freeswitch/libs/libvpx/vp9/encoder/vp9_encodeframe.c

6471 lines
242 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./vp9_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "./vpx_config.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_ports/mem.h"
#include "vpx_ports/vpx_timer.h"
#include "vpx_ports/system_state.h"
#if CONFIG_MISMATCH_DEBUG
#include "vpx_util/vpx_debug_util.h"
#endif // CONFIG_MISMATCH_DEBUG
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_tile_common.h"
#if !CONFIG_REALTIME_ONLY
#include "vp9/encoder/vp9_aq_360.h"
#include "vp9/encoder/vp9_aq_complexity.h"
#endif
#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
#if !CONFIG_REALTIME_ONLY
#include "vp9/encoder/vp9_aq_variance.h"
#endif
#include "vp9/encoder/vp9_encodeframe.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_ethread.h"
#include "vp9/encoder/vp9_extend.h"
#include "vp9/encoder/vp9_multi_thread.h"
#include "vp9/encoder/vp9_partition_models.h"
#include "vp9/encoder/vp9_pickmode.h"
#include "vp9/encoder/vp9_rd.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_tokenize.h"
static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
int output_enabled, int mi_row, int mi_col,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx);
// This is used as a reference when computing the source variance for the
// purpose of activity masking.
// Eventually this should be replaced by custom no-reference routines,
// which will be faster.
static const uint8_t VP9_VAR_OFFS[64] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
};
#if CONFIG_VP9_HIGHBITDEPTH
static const uint16_t VP9_HIGH_VAR_OFFS_8[64] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
};
static const uint16_t VP9_HIGH_VAR_OFFS_10[64] = {
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
};
static const uint16_t VP9_HIGH_VAR_OFFS_12[64] = {
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16
};
#endif // CONFIG_VP9_HIGHBITDEPTH
unsigned int vp9_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref,
BLOCK_SIZE bs) {
unsigned int sse;
const unsigned int var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride, VP9_VAR_OFFS, 0, &sse);
return var;
}
#if CONFIG_VP9_HIGHBITDEPTH
unsigned int vp9_high_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref,
BLOCK_SIZE bs, int bd) {
unsigned int var, sse;
switch (bd) {
case 10:
var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10), 0, &sse);
break;
case 12:
var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12), 0, &sse);
break;
case 8:
default:
var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8), 0, &sse);
break;
}
return var;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
unsigned int vp9_get_sby_perpixel_variance(VP9_COMP *cpi,
const struct buf_2d *ref,
BLOCK_SIZE bs) {
return ROUND_POWER_OF_TWO(vp9_get_sby_variance(cpi, ref, bs),
num_pels_log2_lookup[bs]);
}
#if CONFIG_VP9_HIGHBITDEPTH
unsigned int vp9_high_get_sby_perpixel_variance(VP9_COMP *cpi,
const struct buf_2d *ref,
BLOCK_SIZE bs, int bd) {
return (unsigned int)ROUND64_POWER_OF_TWO(
(int64_t)vp9_high_get_sby_variance(cpi, ref, bs, bd),
num_pels_log2_lookup[bs]);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
#if !CONFIG_REALTIME_ONLY
static unsigned int get_sby_perpixel_diff_variance(VP9_COMP *cpi,
const struct buf_2d *ref,
int mi_row, int mi_col,
BLOCK_SIZE bs) {
unsigned int sse, var;
uint8_t *last_y;
const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
assert(last != NULL);
last_y =
&last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE];
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse);
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi, MACROBLOCK *x,
int mi_row, int mi_col) {
unsigned int var = get_sby_perpixel_diff_variance(
cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64);
if (var < 8)
return BLOCK_64X64;
else if (var < 128)
return BLOCK_32X32;
else if (var < 2048)
return BLOCK_16X16;
else
return BLOCK_8X8;
}
#endif // !CONFIG_REALTIME_ONLY
static void set_segment_index(VP9_COMP *cpi, MACROBLOCK *const x, int mi_row,
int mi_col, BLOCK_SIZE bsize, int segment_index) {
VP9_COMMON *const cm = &cpi->common;
const struct segmentation *const seg = &cm->seg;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi = xd->mi[0];
const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
// Initialize the segmentation index as 0.
mi->segment_id = 0;
// Skip the rest if AQ mode is disabled.
if (!seg->enabled) return;
switch (aq_mode) {
case CYCLIC_REFRESH_AQ:
mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
break;
#if !CONFIG_REALTIME_ONLY
case VARIANCE_AQ:
if (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
cpi->force_update_segmentation ||
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
int min_energy;
int max_energy;
// Get sub block energy range
if (bsize >= BLOCK_32X32) {
vp9_get_sub_block_energy(cpi, x, mi_row, mi_col, bsize, &min_energy,
&max_energy);
} else {
min_energy = bsize <= BLOCK_16X16 ? x->mb_energy
: vp9_block_energy(cpi, x, bsize);
}
mi->segment_id = vp9_vaq_segment_id(min_energy);
} else {
mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
}
break;
case EQUATOR360_AQ:
if (cm->frame_type == KEY_FRAME || cpi->force_update_segmentation)
mi->segment_id = vp9_360aq_segment_id(mi_row, cm->mi_rows);
else
mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
break;
#endif
case LOOKAHEAD_AQ:
mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
break;
case PSNR_AQ: mi->segment_id = segment_index; break;
case PERCEPTUAL_AQ: mi->segment_id = x->segment_id; break;
default:
// NO_AQ or PSNR_AQ
break;
}
// Set segment index from ROI map if it's enabled.
if (cpi->roi.enabled)
mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
vp9_init_plane_quantizers(cpi, x);
}
// Lighter version of set_offsets that only sets the mode info
// pointers.
static INLINE void set_mode_info_offsets(VP9_COMMON *const cm,
MACROBLOCK *const x,
MACROBLOCKD *const xd, int mi_row,
int mi_col) {
const int idx_str = xd->mi_stride * mi_row + mi_col;
xd->mi = cm->mi_grid_visible + idx_str;
xd->mi[0] = cm->mi + idx_str;
x->mbmi_ext = x->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
}
static void set_ssim_rdmult(VP9_COMP *const cpi, MACROBLOCK *const x,
const BLOCK_SIZE bsize, const int mi_row,
const int mi_col, int *const rdmult) {
const VP9_COMMON *const cm = &cpi->common;
const int bsize_base = BLOCK_16X16;
const int num_8x8_w = num_8x8_blocks_wide_lookup[bsize_base];
const int num_8x8_h = num_8x8_blocks_high_lookup[bsize_base];
const int num_cols = (cm->mi_cols + num_8x8_w - 1) / num_8x8_w;
const int num_rows = (cm->mi_rows + num_8x8_h - 1) / num_8x8_h;
const int num_bcols =
(num_8x8_blocks_wide_lookup[bsize] + num_8x8_w - 1) / num_8x8_w;
const int num_brows =
(num_8x8_blocks_high_lookup[bsize] + num_8x8_h - 1) / num_8x8_h;
int row, col;
double num_of_mi = 0.0;
double geom_mean_of_scale = 0.0;
assert(cpi->oxcf.tuning == VP8_TUNE_SSIM);
for (row = mi_row / num_8x8_w;
row < num_rows && row < mi_row / num_8x8_w + num_brows; ++row) {
for (col = mi_col / num_8x8_h;
col < num_cols && col < mi_col / num_8x8_h + num_bcols; ++col) {
const int index = row * num_cols + col;
geom_mean_of_scale += log(cpi->mi_ssim_rdmult_scaling_factors[index]);
num_of_mi += 1.0;
}
}
geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi);
*rdmult = (int)((double)(*rdmult) * geom_mean_of_scale);
*rdmult = VPXMAX(*rdmult, 0);
set_error_per_bit(x, *rdmult);
vpx_clear_system_state();
}
static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile,
MACROBLOCK *const x, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
MvLimits *const mv_limits = &x->mv_limits;
set_skip_context(xd, mi_row, mi_col);
set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
// Set up destination pointers.
vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
// Set up limit values for MV components.
// Mv beyond the range do not produce new/different prediction block.
mv_limits->row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
mv_limits->col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
mv_limits->row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
mv_limits->col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
// Set up distance of MB to edge of frame in 1/8th pel units.
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
cm->mi_cols);
// Set up source buffers.
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
// R/D setup.
x->rddiv = cpi->rd.RDDIV;
x->rdmult = cpi->rd.RDMULT;
if (oxcf->tuning == VP8_TUNE_SSIM) {
set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
}
// required by vp9_append_sub8x8_mvs_for_idx() and vp9_find_best_ref_mvs()
xd->tile = *tile;
}
static void duplicate_mode_info_in_sb(VP9_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const int block_width =
VPXMIN(num_8x8_blocks_wide_lookup[bsize], cm->mi_cols - mi_col);
const int block_height =
VPXMIN(num_8x8_blocks_high_lookup[bsize], cm->mi_rows - mi_row);
const int mi_stride = xd->mi_stride;
MODE_INFO *const src_mi = xd->mi[0];
int i, j;
for (j = 0; j < block_height; ++j)
for (i = 0; i < block_width; ++i) xd->mi[j * mi_stride + i] = src_mi;
}
static void set_block_size(VP9_COMP *const cpi, MACROBLOCK *const x,
MACROBLOCKD *const xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
set_mode_info_offsets(&cpi->common, x, xd, mi_row, mi_col);
xd->mi[0]->sb_type = bsize;
}
}
typedef struct {
// This struct is used for computing variance in choose_partitioning(), where
// the max number of samples within a superblock is 16x16 (with 4x4 avg). Even
// in high bitdepth, uint32_t is enough for sum_square_error (2^12 * 2^12 * 16
// * 16 = 2^32).
uint32_t sum_square_error;
int32_t sum_error;
int log2_count;
int variance;
} var;
typedef struct {
var none;
var horz[2];
var vert[2];
} partition_variance;
typedef struct {
partition_variance part_variances;
var split[4];
} v4x4;
typedef struct {
partition_variance part_variances;
v4x4 split[4];
} v8x8;
typedef struct {
partition_variance part_variances;
v8x8 split[4];
} v16x16;
typedef struct {
partition_variance part_variances;
v16x16 split[4];
} v32x32;
typedef struct {
partition_variance part_variances;
v32x32 split[4];
} v64x64;
typedef struct {
partition_variance *part_variances;
var *split[4];
} variance_node;
typedef enum {
V16X16,
V32X32,
V64X64,
} TREE_LEVEL;
static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) {
int i;
node->part_variances = NULL;
switch (bsize) {
case BLOCK_64X64: {
v64x64 *vt = (v64x64 *)data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].part_variances.none;
break;
}
case BLOCK_32X32: {
v32x32 *vt = (v32x32 *)data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].part_variances.none;
break;
}
case BLOCK_16X16: {
v16x16 *vt = (v16x16 *)data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].part_variances.none;
break;
}
case BLOCK_8X8: {
v8x8 *vt = (v8x8 *)data;
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].part_variances.none;
break;
}
default: {
v4x4 *vt = (v4x4 *)data;
assert(bsize == BLOCK_4X4);
node->part_variances = &vt->part_variances;
for (i = 0; i < 4; i++) node->split[i] = &vt->split[i];
break;
}
}
}
// Set variance values given sum square error, sum error, count.
static void fill_variance(uint32_t s2, int32_t s, int c, var *v) {
v->sum_square_error = s2;
v->sum_error = s;
v->log2_count = c;
}
static void get_variance(var *v) {
v->variance =
(int)(256 * (v->sum_square_error -
(uint32_t)(((int64_t)v->sum_error * v->sum_error) >>
v->log2_count)) >>
v->log2_count);
}
static void sum_2_variances(const var *a, const var *b, var *r) {
assert(a->log2_count == b->log2_count);
fill_variance(a->sum_square_error + b->sum_square_error,
a->sum_error + b->sum_error, a->log2_count + 1, r);
}
static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
variance_node node;
memset(&node, 0, sizeof(node));
tree_to_node(data, bsize, &node);
sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
&node.part_variances->none);
}
static int set_vt_partitioning(VP9_COMP *cpi, MACROBLOCK *const x,
MACROBLOCKD *const xd, void *data,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int64_t threshold, BLOCK_SIZE bsize_min,
int force_split) {
VP9_COMMON *const cm = &cpi->common;
variance_node vt;
const int block_width = num_8x8_blocks_wide_lookup[bsize];
const int block_height = num_8x8_blocks_high_lookup[bsize];
assert(block_height == block_width);
tree_to_node(data, bsize, &vt);
if (force_split == 1) return 0;
// For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
// variance is below threshold, otherwise split will be selected.
// No check for vert/horiz split as too few samples for variance.
if (bsize == bsize_min) {
// Variance already computed to set the force_split.
if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
if (mi_col + block_width / 2 < cm->mi_cols &&
mi_row + block_height / 2 < cm->mi_rows &&
vt.part_variances->none.variance < threshold) {
set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
return 1;
}
return 0;
} else if (bsize > bsize_min) {
// Variance already computed to set the force_split.
if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
// For key frame: take split for bsize above 32X32 or very high variance.
if (frame_is_intra_only(cm) &&
(bsize > BLOCK_32X32 ||
vt.part_variances->none.variance > (threshold << 4))) {
return 0;
}
// If variance is low, take the bsize (no split).
if (mi_col + block_width / 2 < cm->mi_cols &&
mi_row + block_height / 2 < cm->mi_rows &&
vt.part_variances->none.variance < threshold) {
set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
return 1;
}
// Check vertical split.
if (mi_row + block_height / 2 < cm->mi_rows) {
BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT);
get_variance(&vt.part_variances->vert[0]);
get_variance(&vt.part_variances->vert[1]);
if (vt.part_variances->vert[0].variance < threshold &&
vt.part_variances->vert[1].variance < threshold &&
get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
set_block_size(cpi, x, xd, mi_row, mi_col + block_width / 2, subsize);
return 1;
}
}
// Check horizontal split.
