277 lines
10 KiB
C
277 lines
10 KiB
C
/***********************************************************************
|
|
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, (subject to the limitations in the disclaimer below)
|
|
are permitted provided that the following conditions are met:
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
- Neither the name of Skype Limited, nor the names of specific
|
|
contributors, may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED
|
|
BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
|
CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
|
|
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
***********************************************************************/
|
|
|
|
/*! \file SKP_Silk_Inlines.h
|
|
* \brief SigProcFix_Inlines.h defines inline signal processing functions.
|
|
*/
|
|
|
|
#ifndef _SKP_SILK_FIX_INLINES_H_
|
|
#define _SKP_SILK_FIX_INLINES_H_
|
|
|
|
#ifdef __cplusplus
|
|
extern "C"
|
|
{
|
|
#endif
|
|
|
|
/* count leading zeros of SKP_int64 */
|
|
SKP_INLINE SKP_int32 SKP_Silk_CLZ64(SKP_int64 in)
|
|
{
|
|
SKP_int32 in_upper;
|
|
|
|
in_upper = (SKP_int32)SKP_RSHIFT64(in, 32);
|
|
if (in_upper == 0) {
|
|
/* Search in the lower 32 bits */
|
|
return 32 + SKP_Silk_CLZ32( (SKP_int32) in );
|
|
} else {
|
|
/* Search in the upper 32 bits */
|
|
return SKP_Silk_CLZ32( in_upper );
|
|
}
|
|
}
|
|
|
|
/* get number of leading zeros and fractional part (the bits right after the leading one */
|
|
SKP_INLINE void SKP_Silk_CLZ_FRAC(SKP_int32 in, /* I: input */
|
|
SKP_int32 *lz, /* O: number of leading zeros */
|
|
SKP_int32 *frac_Q7) /* O: the 7 bits right after the leading one */
|
|
{
|
|
SKP_int32 lzeros = SKP_Silk_CLZ32(in);
|
|
|
|
* lz = lzeros;
|
|
* frac_Q7 = SKP_ROR32(in, 24 - lzeros) & 0x7f;
|
|
}
|
|
|
|
/* Approximation of square root */
|
|
/* Accuracy: < +/- 10% for output values > 15 */
|
|
/* < +/- 2.5% for output values > 120 */
|
|
SKP_INLINE SKP_int32 SKP_Silk_SQRT_APPROX(SKP_int32 x)
|
|
{
|
|
SKP_int32 y, lz, frac_Q7;
|
|
|
|
if( x <= 0 ) {
|
|
return 0;
|
|
}
|
|
|
|
SKP_Silk_CLZ_FRAC(x, &lz, &frac_Q7);
|
|
|
|
if( lz & 1 ) {
|
|
y = 32768;
|
|
} else {
|
|
y = 46214; /* 46214 = sqrt(2) * 32768 */
|
|
}
|
|
|
|
/* get scaling right */
|
|
y >>= SKP_RSHIFT(lz, 1);
|
|
|
|
/* increment using fractional part of input */
|
|
y = SKP_SMLAWB(y, y, SKP_SMULBB(213, frac_Q7));
|
|
|
|
return y;
|
|
}
|
|
|
|
/* returns the number of left shifts before overflow for a 16 bit number (ITU definition with norm(0)=0) */
|
|
SKP_INLINE SKP_int32 SKP_Silk_norm16(SKP_int16 a) {
|
|
|
|
SKP_int32 a32;
|
|
|
|
/* if ((a == 0) || (a == SKP_int16_MIN)) return(0); */
|
|
if ((a << 1) == 0) return(0);
|
|
|
|
a32 = a;
|
|
/* if (a32 < 0) a32 = -a32 - 1; */
|
|
a32 ^= SKP_RSHIFT(a32, 31);
|
|
|
|
return SKP_Silk_CLZ32(a32) - 17;
|
|
}
|
|
|
|
