freeswitch/libs/libzrtp/src/zrtp_iface_cache.c

964 lines
28 KiB
C

/*
* libZRTP SDK library, implements the ZRTP secure VoIP protocol.
* Copyright (c) 2006-2012 Philip R. Zimmermann. All rights reserved.
* Contact: http://philzimmermann.com
* For licensing and other legal details, see the file zrtp_legal.c.
*
* Viktor Krykun <v.krikun at zfoneproject.com>
*/
#include "zrtp.h"
#if defined(ZRTP_USE_BUILTIN_CACHE) && (ZRTP_USE_BUILTIN_CACHE == 1)
#define _ZTU_ "zrtp cache"
/* Windows kernel have it's own realization in Windows registry*/
#if (ZRTP_PLATFORM != ZP_WIN32_KERNEL)
static mlist_t cache_head;
static uint32_t g_cache_elems_counter = 0;
static mlist_t mitmcache_head;
static uint32_t g_mitmcache_elems_counter = 0;
static uint8_t inited = 0;
static uint8_t g_needs_rewriting = 0;
static zrtp_global_t* zrtp;
static zrtp_mutex_t* def_cache_protector = NULL;
/* Create cache ID like a pair of ZIDs. ZID with lowest value at the beginning */
void zrtp_cache_create_id( const zrtp_stringn_t* first_ZID,
const zrtp_stringn_t* second_ZID,
zrtp_cache_id_t id);
/* Searching for cache element by cache ID */
static zrtp_cache_elem_t* get_elem(const zrtp_cache_id_t id, uint8_t is_mitm);
/* Allows use cache on system with different byte-order */
static void cache_make_cross( zrtp_cache_elem_t* from,
zrtp_cache_elem_t* to,
uint8_t is_upload);
static zrtp_status_t zrtp_cache_user_init();
static zrtp_status_t zrtp_cache_user_down();
/*===========================================================================*/
/* libZRTP interface implementation */
/*===========================================================================*/
#define ZRTP_CACHE_CHECK_ZID(a,b) \
if ( (a->length != b->length) || \
(a->length != sizeof(zrtp_zid_t)) ) \
{ \
return zrtp_status_bad_param; \
}
zrtp_status_t zrtp_def_cache_init(zrtp_global_t* a_zrtp)
{
zrtp_status_t s = zrtp_status_ok;
if (!inited) {
zrtp = a_zrtp;
s = zrtp_mutex_init(&def_cache_protector);
if (zrtp_status_ok != s) {
return s;
}
init_mlist(&cache_head);
init_mlist(&mitmcache_head);
s = zrtp_cache_user_init();
inited = 1;
}
return s;
}
void zrtp_def_cache_down()
{
if (inited) {
mlist_t *node = NULL, *tmp = NULL;
/* If automatic cache flushing enabled we don't need to store it in a disk as it should be already in sync. */
if (!zrtp->cache_auto_store)
zrtp_cache_user_down();
mlist_for_each_safe(node, tmp, &cache_head) {
zrtp_sys_free(mlist_get_struct(zrtp_cache_elem_t, _mlist, node));
}
mlist_for_each_safe(node, tmp, &mitmcache_head) {
zrtp_sys_free(mlist_get_struct(zrtp_cache_elem_t, _mlist, node));
}
init_mlist(&cache_head);
init_mlist(&mitmcache_head);
zrtp_mutex_destroy(def_cache_protector);
inited = 0;
zrtp = NULL;
}
}
zrtp_status_t zrtp_def_cache_set_verified( const zrtp_stringn_t* one_ZID,
const zrtp_stringn_t* another_ZID,
uint32_t verified)
{
zrtp_cache_id_t id;
zrtp_cache_elem_t* new_elem = NULL;
ZRTP_CACHE_CHECK_ZID(one_ZID, another_ZID);
zrtp_cache_create_id(one_ZID, another_ZID, id);
zrtp_mutex_lock(def_cache_protector);
new_elem = get_elem(id, 0);
if (new_elem) {
new_elem->verified = verified;
}
zrtp_mutex_unlock(def_cache_protector);
if (zrtp->cache_auto_store) zrtp_def_cache_store(zrtp);
return (new_elem) ? zrtp_status_ok : zrtp_status_fail;
}
zrtp_status_t zrtp_def_cache_get_verified( const zrtp_stringn_t* one_ZID,