if (mi_col + block_width / 2 < cm->mi_cols) {
BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ);
get_variance(&vt.part_variances->horz[0]);
get_variance(&vt.part_variances->horz[1]);
if (vt.part_variances->horz[0].variance < threshold &&
vt.part_variances->horz[1].variance < threshold &&
get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
set_block_size(cpi, x, xd, mi_row + block_height / 2, mi_col, subsize);
return 1;
}
}
return 0;
}
return 0;
}
static int64_t scale_part_thresh_sumdiff(int64_t threshold_base, int speed,
int width, int height,
int content_state) {
if (speed >= 8) {
if (width <= 640 && height <= 480)
return (5 * threshold_base) >> 2;
else if ((content_state == kLowSadLowSumdiff) ||
(content_state == kHighSadLowSumdiff) ||
(content_state == kLowVarHighSumdiff))
return (5 * threshold_base) >> 2;
} else if (speed == 7) {
if ((content_state == kLowSadLowSumdiff) ||
(content_state == kHighSadLowSumdiff) ||
(content_state == kLowVarHighSumdiff)) {
return (5 * threshold_base) >> 2;
}
}
return threshold_base;
}
// Set the variance split thresholds for following the block sizes:
// 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16,
// 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is
// currently only used on key frame.
static void set_vbp_thresholds(VP9_COMP *cpi, int64_t thresholds[], int q,
int content_state) {
VP9_COMMON *const cm = &cpi->common;
const int is_key_frame = frame_is_intra_only(cm);
const int threshold_multiplier =
is_key_frame ? 20 : cpi->sf.variance_part_thresh_mult;
int64_t threshold_base =
(int64_t)(threshold_multiplier * cpi->y_dequant[q][1]);
if (is_key_frame) {
thresholds[0] = threshold_base;
thresholds[1] = threshold_base >> 2;
thresholds[2] = threshold_base >> 2;
thresholds[3] = threshold_base << 2;
} else {
// Increase base variance threshold based on estimated noise level.
if (cpi->noise_estimate.enabled && cm->width >= 640 && cm->height >= 480) {
NOISE_LEVEL noise_level =
vp9_noise_estimate_extract_level(&cpi->noise_estimate);
if (noise_level == kHigh)
threshold_base = 3 * threshold_base;
else if (noise_level == kMedium)
threshold_base = threshold_base << 1;
else if (noise_level < kLow)
threshold_base = (7 * threshold_base) >> 3;
}
#if CONFIG_VP9_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
cpi->oxcf.speed > 5 && cpi->denoiser.denoising_level >= kDenLow)
threshold_base =
vp9_scale_part_thresh(threshold_base, cpi->denoiser.denoising_level,
content_state, cpi->svc.temporal_layer_id);
else
threshold_base =
scale_part_thresh_sumdiff(threshold_base, cpi->oxcf.speed, cm->width,
cm->height, content_state);
#else
// Increase base variance threshold based on content_state/sum_diff level.
threshold_base = scale_part_thresh_sumdiff(
threshold_base, cpi->oxcf.speed, cm->width, cm->height, content_state);
#endif
thresholds[0] = threshold_base;
thresholds[2] = threshold_base << cpi->oxcf.speed;
if (cm->width >= 1280 && cm->height >= 720 && cpi->oxcf.speed < 7)
thresholds[2] = thresholds[2] << 1;
if (cm->width <= 352 && cm->height <= 288) {
thresholds[0] = threshold_base >> 3;
thresholds[1] = threshold_base >> 1;
thresholds[2] = threshold_base << 3;
} else if (cm->width < 1280 && cm->height < 720) {
thresholds[1] = (5 * threshold_base) >> 2;
} else if (cm->width < 1920 && cm->height < 1080) {
thresholds[1] = threshold_base << 1;
} else {
thresholds[1] = (5 * threshold_base) >> 1;
}
if (cpi->sf.disable_16x16part_nonkey) thresholds[2] = INT64_MAX;
}
}
void vp9_set_variance_partition_thresholds(VP9_COMP *cpi, int q,
int content_state) {
VP9_COMMON *const cm = &cpi->common;
SPEED_FEATURES *const sf = &cpi->sf;
const int is_key_frame = frame_is_intra_only(cm);
if (sf->partition_search_type != VAR_BASED_PARTITION &&
sf->partition_search_type != REFERENCE_PARTITION) {
return;
} else {
set_vbp_thresholds(cpi, cpi->vbp_thresholds, q, content_state);
// The thresholds below are not changed locally.
if (is_key_frame) {
cpi->vbp_threshold_sad = 0;
cpi->vbp_threshold_copy = 0;
cpi->vbp_bsize_min = BLOCK_8X8;
} else {
if (cm->width <= 352 && cm->height <= 288)
cpi->vbp_threshold_sad = 10;
else
cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000
? (cpi->y_dequant[q][1] << 1)
: 1000;
cpi->vbp_bsize_min = BLOCK_16X16;
if (cm->width <= 352 && cm->height <= 288)
cpi->vbp_threshold_copy = 4000;
else if (cm->width <= 640 && cm->height <= 360)
cpi->vbp_threshold_copy = 8000;
else
cpi->vbp_threshold_copy = (cpi->y_dequant[q][1] << 3) > 8000
? (cpi->y_dequant[q][1] << 3)
: 8000;
if (cpi->rc.high_source_sad ||
(cpi->use_svc && cpi->svc.high_source_sad_superframe)) {
cpi->vbp_threshold_sad = 0;
cpi->vbp_threshold_copy = 0;
}
}
cpi->vbp_threshold_minmax = 15 + (q >> 3);
}
}
// Compute the minmax over the 8x8 subblocks.
static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d,
int dp, int x16_idx, int y16_idx,
#if CONFIG_VP9_HIGHBITDEPTH
int highbd_flag,
#endif
int pixels_wide, int pixels_high) {
int k;
int minmax_max = 0;
int minmax_min = 255;
// Loop over the 4 8x8 subblocks.
