freeswitch/libs/sofia-sip/libsofia-sip-ua/url/urlmap.c

1168 lines
28 KiB
C

/*
* This file is part of the Sofia-SIP package
*
* Copyright (C) 2005 Nokia Corporation.
*
* Contact: Pekka Pessi <pekka.pessi@nokia.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*
*/
/**
* @file urlmap.c
* @brief Mapping with hierarchical URLs.
*
* @author Pekka Pessi <Pekka.Pessi@nokia.com>
*
* @date Created: Wed Mar 10 17:05:23 2004 ppessi
*
*/
#include "config.h"
#include <stddef.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include <stdlib.h>
#include "urlmap.h"
/** Create map entry. */
UrlMap *url_map_new(su_home_t *home,
url_string_t const *url,
unsigned size)
{
UrlMap *um;
int xtra;
url_t *u;
xtra = url_xtra(url->us_url);
um = su_zalloc(home, size + xtra);
if (!um || url_dup((char *)um + size, xtra, um->um_url, url->us_url) < 0) {
su_free(home, um);
return NULL;
}
u = um->um_url;
if (!u->url_path)
u->url_path = "";
return um;
}
static
void left_rotate(UrlMap **top, UrlMap *x)
{
/* x c
* / \ / \
* Convert a c into x d
* / \ / \
* b d a b
*/
UrlMap *c = x->um_right, *dad = x->um_dad; assert(c);
if ((x->um_right = c->um_left))
x->um_right->um_dad = x;
if (!(c->um_dad = dad))
*top = c;
else if (dad->um_left == x)
dad->um_left = c;
else
assert(dad->um_right == x), dad->um_right = c;
c->um_left = x;
x->um_dad = c;
}
static
void right_rotate(UrlMap **top, UrlMap *x)
{
/* x c
* / \ / \
* Convert c f into a x
* / \ / \
* a d d f
*/
UrlMap *c = x->um_left, *dad = x->um_dad; assert(c);
if ((x->um_left = c->um_right))
x->um_left->um_dad = x;
if (!(c->um_dad = dad))
*top = c;
else if (dad->um_right == x)
dad->um_right = c;
else
assert(dad->um_left == x), dad->um_left = c;
c->um_right = x;
x->um_dad = c;
}
/** Balance Red-Black binary tree after inserting node @a um.
*
* The function red_black_balance_insert() balances a red-black tree after
* insertion.
*/
static
void red_black_balance_insert(UrlMap **top, UrlMap *um)
{
UrlMap *dad, *uncle, *granddad;
um->um_black = 0;
for (dad = um->um_dad; um != *top && !dad->um_black; dad = um->um_dad) {
/* Repeat until we are parent or we have a black dad */
granddad = dad->um_dad; assert(granddad);
if (dad == granddad->um_left) {
uncle = granddad->um_right;
if (uncle && !uncle->um_black) {
dad->um_black = 1;
uncle->um_black = 1;
granddad->um_black = 0;
um = granddad;
} else {
if (um == dad->um_right) {
left_rotate(top, um = dad);
dad = um->um_dad; assert(dad);
granddad = dad->um_dad; assert(granddad);
}
dad->um_black = 1;
granddad->um_black = 0;
right_rotate(top, granddad);
}
} else { assert(dad == granddad->um_right);
uncle = granddad->um_left;
if (uncle && !uncle->um_black) {
dad->um_black = 1;
uncle->um_black = 1;
granddad->um_black = 0;
um = granddad;
} else {
if (um == dad->um_left) {
right_rotate(top, um = dad);
dad = um->um_dad; assert(dad);
granddad = dad->um_dad; assert(granddad);
}
dad->um_black = 1;
granddad->um_black = 0;
left_rotate(top, granddad);
}
}
}
assert(*top);
(*top)->um_black = 1;
}
static
void red_black_balance_delete(UrlMap **top, UrlMap *um)
{
UrlMap *dad, *brother;