const zrtp_stringn_t* another_ZID,
uint32_t* verified)
{
zrtp_cache_id_t id;
zrtp_cache_elem_t* elem = NULL;
ZRTP_CACHE_CHECK_ZID(one_ZID, another_ZID);
zrtp_cache_create_id(one_ZID, another_ZID, id);
zrtp_mutex_lock(def_cache_protector);
elem = get_elem(id, 0);
if (elem) {
*verified = elem->verified;
}
zrtp_mutex_unlock(def_cache_protector);
return (elem) ? zrtp_status_ok : zrtp_status_fail;
}
static zrtp_status_t cache_put( const zrtp_stringn_t* one_ZID,
const zrtp_stringn_t* another_ZID,
zrtp_shared_secret_t *rss,
uint8_t is_mitm )
{
zrtp_cache_elem_t* new_elem = 0;
zrtp_cache_id_t id;
ZRTP_CACHE_CHECK_ZID(one_ZID, another_ZID);
zrtp_cache_create_id(one_ZID, another_ZID, id);
{
char zid1str[24+1], zid2str[24+1];
ZRTP_LOG(3,(_ZTU_,"\tcache_put() zid1=%s, zis2=%s MiTM=%s\n",
hex2str(one_ZID->buffer, one_ZID->length, zid1str, sizeof(zid1str)),
hex2str(another_ZID->buffer, another_ZID->length, zid2str, sizeof(zid2str)),
is_mitm?"YES":"NO"));
}
zrtp_mutex_lock(def_cache_protector);
do {
new_elem = get_elem(id, is_mitm);
if (!new_elem)
{
/* If cache doesn't exist - create new one */
if (!( new_elem = (zrtp_cache_elem_t*) zrtp_sys_alloc(sizeof(zrtp_cache_elem_t)) )) {
break;
}
zrtp_memset(new_elem, 0, sizeof(zrtp_cache_elem_t));
ZSTR_SET_EMPTY(new_elem->curr_cache);
ZSTR_SET_EMPTY(new_elem->prev_cache);
new_elem->secure_since = (uint32_t)(zrtp_time_now()/1000);
mlist_add_tail(is_mitm ? &mitmcache_head : &cache_head, &new_elem->_mlist);
zrtp_memcpy(new_elem->id, id, sizeof(zrtp_cache_id_t));
if (is_mitm) {
new_elem->_index = g_mitmcache_elems_counter++;
} else {
new_elem->_index = g_cache_elems_counter++;
}
ZRTP_LOG(3,(_ZTU_,"\tcache_put() can't find element in the cache - create a new entry index=%u.\n", new_elem->_index));
}
else {
ZRTP_LOG(3,(_ZTU_,"\tcache_put() Just update existing value.\n"));
}
/* Save current cache value as previous one and new as a current */
if (!is_mitm) {
if (new_elem->curr_cache.length > 0) {
zrtp_zstrcpy(ZSTR_GV(new_elem->prev_cache), ZSTR_GV(new_elem->curr_cache));
}
}
zrtp_zstrcpy(ZSTR_GV(new_elem->curr_cache), ZSTR_GV(rss->value));
new_elem->lastused_at = rss->lastused_at;
if (!is_mitm) {
new_elem->ttl = rss->ttl;
}
new_elem->_is_dirty = 1;
} while (0);
zrtp_mutex_unlock(def_cache_protector);
if (zrtp->cache_auto_store) zrtp_def_cache_store(zrtp);
return (new_elem) ? zrtp_status_ok : zrtp_status_fail;
}
zrtp_status_t zrtp_def_cache_put( const zrtp_stringn_t* one_ZID,
const zrtp_stringn_t* another_ZID,
zrtp_shared_secret_t *rss) {
return cache_put(one_ZID, another_ZID, rss, 0);
}
zrtp_status_t zrtp_def_cache_put_mitm( const zrtp_stringn_t* one_ZID,
const zrtp_stringn_t* another_ZID,
zrtp_shared_secret_t *rss) {
return cache_put(one_ZID, another_ZID, rss, 1);
}
static zrtp_status_t cache_get( const zrtp_stringn_t* one_ZID,
const zrtp_stringn_t* another_ZID,
zrtp_shared_secret_t *rss,
int prev_requested,
uint8_t is_mitm)
{
zrtp_cache_elem_t* curr = 0;
zrtp_cache_id_t id;
zrtp_status_t s = zrtp_status_ok;
{
char zid1str[24+1], zid2str[24+1];
ZRTP_LOG(3,(_ZTU_,"\tache_get(): zid1=%s, zis2=%s MiTM=%s\n",
hex2str(one_ZID->buffer, one_ZID->length, zid1str, sizeof(zid1str)),
hex2str(another_ZID->buffer, another_ZID->length, zid2str, sizeof(zid2str)),
is_mitm?"YES":"NO"));
}