for (k = 0; k < 4; k++) {
int x8_idx = x16_idx + ((k & 1) << 3);
int y8_idx = y16_idx + ((k >> 1) << 3);
int min = 0;
int max = 0;
if (x8_idx < pixels_wide && y8_idx < pixels_high) {
#if CONFIG_VP9_HIGHBITDEPTH
if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
vpx_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
d + y8_idx * dp + x8_idx, dp, &min, &max);
} else {
vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx,
dp, &min, &max);
}
#else
vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, dp,
&min, &max);
#endif
if ((max - min) > minmax_max) minmax_max = (max - min);
if ((max - min) < minmax_min) minmax_min = (max - min);
}
}
return (minmax_max - minmax_min);
}
static void fill_variance_4x4avg(const uint8_t *s, int sp, const uint8_t *d,
int dp, int x8_idx, int y8_idx, v8x8 *vst,
#if CONFIG_VP9_HIGHBITDEPTH
int highbd_flag,
#endif
int pixels_wide, int pixels_high,
int is_key_frame) {
int k;
for (k = 0; k < 4; k++) {
int x4_idx = x8_idx + ((k & 1) << 2);
int y4_idx = y8_idx + ((k >> 1) << 2);
unsigned int sse = 0;
int sum = 0;
if (x4_idx < pixels_wide && y4_idx < pixels_high) {
int s_avg;
int d_avg = 128;
#if CONFIG_VP9_HIGHBITDEPTH
if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
s_avg = vpx_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp);
if (!is_key_frame)
d_avg = vpx_highbd_avg_4x4(d + y4_idx * dp + x4_idx, dp);
} else {
s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
}
#else
s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
#endif
sum = s_avg - d_avg;
sse = sum * sum;
}
fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
}
}
static void fill_variance_8x8avg(const uint8_t *s, int sp, const uint8_t *d,
int dp, int x16_idx, int y16_idx, v16x16 *vst,
#if CONFIG_VP9_HIGHBITDEPTH
int highbd_flag,
#endif
int pixels_wide, int pixels_high,
int is_key_frame) {
int k;
for (k = 0; k < 4; k++) {
int x8_idx = x16_idx + ((k & 1) << 3);
int y8_idx = y16_idx + ((k >> 1) << 3);
unsigned int sse = 0;
int sum = 0;
if (x8_idx < pixels_wide && y8_idx < pixels_high) {
int s_avg;
int d_avg = 128;
#if CONFIG_VP9_HIGHBITDEPTH
if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
s_avg = vpx_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp);
if (!is_key_frame)
d_avg = vpx_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp);
} else {
s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
}
#else
s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
#endif
sum = s_avg - d_avg;
sse = sum * sum;
}
fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
}
}
// Check if most of the superblock is skin content, and if so, force split to
// 32x32, and set x->sb_is_skin for use in mode selection.
static int skin_sb_split(VP9_COMP *cpi, MACROBLOCK *x, const int low_res,
int mi_row, int mi_col, int *force_split) {
VP9_COMMON *const cm = &cpi->common;
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) return 0;
#endif
// Avoid checking superblocks on/near boundary and avoid low resolutions.
// Note superblock may still pick 64X64 if y_sad is very small
// (i.e., y_sad < cpi->vbp_threshold_sad) below. For now leave this as is.
if (!low_res && (mi_col >= 8 && mi_col + 8 < cm->mi_cols && mi_row >= 8 &&
mi_row + 8 < cm->mi_rows)) {
int num_16x16_skin = 0;
int num_16x16_nonskin = 0;
uint8_t *ysignal = x->plane[0].src.buf;
uint8_t *usignal = x->plane[1].src.buf;
uint8_t *vsignal = x->plane[2].src.buf;
int sp = x->plane[0].src.stride;
int spuv = x->plane[1].src.stride;
const int block_index = mi_row * cm->mi_cols + mi_col;
const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64];
const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64];
const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
// Loop through the 16x16 sub-blocks.
int i, j;
for (i = 0; i < ymis; i += 2) {
for (j = 0; j < xmis; j += 2) {
int bl_index = block_index + i * cm->mi_cols + j;
int is_skin = cpi->skin_map[bl_index];
num_16x16_skin += is_skin;
num_16x16_nonskin += (1 - is_skin);
if (num_16x16_nonskin > 3) {
// Exit loop if at least 4 of the 16x16 blocks are not skin.
i = ymis;
break;
}
ysignal += 16;
usignal += 8;
vsignal += 8;
}
ysignal += (sp << 4) - 64;
usignal += (spuv << 3) - 32;
vsignal += (spuv << 3) - 32;
}
if (num_16x16_skin > 12) {
*force_split = 1;
return 1;
}
}
return 0;
}
static void set_low_temp_var_flag(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
v64x64 *vt, int64_t thresholds[],
MV_REFERENCE_FRAME ref_frame_partition,
int mi_col, int mi_row) {
int i, j;
VP9_COMMON *const cm = &cpi->common;
const int mv_thr = cm->width > 640 ? 8 : 4;
// Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected and
// int_pro mv is small. If the temporal variance is small set the flag
// variance_low for the block. The variance threshold can be adjusted, the
// higher the more aggressive.
if (ref_frame_partition == LAST_FRAME &&
(cpi->sf.short_circuit_low_temp_var == 1 ||
(xd->mi[0]->mv[0].as_mv.col < mv_thr &&
xd->mi[0]->mv[0].as_mv.col > -mv_thr &&
xd->mi[0]->mv[0].as_mv.row < mv_thr &&
xd->mi[0]->mv[0].as_mv.row > -mv_thr))) {
if (xd->mi[0]->sb_type == BLOCK_64X64) {
if ((vt->part_variances).none.variance < (thresholds[0] >> 1))
x->variance_low[0] = 1;
} else if (xd->mi[0]->sb_type == BLOCK_64X32) {
for (i = 0; i < 2; i++) {
if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2))
x->variance_low[i + 1] = 1;
}
} else if (xd->mi[0]->sb_type == BLOCK_32X64) {
for (i = 0; i < 2; i++) {
if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2))
x->variance_low[i + 3] = 1;
}
} else {
for (i = 0; i < 4; i++) {
const int idx[4][2] = { { 0, 0 }, { 0, 4 }, { 4, 0 }, { 4, 4 } };
const int idx_str =
cm->mi_stride * (mi_row + idx[i][0]) + mi_col + idx[i][1];
MODE_INFO **this_mi = cm->mi_grid_visible + idx_str;
if (cm->mi_cols <= mi_col + idx[i][1] ||
cm->mi_rows <= mi_row + idx[i][0])
continue;
if ((*this_mi)->sb_type == BLOCK_32X32) {
int64_t threshold_32x32 = (cpi->sf.short_circuit_low_temp_var == 1 ||
cpi->sf.short_circuit_low_temp_var == 3)
? ((5 * thresholds[1]) >> 3)
: (thresholds[1] >> 1);
if (vt->split[i].part_variances.none.variance < threshold_32x32)
x->variance_low[i + 5] = 1;
} else if (cpi->sf.short_circuit_low_temp_var >= 2) {
// For 32x16 and 16x32 blocks, the flag is set on each 16x16 block
// inside.