for (dad = um->um_dad; um != *top && !dad->um_black; dad = um->um_dad) {
if (um == dad->um_left) {
brother = dad->um_right;
if (!brother) {
um = dad;
continue;
}
assert(brother->um_black);
if ((!brother->um_left || brother->um_left->um_black) &&
(!brother->um_right || brother->um_right->um_black)) {
brother->um_black = 0;
um = dad;
continue;
}
if (!brother->um_right || brother->um_right->um_black) {
brother->um_left->um_black = 1;
brother->um_black = 0;
right_rotate(top, brother);
brother = dad->um_right;
}
brother->um_black = dad->um_black;
dad->um_black = 1;
if (brother->um_right)
brother->um_right->um_black = 1;
left_rotate(top, dad);
um = *top;
break;
} else {
assert(um == dad->um_right);
brother = dad->um_left;
if (!brother) {
um = dad;
continue;
}
assert(brother->um_black);
if ((!brother->um_left || brother->um_left->um_black) &&
(!brother->um_right || brother->um_right->um_black)) {
brother->um_black = 0;
um = dad;
continue;
}
if (!brother->um_left || brother->um_left->um_black) {
brother->um_right->um_black = 1;
brother->um_black = 0;
left_rotate(top, brother);
brother = dad->um_left;
}
brother->um_black = um->um_dad->um_black;
um->um_dad->um_black = 1;
if (brother->um_left)
brother->um_left->um_black = 1;
right_rotate(top, dad);
um = *top;
break;
}
}
um->um_black = 1;
}
/** Compare paths. */
static inline
int urlmap_pathcmp(url_t const *a, url_t const *b, int *return_hostmatch)
{
int retval;
retval = url_cmp(a, b);
*return_hostmatch = !retval;
if (retval)
return retval;
else
return strcmp(a->url_path, b->url_path);
}
/** Insert URL into map. */
int url_map_insert(UrlMap ** const tree,
UrlMap * const um,
UrlMap **return_old)
{
UrlMap *old, *dad, **tslot;
url_t *u;
int cmp, hostmatch;
if (tree == NULL || um == NULL || um->um_inserted)
return (errno = EINVAL), -1;
u = um->um_url;
/* Insert into red-black binary tree */
tslot = tree;
for (old = *tree, dad = NULL; old; old = *tslot) {
cmp = urlmap_pathcmp(u, old->um_url, &hostmatch);
if (cmp < 0)
dad = old, tslot = &old->um_left;
else if (cmp > 0)
dad = old, tslot = &old->um_right;
else
break;
}
assert(old != um);
if (old) {
if ((um->um_left = old->um_left))
um->um_left->um_dad = um;
if ((um->um_right = old->um_right))
um->um_right->um_dad = um;
if (!(um->um_dad = old->um_dad))
*tree = um;
else if (um->um_dad->um_left == old)
um->um_dad->um_left = um;
else assert(um->um_dad->um_right == old),
um->um_dad->um_right = um;
um->um_black = old->um_black;
old->um_left = NULL;
old->um_right = NULL;
old->um_dad = NULL;
old->um_inserted = 0;
} else {
*tslot = um;
um->um_dad = dad;
if (tree != tslot) {
red_black_balance_insert(tree, um);
} else {
um->um_black = 1;
}
}
um->um_inserted = 1;
if (return_old)
*return_old = old;
return 0;
}
/** Find a URL */
UrlMap *
url_map_find(UrlMap *root,
url_string_t const *url,
int relative)
{
UrlMap *um, *maybe = NULL;
url_t u[1];
void *tbf = NULL;
char *end;
int cmp, hostmatch;
if (root == NULL || url == NULL)
return NULL;
url = tbf = url_hdup(NULL, (url_t *)url);
if (!url)
return NULL;
*u = *url->us_url;
if (!u->url_path)
u->url_path = "";
for (um = root; um; um = cmp < 0 ? um->um_left : um->um_right) {