ZRTP_CACHE_CHECK_ZID(one_ZID, another_ZID);
zrtp_cache_create_id(one_ZID, another_ZID, id);
zrtp_mutex_lock(def_cache_protector);
do {
curr = get_elem(id, is_mitm);
if (!curr || (!curr->prev_cache.length && prev_requested)) {
s = zrtp_status_fail;
ZRTP_LOG(3,(_ZTU_,"\tache_get() - not found.\n"));
break;
}
zrtp_zstrcpy( ZSTR_GV(rss->value),
prev_requested ? ZSTR_GV(curr->prev_cache) : ZSTR_GV(curr->curr_cache));
rss->lastused_at = curr->lastused_at;
if (!is_mitm) {
rss->ttl = curr->ttl;
}
} while (0);
zrtp_mutex_unlock(def_cache_protector);
return s;
}
zrtp_status_t zrtp_def_cache_get( const zrtp_stringn_t* one_ZID,
const zrtp_stringn_t* another_ZID,
zrtp_shared_secret_t *rss,
int prev_requested)
{
return cache_get(one_ZID, another_ZID, rss, prev_requested, 0);
}
zrtp_status_t zrtp_def_cache_get_mitm( const zrtp_stringn_t* one_ZID,
const zrtp_stringn_t* another_ZID,
zrtp_shared_secret_t *rss)
{
return cache_get(one_ZID, another_ZID, rss, 0, 1);
}
zrtp_status_t zrtp_def_cache_set_presh_counter( const zrtp_stringn_t* one_zid,
const zrtp_stringn_t* another_zid,
uint32_t counter)
{
zrtp_cache_elem_t* new_elem = 0;
zrtp_cache_id_t id;
ZRTP_CACHE_CHECK_ZID(one_zid, another_zid);
zrtp_cache_create_id(one_zid, another_zid, id);
zrtp_mutex_lock(def_cache_protector);
new_elem = get_elem(id, 0);
if (new_elem) {
new_elem->presh_counter = counter;
new_elem->_is_dirty = 1;
}
zrtp_mutex_unlock(def_cache_protector);
if (zrtp->cache_auto_store) zrtp_def_cache_store(zrtp);
return (new_elem) ? zrtp_status_ok : zrtp_status_fail;
}
zrtp_status_t zrtp_def_cache_get_presh_counter( const zrtp_stringn_t* one_zid,
const zrtp_stringn_t* another_zid,
uint32_t* counter)
{
zrtp_cache_elem_t* new_elem = 0;
zrtp_cache_id_t id;
ZRTP_CACHE_CHECK_ZID(one_zid, another_zid);
zrtp_cache_create_id(one_zid, another_zid, id);
zrtp_mutex_lock(def_cache_protector);
new_elem = get_elem(id, 0);
if (new_elem) {
*counter = new_elem->presh_counter;
}
zrtp_mutex_unlock(def_cache_protector);
return (new_elem) ? zrtp_status_ok : zrtp_status_fail;
}
void zrtp_cache_create_id( const zrtp_stringn_t* first_ZID,
const zrtp_stringn_t* second_ZID,
zrtp_cache_id_t id )
{
if (0 < zrtp_memcmp(first_ZID->buffer, second_ZID->buffer, sizeof(zrtp_zid_t))) {
const zrtp_stringn_t* tmp_ZID = first_ZID;
first_ZID = second_ZID;
second_ZID = tmp_ZID;
}
zrtp_memcpy(id, first_ZID->buffer, sizeof(zrtp_zid_t));
zrtp_memcpy((char*)id+sizeof(zrtp_zid_t), second_ZID->buffer, sizeof(zrtp_zid_t));
}
zrtp_cache_elem_t* zrtp_def_cache_get2(const zrtp_cache_id_t id, int is_mitm)
{
return get_elem(id, is_mitm);
}
static zrtp_cache_elem_t* get_elem(const zrtp_cache_id_t id, uint8_t is_mitm)
{
mlist_t* node = NULL;
mlist_t* head = is_mitm ? &mitmcache_head : &cache_head;
mlist_for_each(node, head) {
zrtp_cache_elem_t* elem = mlist_get_struct(zrtp_cache_elem_t, _mlist, node);
if (!zrtp_memcmp(elem->id, id, sizeof(zrtp_cache_id_t))) {
return elem;
}
}
return NULL;
}
static void cache_make_cross(zrtp_cache_elem_t* from, zrtp_cache_elem_t* to, uint8_t is_upload)
{
if (!to) {
return;
}
if (from) {
zrtp_memcpy(to, from, sizeof(zrtp_cache_elem_t));
}
if (is_upload) {
to->verified = zrtp_ntoh32(to->verified);
to->secure_since= zrtp_ntoh32(to->secure_since);
to->lastused_at = zrtp_ntoh32(to->lastused_at);
to->ttl = zrtp_ntoh32(to->ttl);