if ((*this_mi)->sb_type == BLOCK_16X16 ||
(*this_mi)->sb_type == BLOCK_32X16 ||
(*this_mi)->sb_type == BLOCK_16X32) {
for (j = 0; j < 4; j++) {
if (vt->split[i].split[j].part_variances.none.variance <
(thresholds[2] >> 8))
x->variance_low[(i << 2) + j + 9] = 1;
}
}
}
}
}
}
}
static void copy_partitioning_helper(VP9_COMP *cpi, MACROBLOCK *x,
MACROBLOCKD *xd, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
BLOCK_SIZE *prev_part = cpi->prev_partition;
int start_pos = mi_row * cm->mi_stride + mi_col;
const int bsl = b_width_log2_lookup[bsize];
const int bs = (1 << bsl) >> 2;
BLOCK_SIZE subsize;
PARTITION_TYPE partition;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
partition = partition_lookup[bsl][prev_part[start_pos]];
subsize = get_subsize(bsize, partition);
if (subsize < BLOCK_8X8) {
set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
} else {
switch (partition) {
case PARTITION_NONE:
set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
break;
case PARTITION_HORZ:
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
set_block_size(cpi, x, xd, mi_row + bs, mi_col, subsize);
break;
case PARTITION_VERT:
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
set_block_size(cpi, x, xd, mi_row, mi_col + bs, subsize);
break;
default:
assert(partition == PARTITION_SPLIT);
copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col);
copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col);
copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col + bs);
copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col + bs);
break;
}
}
}
static int copy_partitioning(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
int mi_row, int mi_col, int segment_id,
int sb_offset) {
int svc_copy_allowed = 1;
int frames_since_key_thresh = 1;
if (cpi->use_svc) {
// For SVC, don't allow copy if base spatial layer is key frame, or if
// frame is not a temporal enhancement layer frame.
int layer = LAYER_IDS_TO_IDX(0, cpi->svc.temporal_layer_id,
cpi->svc.number_temporal_layers);
const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
if (lc->is_key_frame || !cpi->svc.non_reference_frame) svc_copy_allowed = 0;
frames_since_key_thresh = cpi->svc.number_spatial_layers << 1;
}
if (cpi->rc.frames_since_key > frames_since_key_thresh && svc_copy_allowed &&
!cpi->resize_pending && segment_id == CR_SEGMENT_ID_BASE &&
cpi->prev_segment_id[sb_offset] == CR_SEGMENT_ID_BASE &&
cpi->copied_frame_cnt[sb_offset] < cpi->max_copied_frame) {
if (cpi->prev_partition != NULL) {
copy_partitioning_helper(cpi, x, xd, BLOCK_64X64, mi_row, mi_col);
cpi->copied_frame_cnt[sb_offset] += 1;
memcpy(x->variance_low, &(cpi->prev_variance_low[sb_offset * 25]),
sizeof(x->variance_low));
return 1;
}
}
return 0;
}
static int scale_partitioning_svc(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int mi_row_high, int mi_col_high) {
VP9_COMMON *const cm = &cpi->common;
SVC *const svc = &cpi->svc;
BLOCK_SIZE *prev_part = svc->prev_partition_svc;
// Variables with _high are for higher resolution.
int bsize_high = 0;
int subsize_high = 0;
const int bsl_high = b_width_log2_lookup[bsize];
const int bs_high = (1 << bsl_high) >> 2;
const int has_rows = (mi_row_high + bs_high) < cm->mi_rows;
const int has_cols = (mi_col_high + bs_high) < cm->mi_cols;
const int row_boundary_block_scale_factor[BLOCK_SIZES] = { 13, 13, 13, 1, 0,
1, 1, 0, 1, 1,
0, 1, 0 };
const int col_boundary_block_scale_factor[BLOCK_SIZES] = { 13, 13, 13, 2, 2,
0, 2, 2, 0, 2,
2, 0, 0 };
int start_pos;
BLOCK_SIZE bsize_low;
PARTITION_TYPE partition_high;
if (mi_row_high >= cm->mi_rows || mi_col_high >= cm->mi_cols) return 0;
if (mi_row >= svc->mi_rows[svc->spatial_layer_id - 1] ||
mi_col >= svc->mi_cols[svc->spatial_layer_id - 1])
return 0;
// Find corresponding (mi_col/mi_row) block down-scaled by 2x2.
start_pos = mi_row * (svc->mi_stride[svc->spatial_layer_id - 1]) + mi_col;
bsize_low = prev_part[start_pos];
// The block size is too big for boundaries. Do variance based partitioning.
if ((!has_rows || !has_cols) && bsize_low > BLOCK_16X16) return 1;
// For reference frames: return 1 (do variance-based partitioning) if the
// superblock is not low source sad and lower-resoln bsize is below 32x32.
if (!cpi->svc.non_reference_frame && !x->skip_low_source_sad &&
bsize_low < BLOCK_32X32)
return 1;
// Scale up block size by 2x2. Force 64x64 for size larger than 32x32.
if (bsize_low < BLOCK_32X32) {
bsize_high = bsize_low + 3;
} else if (bsize_low >= BLOCK_32X32) {
bsize_high = BLOCK_64X64;
}
// Scale up blocks on boundary.
if (!has_cols && has_rows) {
bsize_high = bsize_low + row_boundary_block_scale_factor[bsize_low];
} else if (has_cols && !has_rows) {
bsize_high = bsize_low + col_boundary_block_scale_factor[bsize_low];
} else if (!has_cols && !has_rows) {
bsize_high = bsize_low;
}
partition_high = partition_lookup[bsl_high][bsize_high];
subsize_high = get_subsize(bsize, partition_high);
if (subsize_high < BLOCK_8X8) {
set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high);
} else {
const int bsl = b_width_log2_lookup[bsize];
const int bs = (1 << bsl) >> 2;
switch (partition_high) {
case PARTITION_NONE:
set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high);
break;
case PARTITION_HORZ:
set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high);
if (subsize_high < BLOCK_64X64)
set_block_size(cpi, x, xd, mi_row_high + bs_high, mi_col_high,
subsize_high);
break;
case PARTITION_VERT:
set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high);
if (subsize_high < BLOCK_64X64)
set_block_size(cpi, x, xd, mi_row_high, mi_col_high + bs_high,
subsize_high);
break;
default:
assert(partition_high == PARTITION_SPLIT);
if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row, mi_col,
mi_row_high, mi_col_high))
return 1;
if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1),
mi_col, mi_row_high + bs_high, mi_col_high))
return 1;
if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row,
mi_col + (bs >> 1), mi_row_high,
mi_col_high + bs_high))
return 1;
if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1),
mi_col + (bs >> 1), mi_row_high + bs_high,
mi_col_high + bs_high))
return 1;
break;
}
}
return 0;
}
static void update_partition_svc(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col) {
VP9_COMMON *const cm = &cpi->common;
BLOCK_SIZE *prev_part = cpi->svc.prev_partition_svc;