cmp = urlmap_pathcmp(u, um->um_url, &hostmatch);
if (cmp == 0)
break;
if (hostmatch && !maybe)
maybe = um;
}
while (!um && relative && u->url_path[0]) {
end = strrchr(u->url_path, '/');
end = end ? end + 1 : (char *)u->url_path;
if (*end)
*end = '\0';
for (um = maybe; um; um = cmp < 0 ? um->um_left : um->um_right) {
if ((cmp = urlmap_pathcmp(u, um->um_url, &hostmatch)) == 0)
break;
}
}
su_free(NULL, tbf);
return um;
}
/** Remove URL. */
void url_map_remove(UrlMap **top, UrlMap *um)
{
UrlMap *kid, *dad;
int need_to_balance;
if (top == NULL || um == NULL || !um->um_inserted)
return;
/* Make sure that node is in tree */
for (dad = um; dad; dad = dad->um_dad)
if (dad == *top)
break;
assert(dad);
if (!dad)
return;
/* Find a successor node with a free branch */
if (!um->um_left || !um->um_right)
dad = um;
else for (dad = um->um_right; dad->um_left; dad = dad->um_left)
;
/* Dad has a free branch => kid is dad's only child */
kid = dad->um_left ? dad->um_left : dad->um_right;
/* Remove dad from tree */
if (!(dad->um_dad))
*top = kid;
else if (dad->um_dad->um_left == dad)
dad->um_dad->um_left = kid;
else assert(dad->um_dad->um_right == dad),
dad->um_dad->um_right = kid;
if (kid)
kid->um_dad = dad->um_dad;
need_to_balance = kid && dad->um_black;
/* Put dad in place of um */
if (um != dad) {
if (!(dad->um_dad = um->um_dad))
*top = dad;
else if (dad->um_dad->um_left == um)
dad->um_dad->um_left = dad;
else assert(dad->um_dad->um_right == um),
dad->um_dad->um_right = dad;
dad->um_black = um->um_black;
if ((dad->um_left = um->um_left))
dad->um_left->um_dad = dad;
if ((dad->um_right = um->um_right))
dad->um_right->um_dad = dad;
}
um->um_left = NULL;
um->um_right = NULL;
um->um_dad = NULL;
um->um_black = 0;
um->um_inserted = 0;
if (need_to_balance)
red_black_balance_delete(top, kid);
}
#if TEST_URLMAP
/* Functions currently used only by test cases */
/** Return inorder successor of node @a um. */
UrlMap *url_map_succ(UrlMap *um)
{
UrlMap *dad;
if (um->um_right) {
for (um = um->um_right; um->um_left; um = um->um_left)
;
return um;
}
for (dad = um->um_dad; dad && um == dad->um_right; dad = um->um_dad)
um = dad;
return dad;
}
/** Return inorder precedessor of node @a um. */
UrlMap *url_map_prec(UrlMap *um)
{
UrlMap *dad;
if (um->um_left) {
for (um = um->um_left; um->um_right; um = um->um_right)
;
return um;
}
for (dad = um->um_dad; dad && um == dad->um_left; dad = um->um_dad)
um = dad;
return dad;
}
/** Return first node in tree @a um. */
UrlMap *url_map_first(UrlMap *um)
{
while (um && um->um_left)
um = um->um_left;
return um;
}
/** Return last node in tree @a um. */
UrlMap *url_map_last(UrlMap *um)
{
while (um && um->um_right)
um = um->um_right;
return um;
}
/** Return height of the tree */
int url_map_height(UrlMap const *tree)
{
int left, right;
if (!tree)
return 0;
left = tree->um_left ? url_map_height(tree->um_left) : 0;
right = tree->um_right ? url_map_height(tree->um_right) : 0;
if (left > right)
return left + 1;
else
return right + 1;
}
/** Check consistency */
static
int redblack_check(UrlMap const *n)
{
UrlMap const *l, *r;
if (!n)
return 1;