/* returns the number of left shifts before overflow for a 32 bit number (ITU definition with norm(0)=0) */
|
|
SKP_INLINE SKP_int32 SKP_Silk_norm32(SKP_int32 a) {
|
|
|
|
/* if ((a == 0) || (a == SKP_int32_MIN)) return(0); */
|
|
if ((a << 1) == 0) return(0);
|
|
|
|
/* if (a < 0) a = -a - 1; */
|
|
a ^= SKP_RSHIFT(a, 31);
|
|
|
|
return SKP_Silk_CLZ32(a) - 1;
|
|
}
|
|
|
|
/* Divide two int32 values and return result as int32 in a given Q-domain */
|
|
SKP_INLINE SKP_int32 SKP_DIV32_varQ( /* O returns a good approximation of "(a32 << Qres) / b32" */
|
|
const SKP_int32 a32, /* I numerator (Q0) */
|
|
const SKP_int32 b32, /* I denominator (Q0) */
|
|
const SKP_int Qres /* I Q-domain of result (>= 0) */
|
|
)
|
|
{
|
|
SKP_int a_headrm, b_headrm, lshift;
|
|
SKP_int32 b32_inv, a32_nrm, b32_nrm, result;
|
|
|
|
SKP_assert( b32 != 0 );
|
|
SKP_assert( Qres >= 0 );
|
|
|
|
/* Compute number of bits head room and normalize inputs */
|
|
a_headrm = SKP_Silk_CLZ32( SKP_abs(a32) ) - 1;
|
|
a32_nrm = SKP_LSHIFT(a32, a_headrm); /* Q: a_headrm */
|
|
b_headrm = SKP_Silk_CLZ32( SKP_abs(b32) ) - 1;
|
|
b32_nrm = SKP_LSHIFT(b32, b_headrm); /* Q: b_headrm */
|
|
|
|
/* Inverse of b32, with 14 bits of precision */
|
|
b32_inv = SKP_DIV32_16( SKP_int32_MAX >> 2, SKP_RSHIFT(b32_nrm, 16) ); /* Q: 29 + 16 - b_headrm */
|
|
|
|
/* First approximation */
|
|
result = SKP_SMULWB(a32_nrm, b32_inv); /* Q: 29 + a_headrm - b_headrm */
|
|
|
|
/* Compute residual by subtracting product of denominator and first approximation */
|
|
a32_nrm -= SKP_LSHIFT_ovflw( SKP_SMMUL(b32_nrm, result), 3 ); /* Q: a_headrm */
|
|
|
|
/* Refinement */
|
|
result = SKP_SMLAWB(result, a32_nrm, b32_inv); /* Q: 29 + a_headrm - b_headrm */
|
|
|
|
/* Convert to Qres domain */
|
|
lshift = 29 + a_headrm - b_headrm - Qres;
|
|
if( lshift <= 0 ) {
|
|
return SKP_LSHIFT_SAT32(result, -lshift);
|
|
} else {
|
|
if( lshift < 32){
|
|
return SKP_RSHIFT(result, lshift);
|
|
} else {
|
|
/* Avoid undefined result */
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Invert int32 value and return result as int32 in a given Q-domain */
|
|
SKP_INLINE SKP_int32 SKP_INVERSE32_varQ( /* O returns a good approximation of "(1 << Qres) / b32" */
|
|
const SKP_int32 b32, /* I denominator (Q0) */
|
|
const SKP_int Qres /* I Q-domain of result (> 0) */
|
|
)
|
|
{
|
|
SKP_int b_headrm, lshift;
|
|
SKP_int32 b32_inv, b32_nrm, err_Q32, result;
|
|
|
|
SKP_assert( b32 != 0 );
|
|
SKP_assert( b32 != SKP_int32_MIN ); /* SKP_int32_MIN is not handled by SKP_abs */
|
|
SKP_assert( Qres > 0 );
|
|
|
|
/* Compute number of bits head room and normalize input */
|
|
b_headrm = SKP_Silk_CLZ32( SKP_abs(b32) ) - 1;
|
|
b32_nrm = SKP_LSHIFT(b32, b_headrm); /* Q: b_headrm */
|
|
|
|
/* Inverse of b32, with 14 bits of precision */
|
|
b32_inv = SKP_DIV32_16( SKP_int32_MAX >> 2, SKP_RSHIFT(b32_nrm, 16) ); /* Q: 29 + 16 - b_headrm */
|
|
|
|