int start_pos = mi_row * cm->mi_stride + mi_col;
const int bsl = b_width_log2_lookup[bsize];
const int bs = (1 << bsl) >> 2;
BLOCK_SIZE subsize;
PARTITION_TYPE partition;
const MODE_INFO *mi = NULL;
int xx, yy;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
mi = cm->mi_grid_visible[start_pos];
partition = partition_lookup[bsl][mi->sb_type];
subsize = get_subsize(bsize, partition);
if (subsize < BLOCK_8X8) {
prev_part[start_pos] = bsize;
} else {
switch (partition) {
case PARTITION_NONE:
prev_part[start_pos] = bsize;
if (bsize == BLOCK_64X64) {
for (xx = 0; xx < 8; xx += 4)
for (yy = 0; yy < 8; yy += 4) {
if ((mi_row + xx < cm->mi_rows) && (mi_col + yy < cm->mi_cols))
prev_part[start_pos + xx * cm->mi_stride + yy] = bsize;
}
}
break;
case PARTITION_HORZ:
prev_part[start_pos] = subsize;
if (mi_row + bs < cm->mi_rows)
prev_part[start_pos + bs * cm->mi_stride] = subsize;
break;
case PARTITION_VERT:
prev_part[start_pos] = subsize;
if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize;
break;
default:
assert(partition == PARTITION_SPLIT);
update_partition_svc(cpi, subsize, mi_row, mi_col);
update_partition_svc(cpi, subsize, mi_row + bs, mi_col);
update_partition_svc(cpi, subsize, mi_row, mi_col + bs);
update_partition_svc(cpi, subsize, mi_row + bs, mi_col + bs);
break;
}
}
}
static void update_prev_partition_helper(VP9_COMP *cpi, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
BLOCK_SIZE *prev_part = cpi->prev_partition;
int start_pos = mi_row * cm->mi_stride + mi_col;
const int bsl = b_width_log2_lookup[bsize];
const int bs = (1 << bsl) >> 2;
BLOCK_SIZE subsize;
PARTITION_TYPE partition;
const MODE_INFO *mi = NULL;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
mi = cm->mi_grid_visible[start_pos];
partition = partition_lookup[bsl][mi->sb_type];
subsize = get_subsize(bsize, partition);
if (subsize < BLOCK_8X8) {
prev_part[start_pos] = bsize;
} else {
switch (partition) {
case PARTITION_NONE: prev_part[start_pos] = bsize; break;
case PARTITION_HORZ:
prev_part[start_pos] = subsize;
if (mi_row + bs < cm->mi_rows)
prev_part[start_pos + bs * cm->mi_stride] = subsize;
break;
case PARTITION_VERT:
prev_part[start_pos] = subsize;
if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize;
break;
default:
assert(partition == PARTITION_SPLIT);
update_prev_partition_helper(cpi, subsize, mi_row, mi_col);
update_prev_partition_helper(cpi, subsize, mi_row + bs, mi_col);
update_prev_partition_helper(cpi, subsize, mi_row, mi_col + bs);
update_prev_partition_helper(cpi, subsize, mi_row + bs, mi_col + bs);
break;
}
}
}
static void update_prev_partition(VP9_COMP *cpi, MACROBLOCK *x, int segment_id,
int mi_row, int mi_col, int sb_offset) {
update_prev_partition_helper(cpi, BLOCK_64X64, mi_row, mi_col);
cpi->prev_segment_id[sb_offset] = segment_id;
memcpy(&(cpi->prev_variance_low[sb_offset * 25]), x->variance_low,
sizeof(x->variance_low));
// Reset the counter for copy partitioning
cpi->copied_frame_cnt[sb_offset] = 0;
}
static void chroma_check(VP9_COMP *cpi, MACROBLOCK *x, int bsize,
unsigned int y_sad, int is_key_frame) {
int i;
MACROBLOCKD *xd = &x->e_mbd;
if (is_key_frame) return;
// For speed >= 8, avoid the chroma check if y_sad is above threshold.
if (cpi->oxcf.speed >= 8) {
if (y_sad > cpi->vbp_thresholds[1] &&
(!cpi->noise_estimate.enabled ||
vp9_noise_estimate_extract_level(&cpi->noise_estimate) < kMedium))
return;
}
for (i = 1; i <= 2; ++i) {
unsigned int uv_sad = UINT_MAX;
struct macroblock_plane *p = &x->plane[i];
struct macroblockd_plane *pd = &xd->plane[i];
const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
if (bs != BLOCK_INVALID)
uv_sad = cpi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, pd->dst.buf,
pd->dst.stride);
// TODO(marpan): Investigate if we should lower this threshold if
// superblock is detected as skin.
x->color_sensitivity[i - 1] = uv_sad > (y_sad >> 2);
}
}
static uint64_t avg_source_sad(VP9_COMP *cpi, MACROBLOCK *x, int shift,
int sb_offset) {
unsigned int tmp_sse;
uint64_t tmp_sad;
unsigned int tmp_variance;
const BLOCK_SIZE bsize = BLOCK_64X64;
uint8_t *src_y = cpi->Source->y_buffer;
int src_ystride = cpi->Source->y_stride;
uint8_t *last_src_y = cpi->Last_Source->y_buffer;
int last_src_ystride = cpi->Last_Source->y_stride;
uint64_t avg_source_sad_threshold = 10000;
uint64_t avg_source_sad_threshold2 = 12000;
#if CONFIG_VP9_HIGHBITDEPTH
if (cpi->common.use_highbitdepth) return 0;
#endif
src_y += shift;
last_src_y += shift;
tmp_sad =
cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, last_src_ystride);
tmp_variance = vpx_variance64x64(src_y, src_ystride, last_src_y,
last_src_ystride, &tmp_sse);
// Note: tmp_sse - tmp_variance = ((sum * sum) >> 12)
if (tmp_sad < avg_source_sad_threshold)
x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kLowSadLowSumdiff
: kLowSadHighSumdiff;
else
x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kHighSadLowSumdiff
: kHighSadHighSumdiff;
// Detect large lighting change.
if (cpi->oxcf.content != VP9E_CONTENT_SCREEN &&
cpi->oxcf.rc_mode == VPX_CBR && tmp_variance < (tmp_sse >> 3) &&
(tmp_sse - tmp_variance) > 10000)
x->content_state_sb = kLowVarHighSumdiff;
else if (tmp_sad > (avg_source_sad_threshold << 1))
x->content_state_sb = kVeryHighSad;
if (cpi->content_state_sb_fd != NULL) {
if (tmp_sad < avg_source_sad_threshold2) {
// Cap the increment to 255.
if (cpi->content_state_sb_fd[sb_offset] < 255)
cpi->content_state_sb_fd[sb_offset]++;
} else {
cpi->content_state_sb_fd[sb_offset] = 0;
}
}
if (tmp_sad == 0) x->zero_temp_sad_source = 1;
return tmp_sad;
}
// This function chooses partitioning based on the variance between source and
// reconstructed last, where variance is computed for down-sampled inputs.
static int choose_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
MACROBLOCK *x, int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
int i, j, k, m;
v64x64 vt;
v16x16 *vt2 = NULL;
int force_split[21];
int avg_32x32;
int max_var_32x32 = 0;
int min_var_32x32 = INT_MAX;
int var_32x32;
int avg_16x16[4];
int maxvar_16x16[4];
int minvar_16x16[4];
int64_t threshold_4x4avg;
NOISE_LEVEL noise_level = kLow;
int content_state = 0;
uint8_t *s;
const uint8_t *d;
int sp;
int dp;
int compute_minmax_variance = 1;
unsigned int y_sad = UINT_MAX;
BLOCK_SIZE bsize = BLOCK_64X64;
// Ref frame used in partitioning.
MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME;
int pixels_wide = 64, pixels_high = 64;
int64_t thresholds[4] = { cpi->vbp_thresholds[0], cpi->vbp_thresholds[1],
cpi->vbp_thresholds[2], cpi->vbp_thresholds[3] };
int force_64_split = cpi->rc.high_source_sad ||
(cpi->use_svc && cpi->svc.high_source_sad_superframe) ||
(cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
cpi->compute_source_sad_onepass &&
cpi->sf.use_source_sad && !x->zero_temp_sad_source);
// For the variance computation under SVC mode, we treat the frame as key if
// the reference (base layer frame) is key frame (i.e., is_key_frame == 1).
int is_key_frame =
(frame_is_intra_only(cm) ||
(is_one_pass_cbr_svc(cpi) &&
cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame));
// Always use 4x4 partition for key frame.
const int use_4x4_partition = frame_is_intra_only(cm);
const int low_res = (cm->width <= 352 && cm->height <= 288);
int variance4x4downsample[16];
int segment_id;
int sb_offset = (cm->mi_stride >> 3) * (mi_row >> 3) + (mi_col >> 3);
// For SVC: check if LAST frame is NULL or if the resolution of LAST is
// different than the current frame resolution, and if so, treat this frame
// as a key frame, for the purpose of the superblock partitioning.
// LAST == NULL can happen in some cases where enhancement spatial layers are
// enabled dyanmically in the stream and the only reference is the spatial
// reference (GOLDEN).
if (cpi->use_svc) {
const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, LAST_FRAME);
if (ref == NULL || ref->y_crop_height != cm->height ||
ref->y_crop_width != cm->width)
is_key_frame = 1;
}
set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);
set_segment_index(cpi, x, mi_row, mi_col, BLOCK_64X64, 0);
segment_id = xd->mi[0]->segment_id;
if (cpi->oxcf.speed >= 8 || (cpi->use_svc && cpi->svc.non_reference_frame))
compute_minmax_variance = 0;
memset(x->variance_low, 0, sizeof(x->variance_low));
if (cpi->sf.use_source_sad && !is_key_frame) {
int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
content_state = x->content_state_sb;
x->skip_low_source_sad = (content_state == kLowSadLowSumdiff ||
content_state == kLowSadHighSumdiff)
? 1
: 0;
x->lowvar_highsumdiff = (content_state == kLowVarHighSumdiff) ? 1 : 0;
if (cpi->content_state_sb_fd != NULL)
x->last_sb_high_content = cpi->content_state_sb_fd[sb_offset2];
// For SVC on top spatial layer: use/scale the partition from
// the lower spatial resolution if svc_use_lowres_part is enabled.
if (cpi->sf.svc_use_lowres_part &&
cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1 &&
cpi->svc.prev_partition_svc != NULL && content_state != kVeryHighSad) {
if (!scale_partitioning_svc(cpi, x, xd, BLOCK_64X64, mi_row >> 1,
mi_col >> 1, mi_row, mi_col)) {
if (cpi->sf.copy_partition_flag) {
update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
}
return 0;
}
}
// If source_sad is low copy the partition without computing the y_sad.
if (x->skip_low_source_sad && cpi->sf.copy_partition_flag &&
!force_64_split &&
copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) {
x->sb_use_mv_part = 1;
if (cpi->sf.svc_use_lowres_part &&
cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
return 0;
}
}
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
cyclic_refresh_segment_id_boosted(segment_id)) {
int q = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex);
set_vbp_thresholds(cpi, thresholds, q, content_state);
} else {
set_vbp_thresholds(cpi, thresholds, cm->base_qindex, content_state);
}
// Decrease 32x32 split threshold for screen on base layer, for scene
// change/high motion frames.
if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
cpi->svc.spatial_layer_id == 0 && force_64_split)
thresholds[1] = 3 * thresholds[1] >> 2;
// For non keyframes, disable 4x4 average for low resolution when speed = 8
threshold_4x4avg = (cpi->oxcf.speed < 8) ? thresholds[1] << 1 : INT64_MAX;
if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
s = x->plane[0].src.buf;
sp = x->plane[0].src.stride;
// Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks,
// 5-20 for the 16x16 blocks.
force_split[0] = force_64_split;
if (!is_key_frame) {
// In the case of spatial/temporal scalable coding, the assumption here is
// that the temporal reference frame will always be of type LAST_FRAME.
// TODO(marpan): If that assumption is broken, we need to revisit this code.
MODE_INFO *mi = xd->mi[0];
YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
const YV12_BUFFER_CONFIG *yv12_g = NULL;
unsigned int y_sad_g, y_sad_thr, y_sad_last;
bsize = BLOCK_32X32 + (mi_col + 4 < cm->mi_cols) * 2 +
(mi_row + 4 < cm->mi_rows);
assert(yv12 != NULL);
if (!(is_one_pass_cbr_svc(cpi) && cpi->svc.spatial_layer_id) ||
cpi->svc.use_gf_temporal_ref_current_layer) {
// For now, GOLDEN will not be used for non-zero spatial layers, since
// it may not be a temporal reference.
yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
}
// Only compute y_sad_g (sad for golden reference) for speed < 8.
if (cpi->oxcf.speed < 8 && yv12_g && yv12_g != yv12 &&
(cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
&cm->frame_refs[GOLDEN_FRAME - 1].sf);
y_sad_g = cpi->fn_ptr[bsize].sdf(
x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
xd->plane[0].pre[0].stride);
} else {
y_sad_g = UINT_MAX;
}
if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR &&
cpi->rc.is_src_frame_alt_ref) {
yv12 = get_ref_frame_buffer(cpi, ALTREF_FRAME);
vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
&cm->frame_refs[ALTREF_FRAME - 1].sf);
mi->ref_frame[0] = ALTREF_FRAME;
y_sad_g = UINT_MAX;
} else {
vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
&cm->frame_refs[LAST_FRAME - 1].sf);
mi->ref_frame[0] = LAST_FRAME;
}
mi->ref_frame[1] = NONE;
mi->sb_type = BLOCK_64X64;
mi->mv[0].as_int = 0;
mi->interp_filter = BILINEAR;
if (cpi->oxcf.speed >= 8 && !low_res &&
x->content_state_sb != kVeryHighSad) {
y_sad = cpi->fn_ptr[bsize].sdf(
x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
xd->plane[0].pre[0].stride);
} else {
const MV dummy_mv = { 0, 0 };
y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col,
&dummy_mv);
x->sb_use_mv_part = 1;
x->sb_mvcol_part = mi->mv[0].as_mv.col;
x->sb_mvrow_part = mi->mv[0].as_mv.row;
if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode &&
cpi->svc.high_num_blocks_with_motion && !x->zero_temp_sad_source &&
cm->width > 640 && cm->height > 480) {
// Disable split below 16x16 block size when scroll motion (horz or
// vert) is detected.