to->name_length = zrtp_ntoh32(to->name_length);
to->curr_cache.length = zrtp_ntoh16(to->curr_cache.length);
to->prev_cache.length = zrtp_ntoh16(to->prev_cache.length);
to->presh_counter = zrtp_ntoh32(to->presh_counter);
} else {
to->verified = zrtp_hton32(to->verified);
to->secure_since= zrtp_hton32(to->secure_since);
to->lastused_at = zrtp_hton32(to->lastused_at);
to->ttl = zrtp_hton32(to->ttl);
to->name_length = zrtp_hton32(to->name_length);
to->curr_cache.length = zrtp_hton16(to->curr_cache.length);
to->prev_cache.length = zrtp_hton16(to->prev_cache.length);
to->presh_counter = zrtp_hton32(to->presh_counter);
}
}
/*===========================================================================*/
/* ZRTP cache realization as a simple binary file */
/*===========================================================================*/
#if ZRTP_HAVE_STDIO_H == 1
#include <stdio.h>
#endif
#include <string.h>
/*---------------------------------------------------------------------------*/
#define ZRTP_INT_CACHE_BREAK(s, status) \
{ \
if (!s) s = status; \
break; \
}\
zrtp_status_t zrtp_cache_user_init()
{
FILE* cache_file = 0;
zrtp_cache_elem_t* new_elem = 0;
zrtp_status_t s = zrtp_status_ok;
uint32_t cache_elems_count = 0;
uint32_t mitmcache_elems_count = 0;
uint32_t i = 0;
unsigned is_unsupported = 0;
ZRTP_LOG(3,(_ZTU_,"\tLoad ZRTP cache from <%s>...\n", zrtp->def_cache_path.buffer));
g_mitmcache_elems_counter = 0;
g_cache_elems_counter = 0;
g_needs_rewriting = 0;
/* Try to open existing file. If ther is no cache file - start with empty cache */
#if (ZRTP_PLATFORM == ZP_WIN32)
if (0 != fopen_s(&cache_file, zrtp->def_cache_path.buffer, "rb")) {
return zrtp_status_ok;
}
#else
if (0 == (cache_file = fopen(zrtp->def_cache_path.buffer, "rb"))) {
ZRTP_LOG(3,(_ZTU_,"\tCan't open file for reading.\n"));
return zrtp_status_ok;
}
#endif
/*
* Check for the cache file version number. Current version of libzrtp doesn't support
* backward compatibility in zrtp cache file structure, so we just remove the old cache file.
*
* Version field format: $ZRTP_DEF_CACHE_VERSION_STR$ZRTP_DEF_CACHE_VERSION_VAL
*/
do {
char version_buff[256];
memset(version_buff, 0, sizeof(version_buff));
if (fread(version_buff, strlen(ZRTP_DEF_CACHE_VERSION_STR)+strlen(ZRTP_DEF_CACHE_VERSION_VAL), 1, cache_file) <= 0) {
ZRTP_LOG(3,(_ZTU_,"\tCache Error: Cache file is too small.\n"));
is_unsupported = 1;
break;
}
if (0 != zrtp_memcmp(version_buff, ZRTP_DEF_CACHE_VERSION_STR, strlen(ZRTP_DEF_CACHE_VERSION_STR))) {
ZRTP_LOG(3,(_ZTU_,"\tCache Error: Can't find ZRTP Version tag in the cache file.\n"));
is_unsupported = 1;
break;
}
ZRTP_LOG(3,(_ZTU_,"\tZRTP cache file has version=%s\n", version_buff+strlen(ZRTP_DEF_CACHE_VERSION_STR)));
if (0 != zrtp_memcmp(version_buff+strlen(ZRTP_DEF_CACHE_VERSION_STR), ZRTP_DEF_CACHE_VERSION_VAL, strlen(ZRTP_DEF_CACHE_VERSION_VAL))) {
ZRTP_LOG(3,(_ZTU_,"\tCache Error: Unsupported ZRTP cache version.\n"));
is_unsupported = 1;
break;
}
} while (0);
if (is_unsupported) {
ZRTP_LOG(3,(_ZTU_,"\tCache Error: Unsupported version of ZRTP cache file detected - white-out the cache.\n"));
fclose(cache_file);
return zrtp_status_ok;
}
/*
* Load MitM caches: first 32 bits is a MiTM secrets counter. Read it and then
* upload appropriate number of MitM secrets.