l = n->um_left, r = n->um_right;
if (n->um_black || ((!l || l->um_black) && (!r || r->um_black)))
return (!l || redblack_check(l)) && (!r || redblack_check(r));
else
return 0;
}
/* Testing functions */
int tstflags;
#define TSTFLAGS tstflags
#include <stdio.h>
#include <sofia-sip/tstdef.h>
char const *name = "test_urlmap";
int test_path(void)
{
su_home_t *home;
UrlMap *tree = NULL, *o;
UrlMap *um, *um1, *um2, *um3;
BEGIN();
home = su_home_clone(NULL, sizeof(*home)); TEST_1(home);
um1 = url_map_new(home, (void*)"http://host/aa/", sizeof *um1);
TEST_1(um1);
um2 = url_map_new(home, (void*)"http://host/aa/bb/", sizeof *um1);
TEST_1(um2);
um3 = url_map_new(home, (void*)"http://host/aa/bb/cc/",
sizeof *um);
TEST_1(um3);
TEST_1(um1 != um2 && um1 != um3 && um2 != um3);
o = (void *)-1;
TEST(url_map_insert(&tree, um3, &o), 0);
TEST_P(o, NULL); o = (void *)-1;
TEST(url_map_insert(&tree, um2, &o), 0);
TEST_P(o, NULL); o = (void *)-1;
TEST(url_map_insert(&tree, um1, &o), 0);
TEST_P(o, NULL);
um = url_map_find(tree, (void*)"http://host/aa/bb/cc", 1); TEST_P(um, um2);
um = url_map_find(tree, (void*)"http://host/aa/bb/cc/oo", 1);
TEST_P(um, um3);
um = url_map_find(tree, (void*)"http://host/aa/bb", 1); TEST_P(um, um1);
um = url_map_find(tree, (void*)"http://host/aa/bb", 0); TEST_P(um, NULL);
um = url_map_find(tree, (void*)"http://host/aa/bb/", 1); TEST_P(um, um2);
su_home_check(home);
su_home_zap(home);
END();
}
int test_insert(void)
{
su_home_t *home;
UrlMap *tree = NULL, *o, *old;
UrlMap *one, *three, *five, *six, *seven;
BEGIN();
home = su_home_clone(NULL, sizeof(*home)); TEST_1(home);
one = url_map_new(home, (void*)"/1", sizeof (UrlMap));
three = url_map_new(home, (void*)"/3", sizeof (UrlMap));
five = url_map_new(home, (void*)"/5", sizeof (UrlMap));
six = url_map_new(home, (void*)"/6", sizeof (UrlMap));
seven = url_map_new(home, (void*)"/7", sizeof (UrlMap));
TEST_1(one);
TEST_1(three);
TEST_1(five);
TEST_1(six);
TEST_1(seven);
/* Check single node */
TEST(url_map_insert(&tree, five, &o), 0); TEST_P(o, NULL);
TEST_P(tree, five);
TEST_P(five->um_left, NULL); TEST_P(five->um_right, NULL);
TEST_P(five->um_dad, NULL); TEST(five->um_black, 1);
/* Check after another node:
*
* 5b
* /
* 3r
*/
TEST(url_map_insert(&tree, three, &o), 0); TEST_P(o, NULL);
TEST_P(tree->um_left, three); TEST(tree->um_black, 1);
TEST_P(three->um_left, NULL); TEST_P(three->um_right, NULL);
TEST_P(three->um_dad, tree); TEST(three->um_black, 0);
/* Check third node
* 5b
* / \
* 3r 7r
*/
TEST(url_map_insert(&tree, seven, &o), 0); TEST_P(o, NULL);
TEST_P(tree->um_right, seven); TEST(tree->um_black, 1);
TEST_P(seven->um_left, NULL); TEST_P(seven->um_right, NULL);
TEST_P(seven->um_dad, tree); TEST(seven->um_black, 0);
/* Check after fourth node:
* 5b
* / \
* 3b 7b
* /
* 1r
*/
TEST(url_map_insert(&tree, one, &o), 0); TEST_P(o, NULL);
TEST_P(tree->um_left->um_left, one);
TEST(tree->um_black, 1);
TEST(tree->um_left->um_black, 1); TEST(tree->um_right->um_black, 1);
TEST_P(one->um_left, NULL); TEST_P(one->um_right, NULL);
TEST_P(one->um_dad, tree->um_left); TEST(one->um_black, 0);
/* Checks that we got after fifth node:
* 5b
* / \
* 3b 7b
* / /
* 1r 6r
*/
TEST(url_map_insert(&tree, six, &o), 0); TEST_P(o, NULL);
TEST_P(tree, five); TEST(five->um_black, 1);
TEST_P(tree->um_left, three); TEST(three->um_black, 1);
TEST_P(tree->um_left->um_left, one); TEST(one->um_black, 0);
TEST_P(tree->um_right, seven); TEST(seven->um_black, 1);
TEST_P(tree->um_right->um_left, six); TEST(six->um_black, 0);
/* Insert five second time */
old = five;
five = url_map_new(home, (void*)"/5", sizeof (UrlMap));
TEST(url_map_insert(&tree, five, &o), 0); TEST_P(o, old);
TEST_P(tree, five); TEST(five->um_black, 1);
TEST_P(tree->um_left, three); TEST(three->um_black, 1);
TEST_P(three->um_dad, five);
TEST_P(tree->um_left->um_left, one); TEST(one->um_black, 0);
TEST_P(tree->um_right, seven); TEST(seven->um_black, 1);
TEST_P(seven->um_dad, five);
TEST_P(tree->um_right->um_left, six); TEST(six->um_black, 0);
su_home_check(home);
su_home_zap(home);
END();
}
int test_rotate(void)
{
su_home_t *home;
UrlMap *tree = NULL;
UrlMap *x, *y, *o;
BEGIN();
home = su_home_clone(NULL, sizeof(*home)); TEST_1(home);
x = url_map_new(home, (void*)"/x", sizeof *x);
y = url_map_new(home, (void*)"/y", sizeof *y);
TEST_1(x);
TEST_1(y);
/*
* x y x
* Checks that \ transforms to / and back to \
* y x y
*/
TEST(url_map_insert(&tree, x, &o), 0); TEST_P(o, NULL);
TEST(url_map_insert(&tree, y, &o), 0); TEST_P(o, NULL);
TEST_P(tree, x); TEST_P(x->um_right, y);
left_rotate(&tree, x);
TEST_P(tree, y); TEST_P(y->um_left, x);
right_rotate(&tree, y);
TEST_P(tree, x); TEST_P(x->um_right, y);
su_home_check(home);
su_home_zap(home);
END();
}
/** ceil of log2 */
static
unsigned log2ceil(unsigned k)
{
unsigned result = 0;
#if 0
if (k > (1 << 32))
result += 32, k = (k >> 32) + ((k & ((1 << 32) - 1)) != 0);
#endif
if (k > (1 << 16))
result += 16, k = (k >> 16) + ((k & ((1 << 16) - 1)) != 0);
if (k > (1 << 8))
result += 8, k = (k >> 8) + ((k & ((1 << 8) - 1)) != 0);
if (k > (1 << 4))
result += 4, k = (k >> 4) + ((k & 15) != 0);
if (k > (1 << 2))
result += 2, k = (k >> 2) + ((k & 3) != 0);
if (k > (1 << 1))
result += 1, k = (k >> 1) + (k & 1);
if (k > 1)
result += 1;
return result;
}
typedef struct {
UrlMap te_urlmap[1];
int te_value;
int te_inserted;
} TEntry;
int test_balance(void)
{
su_home_t *home;
UrlMap *tree = NULL, *o = NULL;
url_t *u;
TEntry *te, **nodes;
char path[16];
int i, j;
int const N = 1000;
BEGIN();
home = su_home_clone(NULL, sizeof(*home)); TEST_1(home);
nodes = su_zalloc(home, (N + 2) * (sizeof *nodes)); TEST_1(nodes);
nodes++;
u = url_hdup(home, (url_t *)"http://host");
u->url_path = path;
for (i = 0; i < N; i++) {
snprintf(path, (sizeof path), "p%07u", i);
te = (TEntry *)url_map_new(home, (void *)u, sizeof *te);
te->te_value = i;
nodes[i] = te;
TEST(url_map_insert(&tree, te->te_urlmap, &o), 0);
TEST_P(o, NULL);
TEST_1(url_map_height(tree) <= 2 * log2ceil(i + 1 + 1));
TEST_1(redblack_check(tree));
}
for (i = 0; i < N; i++) {
snprintf(path, (sizeof path), "p%07u", i);
te = (TEntry *)url_map_find(tree, (void*)u, 1);
TEST_1(te); TEST(te->te_value, i);
}
snprintf(path, (sizeof path), "p%07u", 0);
te = (TEntry *)url_map_find(tree, (void*)u, 1);