/* First approximation */
|
|
result = SKP_LSHIFT(b32_inv, 16); /* Q: 61 - b_headrm */
|
|
|
|
/* Compute residual by subtracting product of denominator and first approximation from one */
|
|
err_Q32 = SKP_LSHIFT_ovflw( -SKP_SMULWB(b32_nrm, b32_inv), 3 ); /* Q32 */
|
|
|
|
/* Refinement */
|
|
result = SKP_SMLAWW(result, err_Q32, b32_inv); /* Q: 61 - b_headrm */
|
|
|
|
/* Convert to Qres domain */
|
|
lshift = 61 - b_headrm - Qres;
|
|
if( lshift <= 0 ) {
|
|
return SKP_LSHIFT_SAT32(result, -lshift);
|
|
} else {
|
|
if( lshift < 32){
|
|
return SKP_RSHIFT(result, lshift);
|
|
}else{
|
|
/* Avoid undefined result */
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define SKP_SIN_APPROX_CONST0 (1073735400)
|
|
#define SKP_SIN_APPROX_CONST1 (-82778932)
|
|
#define SKP_SIN_APPROX_CONST2 (1059577)
|
|
#define SKP_SIN_APPROX_CONST3 (-5013)
|
|
|
|
/* Sine approximation; an input of 65536 corresponds to 2 * pi */
|
|
/* Uses polynomial expansion of the input to the power 0, 2, 4 and 6 */
|
|
/* The relative error is below 1e-5 */
|
|
SKP_INLINE SKP_int32 SKP_Silk_SIN_APPROX_Q24( /* O returns approximately 2^24 * sin(x * 2 * pi / 65536) */
|
|
SKP_int32 x
|
|
)
|
|
{
|
|
SKP_int y_Q30;
|
|
|
|
/* Keep only bottom 16 bits (the function repeats itself with period 65536) */
|
|
x &= 65535;
|
|
|
|
/* Split range in four quadrants */
|
|
if( x <= 32768 ) {
|
|
if( x < 16384 ) {
|
|
/* Return cos(pi/2 - x) */
|
|
x = 16384 - x;
|
|
} else {
|
|
/* Return cos(x - pi/2) */
|
|
x -= 16384;
|
|
}
|
|
if( x < 1100 ) {
|
|
/* Special case: high accuracy */
|
|
return SKP_SMLAWB( 1 << 24, SKP_MUL( x, x ), -5053 );
|
|
}
|
|
x = SKP_SMULWB( SKP_LSHIFT( x, 8 ), x ); /* contains x^2 in Q20 */
|
|
y_Q30 = SKP_SMLAWB( SKP_SIN_APPROX_CONST2, x, SKP_SIN_APPROX_CONST3 );
|
|
y_Q30 = SKP_SMLAWW( SKP_SIN_APPROX_CONST1, x, y_Q30 );
|
|
y_Q30 = SKP_SMLAWW( SKP_SIN_APPROX_CONST0 + 66, x, y_Q30 );
|
|
} else {
|
|
if( x < 49152 ) {
|
|
/* Return -cos(3*pi/2 - x) */
|
|
x = 49152 - x;
|
|
} else {
|
|
/* Return -cos(x - 3*pi/2) */
|
|
x -= 49152;
|
|
}
|
|
if( x < 1100 ) {
|
|
/* Special case: high accuracy */
|
|
return SKP_SMLAWB( -1 << 24, SKP_MUL( x, x ), 5053 );
|
|
}
|
|
x = SKP_SMULWB( SKP_LSHIFT( x, 8 ), x ); /* contains x^2 in Q20 */
|
|
y_Q30 = SKP_SMLAWB( -SKP_SIN_APPROX_CONST2, x, -SKP_SIN_APPROX_CONST3 );
|
|
y_Q30 = SKP_SMLAWW( -SKP_SIN_APPROX_CONST1, x, y_Q30 );
|
|
y_Q30 = SKP_SMLAWW( -SKP_SIN_APPROX_CONST0, x, y_Q30 );
|
|
}
|
|
return SKP_RSHIFT_ROUND( y_Q30, 6 );
|
|
}
|
|
|
|
/* Cosine approximation; an input of 65536 corresponds to 2 * pi */
|
|
/* The relative error is below 1e-5 */
|
|
SKP_INLINE SKP_int32 SKP_Silk_COS_APPROX_Q24( /* O returns approximately 2^24 * cos(x * 2 * pi / 65536) */
|
|
SKP_int32 x
|
|
)
|
|
{
|
|
return SKP_Silk_SIN_APPROX_Q24( x + 16384 );
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /*_SKP_SILK_FIX_INLINES_H_*/
|