*/
do {
cache_elems_count = 0;
if (fread(&mitmcache_elems_count, 4, 1, cache_file) <= 0) {
ZRTP_INT_CACHE_BREAK(s, zrtp_status_read_fail);
}
mitmcache_elems_count = zrtp_ntoh32(mitmcache_elems_count);
ZRTP_LOG(3,(_ZTU_,"\tZRTP cache file contains %u MiTM secrets.\n", mitmcache_elems_count));
for (i=0; i<mitmcache_elems_count; i++)
{
new_elem = (zrtp_cache_elem_t*) zrtp_sys_alloc(sizeof(zrtp_cache_elem_t));
if (!new_elem) {
ZRTP_INT_CACHE_BREAK(s, zrtp_status_alloc_fail);
}
if (fread(new_elem, ZRTP_MITMCACHE_ELEM_LENGTH, 1, cache_file) <= 0) {
ZRTP_LOG(3,(_ZTU_,"\tERROR! MiTM cache element read fail (id=%u).\n", i));
zrtp_sys_free(new_elem);
ZRTP_INT_CACHE_BREAK(s, zrtp_status_read_fail);
}
cache_make_cross(NULL, new_elem, 1);
new_elem->_index = g_mitmcache_elems_counter++;
new_elem->_is_dirty = 0;
mlist_add_tail(&mitmcache_head, &new_elem->_mlist);
}
if (i != mitmcache_elems_count)
ZRTP_INT_CACHE_BREAK(s, zrtp_status_read_fail);
} while(0);
if (s != zrtp_status_ok) {
fclose(cache_file);
zrtp_def_cache_down();
return s;
}
ZRTP_LOG(3,(_ZTU_,"\tAll %u MiTM Cache entries have been uploaded.\n", g_mitmcache_elems_counter));
/*
* Load regular caches: first 32 bits is a secrets counter. Read it and then
* upload appropriate number of regular secrets.
*/
cache_elems_count = 0;
if (fread(&cache_elems_count, 4, 1, cache_file) <= 0) {
fclose(cache_file);
zrtp_def_cache_down();
return zrtp_status_read_fail;
}
cache_elems_count = zrtp_ntoh32(cache_elems_count);
ZRTP_LOG(3,(_ZTU_,"\tZRTP cache file contains %u RS secrets.\n", cache_elems_count));
for (i=0; i<cache_elems_count; i++)
{
new_elem = (zrtp_cache_elem_t*) zrtp_sys_alloc(sizeof(zrtp_cache_elem_t));
if (!new_elem) {
ZRTP_INT_CACHE_BREAK(s, zrtp_status_alloc_fail);
}
if (fread(new_elem, ZRTP_CACHE_ELEM_LENGTH, 1, cache_file) <= 0) {
ZRTP_LOG(3,(_ZTU_,"\tERROR! RS cache element read fail (id=%u).\n", i));
zrtp_sys_free(new_elem);
ZRTP_INT_CACHE_BREAK(s, zrtp_status_read_fail);
}
cache_make_cross(NULL, new_elem, 1);
new_elem->_index = g_cache_elems_counter++;
new_elem->_is_dirty = 0;
mlist_add_tail(&cache_head, &new_elem->_mlist);
}
if (i != cache_elems_count) {
s = zrtp_status_read_fail;
}
if (0 != fclose(cache_file)) {
zrtp_def_cache_down();
return zrtp_status_fail;
}
ZRTP_LOG(3,(_ZTU_,"\tAll of %u RS Cache entries have been uploaded.\n", g_cache_elems_counter));
return s;
}
#define ZRTP_DOWN_CACHE_RETURN(s, f) \
{\
if (zrtp_status_ok != s) { \
ZRTP_LOG(3,(_ZTU_,"\tERROR! Unable to writing to ZRTP cache file.\n")); \
} \
if (f) { \
fclose(f);\
} \
return s;\
};
static zrtp_status_t flush_elem_(zrtp_cache_elem_t *elem, FILE *cache_file, unsigned is_mitm) {
zrtp_cache_elem_t tmp_elem;
uint32_t pos = 0;
/*
* Let's calculate cache element position in the file
*/
// @note: I'm going to remove unused comments when random-access cache get more stable. (vkrykun, Nov 27, 2011)
// printf("flush_elem_(): calculate Element offset for %s..\n", is_mitm?"MiTM":"RS");
/* Skip the header */
pos += strlen(ZRTP_DEF_CACHE_VERSION_STR)+strlen(ZRTP_DEF_CACHE_VERSION_VAL);
