)
|
|
s->current_get_bit = get_bit;
|
|
s->get_bit = get_bit;
|
|
s->get_bit_user_data = user_data;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(void) v29_tx_set_modem_status_handler(v29_tx_state_t *s, modem_tx_status_func_t handler, void *user_data)
|
|
{
|
|
s->status_handler = handler;
|
|
s->status_user_data = user_data;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(logging_state_t *) v29_tx_get_logging_state(v29_tx_state_t *s)
|
|
{
|
|
return &s->logging;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(int) v29_tx_restart(v29_tx_state_t *s, int bit_rate, int tep)
|
|
{
|
|
span_log(&s->logging, SPAN_LOG_FLOW, "Restarting V.29\n");
|
|
s->bit_rate = bit_rate;
|
|
set_working_gain(s);
|
|
switch (s->bit_rate)
|
|
{
|
|
case 9600:
|
|
s->training_offset = 0;
|
|
break;
|
|
case 7200:
|
|
s->training_offset = 2;
|
|
break;
|
|
case 4800:
|
|
s->training_offset = 4;
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
memset(s->rrc_filter, 0, sizeof(s->rrc_filter));
|
|
#else
|
|
cvec_zerof(s->rrc_filter, sizeof(s->rrc_filter)/sizeof(s->rrc_filter[0]));
|
|
#endif
|
|
s->rrc_filter_step = 0;
|
|
s->scramble_reg = 0;
|
|
s->training_scramble_reg = 0x2A;
|
|
s->in_training = TRUE;
|
|
s->training_step = (tep) ? V29_TRAINING_SEG_TEP : V29_TRAINING_SEG_1;
|
|
s->carrier_phase = 0;
|
|
s->baud_phase = 0;
|
|
s->constellation_state = 0;
|
|
s->current_get_bit = fake_get_bit;
|
|
return 0;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(v29_tx_state_t *) v29_tx_init(v29_tx_state_t *s, int bit_rate, int tep, get_bit_func_t get_bit, void *user_data)
|
|
{
|
|
switch (bit_rate)
|
|
{
|
|
case 9600:
|
|
case 7200:
|
|
case 4800:
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
if (s == NULL)
|
|
{
|
|
if ((s = (v29_tx_state_t *) malloc(sizeof(*s))) == NULL)
|
|
return NULL;
|
|
}
|
|
memset(s, 0, sizeof(*s));
|
|
span_log_init(&s->logging, SPAN_LOG_NONE, NULL);
|
|
span_log_set_protocol(&s->logging, "V.29 TX");
|
|
s->get_bit = get_bit;
|
|
s->get_bit_user_data = user_data;
|
|
s->carrier_phase_rate = dds_phase_ratef(CARRIER_NOMINAL_FREQ);
|
|
v29_tx_power(s, -14.0f);
|
|
v29_tx_restart(s, bit_rate, tep);
|
|
return s;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(int) v29_tx_release(v29_tx_state_t *s)
|
|
{
|
|
return 0;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(int) v29_tx_free(v29_tx_state_t *s)
|
|
{
|
|
free(s);
|
|
return 0;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
/*- End of file ------------------------------------------------------------*/
|