for (i = 0; i < N; i++) {
TEST_1(te); TEST(te->te_value, i);
te = (TEntry *)url_map_succ(te->te_urlmap);
}
TEST_1(te == NULL);
for (i = 0; i < N; i++) {
TEST_P(url_map_succ(nodes[i]->te_urlmap), nodes[i + 1]->te_urlmap);
TEST_P(url_map_prec(nodes[i]->te_urlmap), nodes[i - 1]->te_urlmap);
}
for (i = 0; i < N; i++) {
snprintf(path, (sizeof path), "p%07u", i);
te = (TEntry *)url_map_find(tree, (void*)u, 1);
TEST_1(te); TEST(te->te_value, i);
url_map_remove(&tree, te->te_urlmap);
TEST_1(te->te_urlmap->um_dad == NULL &&
te->te_urlmap->um_left == NULL &&
te->te_urlmap->um_right == NULL);
TEST_1(url_map_height(tree) <= 2 * log2ceil(N - i + 1));
TEST_1(redblack_check(tree));
}
TEST_P(tree, NULL);
for (i = N - 1; i >= 0; i--) {
o = (void *)-1;
TEST(url_map_insert(&tree, nodes[i]->te_urlmap, &o), 0);
TEST_P(o, NULL);
TEST_1(url_map_height(tree) <= 2 * log2ceil(N - i + 1));
TEST_1(redblack_check(tree));
}
for (i = 0; i < N; i++) {
TEST_P(url_map_succ(nodes[i]->te_urlmap), nodes[i + 1]->te_urlmap);
TEST_P(url_map_prec(nodes[i]->te_urlmap), nodes[i - 1]->te_urlmap);
}
for (i = 0; i < N; i++) {
url_map_remove(&tree, nodes[i]->te_urlmap);
TEST_1(url_map_height(tree) <= 2 * log2ceil(N - i + 1));
TEST_1(redblack_check(tree));
}
TEST_P(tree, NULL);
for (i = 0; i < N; i++) {
int sn = (i * 57) % N;
o = (void *)-1;
TEST(nodes[sn]->te_inserted, 0);
TEST(url_map_insert(&tree, nodes[sn]->te_urlmap, &o), 0);
nodes[sn]->te_inserted = 1;
TEST_P(o, NULL);
TEST_1(url_map_height(tree) <= 2 * log2ceil(i + 1 + 1));
TEST_1(redblack_check(tree));
}
for (i = 0; i < N; i++) {
TEST(nodes[i]->te_inserted, 1);
TEST_P(url_map_succ(nodes[i]->te_urlmap), nodes[i + 1]->te_urlmap);
TEST_P(url_map_prec(nodes[i]->te_urlmap), nodes[i - 1]->te_urlmap);
}
for (i = 0; i < N; i++) {
int sn = (i * 23) % N; /* 23 is relative prime to N */
TEST(nodes[sn]->te_inserted, 1);
url_map_remove(&tree, nodes[sn]->te_urlmap);
nodes[sn]->te_inserted = 0;
TEST_1(url_map_height(tree) <= 2 * log2ceil(N - i + 1));
TEST_1(redblack_check(tree));
}
TEST_P(tree, NULL);
for (i = 0; i < N; i++) {
int sn = (i * 517) % N; /* relative prime to N */
o = (void *)-1;
TEST(nodes[sn]->te_inserted, 0);
TEST(url_map_insert(&tree, nodes[sn]->te_urlmap, &o), 0);
nodes[sn]->te_inserted = 1;
TEST_P(o, NULL);
TEST_1(url_map_height(tree) <= 2 * log2ceil(i + 1 + 1));
TEST_1(redblack_check(tree));
}
for (i = 0; i < N; i++) {
TEST(nodes[i]->te_inserted, 1);
TEST_P(url_map_succ(nodes[i]->te_urlmap), nodes[i + 1]->te_urlmap);
TEST_P(url_map_prec(nodes[i]->te_urlmap), nodes[i - 1]->te_urlmap);
}
for (i = 0; i < N; i++) {
int sn = (i * 497) % N; /* relative prime to N */
TEST(nodes[sn]->te_inserted, 1);
url_map_remove(&tree, nodes[sn]->te_urlmap);
nodes[sn]->te_inserted = 0;
TEST_1(url_map_height(tree) <= 2 * log2ceil(N - i + 1));
TEST_1(redblack_check(tree));
}
TEST_P(tree, NULL);
for (i = 0; i < N; i++) {
int sn = (i * 1957) % N; /* relative prime to N */
o = (void *)-1;
TEST(nodes[sn]->te_inserted, 0);
TEST(url_map_insert(&tree, nodes[sn]->te_urlmap, &o), 0);
nodes[sn]->te_inserted = 1;
TEST_P(o, NULL);