pos += sizeof(uint32_t); /* Skip MiTM secretes count. */
// printf("flush_elem_(): \t pos=%u (Header, MiTM Count).\n", pos);
if (is_mitm) {
/* position within MiTM secrets block. */
pos += (elem->_index * ZRTP_MITMCACHE_ELEM_LENGTH);
// printf("flush_elem_(): \t pos=%u (Header, MiTM Count + %u MiTM Secrets).\n", pos, elem->_index);
} else {
/* Skip MiTM Secrets block */
pos += (g_mitmcache_elems_counter * ZRTP_MITMCACHE_ELEM_LENGTH);
pos += sizeof(uint32_t); /* Skip RS elements count. */
pos += (elem->_index * ZRTP_CACHE_ELEM_LENGTH); /* Skip previous RS elements */
// printf("flush_elem_(): \t pos=%u (Header, MiTM Count + ALL %u Secrets, RS counter and %u prev. RS).\n", pos, g_mitmcache_elems_counter, elem->_index);
}
fseek(cache_file, pos, SEEK_SET);
/* Prepare element for storing, convert all fields to the network byte-order. */
cache_make_cross(elem, &tmp_elem, 0);
// printf("flush_elem_(): write to offset=%lu\n", ftell(cache_file));
/* Flush the element. */
if (fwrite(&tmp_elem, (is_mitm ? ZRTP_MITMCACHE_ELEM_LENGTH : ZRTP_CACHE_ELEM_LENGTH), 1, cache_file) != 1) {
// printf("flush_elem_(): ERROR!!! write failed!\n");
return zrtp_status_write_fail;
} else {
elem->_is_dirty = 0;
// printf("flush_elem_(): OK! %lu bytes were written\n", (is_mitm ? ZRTP_MITMCACHE_ELEM_LENGTH : ZRTP_CACHE_ELEM_LENGTH));
return zrtp_status_ok;
}
}
zrtp_status_t zrtp_cache_user_down()
{
FILE* cache_file = 0;
mlist_t *node = 0;
uint32_t count = 0, dirty_count=0;
uint32_t pos = 0;
ZRTP_LOG(3,(_ZTU_,"\tStoring ZRTP cache to <%s>...\n", zrtp->def_cache_path.buffer));
/* Open/create file for writing */
#if (ZRTP_PLATFORM == ZP_WIN32)
if (g_needs_rewriting || 0 != fopen_s(&cache_file, zrtp->def_cache_path.buffer, "r+")) {
if (0 != fopen_s(&cache_file, zrtp->def_cache_path.buffer, "w+")) {
ZRTP_LOG(2,(_ZTU_,"\tERROR! unable to open ZRTP cache file <%s>.\n", zrtp->def_cache_path.buffer));
return zrtp_status_open_fail;
}
}
#else
if (g_needs_rewriting || !(cache_file = fopen(zrtp->def_cache_path.buffer, "r+"))) {
cache_file = fopen(zrtp->def_cache_path.buffer, "w+");
if (!cache_file) {
ZRTP_LOG(2,(_ZTU_,"\tERROR! unable to open ZRTP cache file <%s>.\n", zrtp->def_cache_path.buffer));
return zrtp_status_open_fail;
}
}
#endif
fseek(cache_file, 0, SEEK_SET);
/* Store version string first. Format: &ZRTP_DEF_CACHE_VERSION_STR&ZRTP_DEF_CACHE_VERSION_VAL */
if (1 != fwrite(ZRTP_DEF_CACHE_VERSION_STR, strlen(ZRTP_DEF_CACHE_VERSION_STR), 1, cache_file)) {
ZRTP_LOG(2,(_ZTU_,"\tERROR! unable to write header to the cache file\n"));
ZRTP_DOWN_CACHE_RETURN(zrtp_status_write_fail, cache_file);
}
if (1 != fwrite(ZRTP_DEF_CACHE_VERSION_VAL, strlen(ZRTP_DEF_CACHE_VERSION_VAL), 1, cache_file)) {
ZRTP_LOG(2,(_ZTU_,"\tERROR! unable to write header to the cache file\n"));
ZRTP_DOWN_CACHE_RETURN(zrtp_status_write_fail, cache_file);
}
/*
* Store PBX secrets first. Format: <secrets count>, <secrets' data>
*
* NOTE!!! It's IMPORTANT to store PBX secrets before the Regular secrets!!!
*/
pos = ftell(cache_file);
count = 0; dirty_count = 0;
fwrite(&count, sizeof(count), 1, cache_file);
mlist_for_each(node, &mitmcache_head) {
zrtp_cache_elem_t* elem = mlist_get_struct(zrtp_cache_elem_t, _mlist, node);
/* Store dirty values only. */
if (g_needs_rewriting || elem->_is_dirty) {
// printf("zrtp_cache_user_down: Store MiTM elem index=%u, not modified.\n", elem->_index);
dirty_count++;
if (zrtp_status_ok != flush_elem_(elem, cache_file, 1)) {
ZRTP_DOWN_CACHE_RETURN(zrtp_status_write_fail, cache_file);
}
} else {
// printf("zrtp_cache_user_down: Skip MiTM elem index=%u, not modified.\n", elem->_index);
}
}
fseek(cache_file, pos, SEEK_SET);
count = zrtp_hton32(g_mitmcache_elems_counter);
if (fwrite(&count, sizeof(count), 1, cache_file) != 1) {
ZRTP_DOWN_CACHE_RETURN(zrtp_status_write_fail, cache_file);
}
if (dirty_count > 0)
ZRTP_LOG(3,(_ZTU_,"\t%u out of %u MiTM cache entries have been flushed successfully.\n", dirty_count, zrtp_ntoh32(count)));
/*
* Store regular secrets. Format: <secrets count>, <secrets' data>
*/
/* Seek to the beginning of the Regular secrets block */
pos = strlen(ZRTP_DEF_CACHE_VERSION_STR)+strlen(ZRTP_DEF_CACHE_VERSION_VAL);
pos += sizeof(uint32_t); /* Skip MiTM secrets count. */
pos += (g_mitmcache_elems_counter * ZRTP_MITMCACHE_ELEM_LENGTH); /* Skip MiTM Secrets block */
fseek(cache_file, pos, SEEK_SET);
count = 0; dirty_count=0;
fwrite(&count, sizeof(count), 1, cache_file);
mlist_for_each(node, &cache_head) {
zrtp_cache_elem_t* elem = mlist_get_struct(zrtp_cache_elem_t, _mlist, node);
/* Store dirty values only. */
if (g_needs_rewriting || elem->_is_dirty) {
// printf("zrtp_cache_user_down: Store RS elem index=%u, not modified.\n", elem->_index);
dirty_count++;
if (zrtp_status_ok != flush_elem_(elem, cache_file, 0)) {
ZRTP_DOWN_CACHE_RETURN(zrtp_status_write_fail, cache_file);
}
}
// else {
// printf("zrtp_cache_user_down: Skip RS elem index=%u, not modified.\n", elem->_index);
// }
}
fseek(cache_file, pos, SEEK_SET);
count = zrtp_hton32(g_cache_elems_counter);
if (fwrite(&count, sizeof(count), 1, cache_file) != 1) {
ZRTP_DOWN_CACHE_RETURN(zrtp_status_write_fail, cache_file);
}
if (dirty_count > 0)
ZRTP_LOG(3,(_ZTU_,"\t%u out of %u regular cache entries have been flushed successfully.\n", dirty_count, zrtp_ntoh32(count)));
g_needs_rewriting = 0;
ZRTP_DOWN_CACHE_RETURN(zrtp_status_ok, cache_file);
}
/*==========================================================================*/
/* Utility functions. */
/* These functions are example how cache can be used for internal needs */
/*==========================================================================*/
/*----------------------------------------------------------------------------*/
static zrtp_status_t put_name( const zrtp_stringn_t* one_ZID,
const zrtp_stringn_t* another_ZID,
const zrtp_stringn_t* name,
uint8_t is_mitm)
{
zrtp_cache_elem_t* new_elem = 0;
zrtp_cache_id_t id;
zrtp_status_t s = zrtp_status_ok;
ZRTP_CACHE_CHECK_ZID(one_ZID, another_ZID);
zrtp_cache_create_id(one_ZID, another_ZID, id);
zrtp_mutex_lock(def_cache_protector);
do {
new_elem = get_elem(id, is_mitm);
if (!new_elem) {
s = zrtp_status_fail;
break;
}
/* Update regular cache name*/
new_elem->name_length = ZRTP_MIN(name->length, ZFONE_CACHE_NAME_LENGTH-1);
zrtp_memset(new_elem->name, 0, sizeof(new_elem->name));
zrtp_memcpy(new_elem->name, name->buffer, new_elem->name_length);
new_elem->_is_dirty = 1;
} while (0);
zrtp_mutex_unlock(def_cache_protector);
if (zrtp->cache_auto_store) zrtp_def_cache_store(zrtp);
return s;
}
zrtp_status_t zrtp_def_cache_put_name( const zrtp_stringn_t* one_ZID,
const zrtp_stringn_t* another_ZID,
const zrtp_stringn_t* name)