TEST_1(url_map_height(tree) <= 2 * log2ceil(i + 1 + 1));
TEST_1(redblack_check(tree));
}
for (i = 0; i < N; i++) {
TEST(nodes[i]->te_inserted, 1);
TEST_P(url_map_succ(nodes[i]->te_urlmap), nodes[i + 1]->te_urlmap);
TEST_P(url_map_prec(nodes[i]->te_urlmap), nodes[i - 1]->te_urlmap);
}
for (i = 0; i < N; i++) {
int sn = (i * 1519) % N; /* relative prime to N */
TEST(nodes[sn]->te_inserted, 1);
url_map_remove(&tree, nodes[sn]->te_urlmap);
nodes[sn]->te_inserted = 0;
TEST_1(url_map_height(tree) <= 2 * log2ceil(N - i + 1));
TEST_1(redblack_check(tree));
}
TEST_P(tree, NULL);
/* Insert small, big, small, big ... */
for (i = 0; i < N / 2; i++) {
int sn = N - i - 1;
TEST(nodes[i]->te_inserted, 0);
o = (void *)-1;
TEST(url_map_insert(&tree, nodes[i]->te_urlmap, &o), 0);
TEST_P(o, NULL);
nodes[i]->te_inserted = 1;
TEST(nodes[sn]->te_inserted, 0);
o = (void *)-1;
TEST(url_map_insert(&tree, nodes[sn]->te_urlmap, &o), 0);
TEST_P(o, NULL);
nodes[sn]->te_inserted = 1;
}
for (i = 0; i < N; i++) {
TEST(nodes[i]->te_inserted, 1);
TEST_P(url_map_succ(nodes[i]->te_urlmap), nodes[i + 1]->te_urlmap);
TEST_P(url_map_prec(nodes[i]->te_urlmap), nodes[i - 1]->te_urlmap);
}
for (i = 0; i < N; i++) {
te = (TEntry *)((i & 1) ? url_map_succ(tree) : url_map_prec(tree));
if (te == NULL)
te = (TEntry *)tree;
TEST(te->te_inserted, 1);
url_map_remove(&tree, te->te_urlmap);
te->te_inserted = 0;
TEST_1(url_map_height(tree) <= 2 * log2ceil(N - i + 1));
TEST_1(redblack_check(tree));
}
TEST_P(tree, NULL);
/* Insert small, big, small, big ... */
for (i = 0; i < N / 2; i++) {
int sn = N - i - 1;
TEST(nodes[i]->te_inserted, 0);
o = (void *)-1;
TEST(url_map_insert(&tree, nodes[i]->te_urlmap, &o), 0);
TEST_P(o, NULL);
nodes[i]->te_inserted = 1;
TEST(nodes[sn]->te_inserted, 0);
o = (void *)-1;
TEST(url_map_insert(&tree, nodes[sn]->te_urlmap, &o), 0);
TEST_P(o, NULL);
nodes[sn]->te_inserted = 1;
}
for (i = 0; i < N; i++) {
TEST(nodes[i]->te_inserted, 1);
TEST_P(url_map_succ(nodes[i]->te_urlmap), nodes[i + 1]->te_urlmap);
TEST_P(url_map_prec(nodes[i]->te_urlmap), nodes[i - 1]->te_urlmap);
}
/* Remove last, first, last, first, ... */
for (i = 0; i < N; i++) {
te = (TEntry *)((i & 1) ? url_map_first(tree) : url_map_last(tree));
TEST_1(te);
TEST(te->te_inserted, 1);
url_map_remove(&tree, te->te_urlmap);
te->te_inserted = 0;
TEST_1(url_map_height(tree) <= 2 * log2ceil(N - i + 1));
TEST_1(redblack_check(tree));
}
TEST_P(tree, NULL);
/* Insert small, big, small, big ... */
for (i = 0; i < N / 2; i++) {
int sn = N / 2 + i;
TEST(nodes[i]->te_inserted, 0);
o = (void *)-1;
TEST(url_map_insert(&tree, nodes[i]->te_urlmap, &o), 0);
TEST_P(o, NULL);
nodes[i]->te_inserted = 1;
TEST(nodes[sn]->te_inserted, 0);
o = (void *)-1;
TEST(url_map_insert(&tree, nodes[sn]->te_urlmap, &o), 0);
TEST_P(o, NULL);
nodes[sn]->te_inserted = 1;
}
for (i = 0; i < N; i++) {
TEST(nodes[i]->te_inserted, 1);
TEST_P(url_map_succ(nodes[i]->te_urlmap), nodes[i + 1]->te_urlmap);
TEST_P(url_map_prec(nodes[i]->te_urlmap), nodes[i - 1]->te_urlmap);
}
/* Remove last, first, last, first, ... */
for (i = 0; i < N; i++) {
te = (TEntry *)((i & 1) ? url_map_first(tree) : url_map_last(tree));