{
return put_name(one_ZID, another_ZID, name, 0);
}
/*----------------------------------------------------------------------------*/
static zrtp_status_t get_name( const zrtp_stringn_t* one_ZID,
const zrtp_stringn_t* another_ZID,
zrtp_stringn_t* name,
uint8_t is_mitm)
{
zrtp_cache_elem_t* new_elem = 0;
zrtp_cache_id_t id;
zrtp_status_t s = zrtp_status_fail;
ZRTP_CACHE_CHECK_ZID(one_ZID, another_ZID);
zrtp_cache_create_id(one_ZID, another_ZID, id);
zrtp_mutex_lock(def_cache_protector);
do {
new_elem = get_elem(id, is_mitm);
if (!new_elem) {
s = zrtp_status_fail;
break;
}
name->length = new_elem->name_length;
zrtp_memcpy(name->buffer, new_elem->name, name->length);
s = zrtp_status_ok;
} while (0);
zrtp_mutex_unlock(def_cache_protector);
return s;
}
zrtp_status_t zrtp_def_cache_get_name( const zrtp_stringn_t* one_zid,
const zrtp_stringn_t* another_zid,
zrtp_stringn_t* name)
{
return get_name(one_zid, another_zid, name, 0);
}
/*----------------------------------------------------------------------------*/
zrtp_status_t zrtp_def_cache_get_since( const zrtp_stringn_t* one_ZID,
const zrtp_stringn_t* another_ZID,
uint32_t* since)
{
zrtp_cache_elem_t* new_elem = 0;
zrtp_cache_id_t id;
ZRTP_CACHE_CHECK_ZID(one_ZID, another_ZID);
zrtp_cache_create_id(one_ZID, another_ZID, id);
zrtp_mutex_lock(def_cache_protector);
new_elem = get_elem(id, 0);
if (new_elem) {
*since = new_elem->secure_since;
}
zrtp_mutex_unlock(def_cache_protector);
return (new_elem) ? zrtp_status_ok : zrtp_status_fail;
}
zrtp_status_t zrtp_def_cache_reset_since( const zrtp_stringn_t* one_zid,
const zrtp_stringn_t* another_zid)
{
zrtp_cache_elem_t* new_elem = 0;
zrtp_cache_id_t id;
ZRTP_CACHE_CHECK_ZID(one_zid, another_zid);
zrtp_cache_create_id(one_zid, another_zid, id);
zrtp_mutex_lock(def_cache_protector);
new_elem = get_elem(id, 0);
if (new_elem) {
new_elem->secure_since = (uint32_t)(zrtp_time_now()/1000);
new_elem->_is_dirty = 1;
}
zrtp_mutex_unlock(def_cache_protector);
if (zrtp->cache_auto_store) zrtp_def_cache_store(zrtp);
return (new_elem) ? zrtp_status_ok : zrtp_status_fail;
}
/*----------------------------------------------------------------------------*/
void zrtp_def_cache_foreach( zrtp_global_t *global,
int is_mitm,
zrtp_cache_callback_t callback,
void *data)
{
int delete, result;
unsigned index_decrease = 0;
mlist_t* node = NULL, *tmp_node = NULL;
zrtp_mutex_lock(def_cache_protector);
mlist_for_each_safe(node, tmp_node, (is_mitm ? &mitmcache_head : &cache_head))
{
zrtp_cache_elem_t* elem = mlist_get_struct(zrtp_cache_elem_t, _mlist, node);
/*
* We are about to delete cache element, in order to keep our
* random-access file working, we should re-arrange indexes of
* cache elements go after the deleting one.
*/
if (index_decrease >0) {
elem->_index -= index_decrease;
}
delete = 0;
result = callback(elem, is_mitm, data, &delete);
if (delete) {
{
char idstr[24*2+1];
ZRTP_LOG(3,(_ZTU_,"\trtp_def_cache_foreach() Delete element id=%s index=%u\n",
hex2str((const char*)elem->id, sizeof(elem->id), idstr, sizeof(idstr)),
elem->_index));
}
index_decrease++;
mlist_del(&elem->_mlist);
/* Decrement global cache counter. */
if (is_mitm)
g_mitmcache_elems_counter--;
else
g_cache_elems_counter--;
g_needs_rewriting = 1;
}
if (!result) {
break;
}
}
zrtp_mutex_unlock(def_cache_protector);
return;
}
/*----------------------------------------------------------------------------*/
zrtp_status_t zrtp_def_cache_store(zrtp_global_t *zrtp)
{
zrtp_mutex_lock(def_cache_protector);
zrtp_cache_user_down();
zrtp_mutex_unlock(def_cache_protector);
return zrtp_status_ok;
}
#endif /* ZRTP_PLATFORM != ZP_WIN32_KERNEL */
#endif /* ZRTP_USE_BUILTIN_CACHE */