TEST_1(te);
TEST(te->te_inserted, 1);
url_map_remove(&tree, te->te_urlmap);
te->te_inserted = 0;
TEST_1(url_map_height(tree) <= 2 * log2ceil(N - i + 1));
TEST_1(redblack_check(tree));
}
TEST_P(tree, NULL);
/* Insert in perfect order ... */
for (j = N / 2; j > 0; j /= 2) {
for (i = N - j; i >= 0; i -= j) {
if (nodes[i]->te_inserted)
continue;
o = (void *)-1;
TEST(url_map_insert(&tree, nodes[i]->te_urlmap, &o), 0);
TEST_P(o, NULL);
nodes[i]->te_inserted = 1;
}
}
for (i = 0; i < N; i++) {
TEST(nodes[i]->te_inserted, 1);
TEST_P(url_map_succ(nodes[i]->te_urlmap), nodes[i + 1]->te_urlmap);
TEST_P(url_map_prec(nodes[i]->te_urlmap), nodes[i - 1]->te_urlmap);
}
/* Remove such nodes that insert red uncles into tree */
for (i = 0; i < N; i++) {
te = (TEntry *)url_map_last(tree);
for (o = te->te_urlmap; o; o = url_map_prec(o)) {
UrlMap *dad, *granddad, *uncle, *to_be_removed;
/* We must have a node with black dad, no brother, red granddad and uncle */
if (!(dad = o->um_dad) || !dad->um_black)
continue;
if (dad->um_left && dad->um_right)
continue;
if (!(granddad = dad->um_dad) || granddad->um_black)
continue;
if (granddad->um_left == dad)
uncle = granddad->um_right;
else
uncle = granddad->um_left;
if (!uncle || uncle->um_black)
continue;
to_be_removed = url_map_prec(o->um_dad);
if (to_be_removed == granddad || to_be_removed == uncle)
continue;
if (!to_be_removed->um_left || !to_be_removed->um_right)
continue;
te = (TEntry *)to_be_removed;
break;
}
TEST(te->te_inserted, 1);
url_map_remove(&tree, te->te_urlmap);
te->te_inserted = 0;
TEST_1(url_map_height(tree) <= 2 * log2ceil(N - i + 1));
TEST_1(redblack_check(tree));
}
TEST_P(tree, NULL);
su_home_check(home);
su_home_zap(home);
END();
}
int test_speed(void)
{
su_home_t *home;
UrlMap *tree = NULL, *o = NULL;
url_t *u;
TEntry *te;
unsigned i;
char path[16];
int const N = 1000000;
BEGIN();
home = su_home_clone(NULL, sizeof(*home)); TEST_1(home);
u = url_hdup(home, (url_t *)"http://host");
u->url_path = path;
for (i = 0; i < N; i++) {
snprintf(path, (sizeof path), "p%07u", i);
te = (TEntry *)url_map_new(home, (void *)u, sizeof *te);
te->te_value = i;
TEST(url_map_insert(&tree, te->te_urlmap, &o), 0);
TEST_P(o, NULL);
}
TEST_1(url_map_height(tree) <= 2 * log2ceil(i + 1));
for (i = 0; i < N; i++) {
snprintf(path, (sizeof path), "p%07u", i);
te = (TEntry *)url_map_find(tree, (void*)u, 1);
TEST_1(te); TEST(te->te_value, i);
}
snprintf(path, (sizeof path), "p%07u", 0);
te = (TEntry *)url_map_find(tree, (void*)u, 1);
for (i = 0; i < N; i++) {
TEST_1(te); TEST(te->te_value, i);
te = (TEntry *)url_map_succ(te->te_urlmap);
}
TEST_1(te == NULL);
su_home_check(home);
su_home_zap(home);
END();
}
void usage(void)
{
fprintf(stderr,
"usage: %s [-v]\n",
name);
}
int main(int argc, char *argv[])
{
int retval = 0;
int i;
for (i = 1; argv[i]; i++) {
if (strcmp(argv[i], "-v") == 0)
tstflags |= tst_verbatim;
else
usage();
}
retval |= test_insert(); fflush(stdout);
retval |= test_rotate(); fflush(stdout);
retval |= test_path(); fflush(stdout);
retval |= test_balance(); fflush(stdout);
return retval;
}
#endif