// TODO(marpan/jianj): Improve this condition: issue is that search
// range is hard-coded/limited in vp9_int_pro_motion_estimation() so
// scroll motion may not be detected here.
if (((abs(x->sb_mvrow_part) >= 48 && abs(x->sb_mvcol_part) <= 8) ||
(abs(x->sb_mvcol_part) >= 48 && abs(x->sb_mvrow_part) <= 8)) &&
y_sad < 100000) {
compute_minmax_variance = 0;
thresholds[2] = INT64_MAX;
}
}
}
y_sad_last = y_sad;
// Pick ref frame for partitioning, bias last frame when y_sad_g and y_sad
// are close if short_circuit_low_temp_var is on.
y_sad_thr = cpi->sf.short_circuit_low_temp_var ? (y_sad * 7) >> 3 : y_sad;
if (y_sad_g < y_sad_thr) {
vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
&cm->frame_refs[GOLDEN_FRAME - 1].sf);
mi->ref_frame[0] = GOLDEN_FRAME;
mi->mv[0].as_int = 0;
y_sad = y_sad_g;
ref_frame_partition = GOLDEN_FRAME;
} else {
x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv;
ref_frame_partition = LAST_FRAME;
}
set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64);
if (cpi->use_skin_detection)
x->sb_is_skin =
skin_sb_split(cpi, x, low_res, mi_row, mi_col, force_split);
d = xd->plane[0].dst.buf;
dp = xd->plane[0].dst.stride;
// If the y_sad is very small, take 64x64 as partition and exit.
// Don't check on boosted segment for now, as 64x64 is suppressed there.
if (segment_id == CR_SEGMENT_ID_BASE && y_sad < cpi->vbp_threshold_sad) {
const int block_width = num_8x8_blocks_wide_lookup[BLOCK_64X64];
const int block_height = num_8x8_blocks_high_lookup[BLOCK_64X64];
if (mi_col + block_width / 2 < cm->mi_cols &&
mi_row + block_height / 2 < cm->mi_rows) {
set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_64X64);
x->variance_low[0] = 1;
chroma_check(cpi, x, bsize, y_sad, is_key_frame);
if (cpi->sf.svc_use_lowres_part &&
cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
if (cpi->sf.copy_partition_flag) {
update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
}
return 0;
}
}
// If the y_sad is small enough, copy the partition of the superblock in the
// last frame to current frame only if the last frame is not a keyframe.
// Stop the copy every cpi->max_copied_frame to refresh the partition.
// TODO(jianj) : tune the threshold.
if (cpi->sf.copy_partition_flag && y_sad_last < cpi->vbp_threshold_copy &&
copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) {
chroma_check(cpi, x, bsize, y_sad, is_key_frame);
if (cpi->sf.svc_use_lowres_part &&
cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
return 0;
}
} else {
d = VP9_VAR_OFFS;
dp = 0;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (xd->bd) {
case 10: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10); break;
case 12: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12); break;
case 8:
default: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8); break;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
}
if (low_res && threshold_4x4avg < INT64_MAX)
CHECK_MEM_ERROR(cm, vt2, vpx_calloc(16, sizeof(*vt2)));
// Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances
// for splits.
for (i = 0; i < 4; i++) {
const int x32_idx = ((i & 1) << 5);
const int y32_idx = ((i >> 1) << 5);
const int i2 = i << 2;
force_split[i + 1] = 0;
avg_16x16[i] = 0;
maxvar_16x16[i] = 0;
minvar_16x16[i] = INT_MAX;
for (j = 0; j < 4; j++) {
const int x16_idx = x32_idx + ((j & 1) << 4);
const int y16_idx = y32_idx + ((j >> 1) << 4);
const int split_index = 5 + i2 + j;
v16x16 *vst = &vt.split[i].split[j];
force_split[split_index] = 0;
variance4x4downsample[i2 + j] = 0;
if (!is_key_frame) {
fill_variance_8x8avg(s, sp, d, dp, x16_idx, y16_idx, vst,
#if CONFIG_VP9_HIGHBITDEPTH
xd->cur_buf->flags,
#endif
pixels_wide, pixels_high, is_key_frame);
fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
get_variance(&vt.split[i].split[j].part_variances.none);
avg_16x16[i] += vt.split[i].split[j].part_variances.none.variance;
if (vt.split[i].split[j].part_variances.none.variance < minvar_16x16[i])
minvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance;
if (vt.split[i].split[j].part_variances.none.variance > maxvar_16x16[i])
maxvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance;
if (vt.split[i].split[j].part_variances.none.variance > thresholds[2]) {
// 16X16 variance is above threshold for split, so force split to 8x8
// for this 16x16 block (this also forces splits for upper levels).
force_split[split_index] = 1;
force_split[i + 1] = 1;
force_split[0] = 1;
} else if (compute_minmax_variance &&
vt.split[i].split[j].part_variances.none.variance >
thresholds[1] &&
!cyclic_refresh_segment_id_boosted(segment_id)) {
// We have some nominal amount of 16x16 variance (based on average),
// compute the minmax over the 8x8 sub-blocks, and if above threshold,
// force split to 8x8 block for this 16x16 block.
int minmax = compute_minmax_8x8(s, sp, d, dp, x16_idx, y16_idx,
#if CONFIG_VP9_HIGHBITDEPTH
xd->cur_buf->flags,
#endif
pixels_wide, pixels_high);
int thresh_minmax = (int)cpi->vbp_threshold_minmax;
if (x->content_state_sb == kVeryHighSad)
thresh_minmax = thresh_minmax << 1;
if (minmax > thresh_minmax) {
force_split[split_index] = 1;
force_split[i + 1] = 1;
force_split[0] = 1;
}
}
}
if (is_key_frame ||
(low_res && vt.split[i].split[j].part_variances.none.variance >
threshold_4x4avg)) {
force_split[split_index] = 0;
// Go down to 4x4 down-sampling for variance.
variance4x4downsample[i2 + j] = 1;
for (k = 0; k < 4; k++) {
int x8_idx = x16_idx + ((k & 1) << 3);
int y8_idx = y16_idx + ((k >> 1) << 3);
v8x8 *vst2 = is_key_frame ? &vst->split[k] : &vt2[i2 + j].split[k];
fill_variance_4x4avg(s, sp, d, dp, x8_idx, y8_idx, vst2,
#if CONFIG_VP9_HIGHBITDEPTH
xd->cur_buf->flags,
#endif
pixels_wide, pixels_high, is_key_frame);
}
}
}
}
if (cpi->noise_estimate.enabled)
noise_level = vp9_noise_estimate_extract_level(&cpi->noise_estimate);
// Fill the rest of the variance tree by summing split partition values.
avg_32x32 = 0;
for (i = 0; i < 4; i++) {
const int i2 = i << 2;
for (j = 0; j < 4; j++) {
if (variance4x4downsample[i2 + j] == 1) {
v16x16 *vtemp = (!is_key_frame) ? &vt2[i2 + j] : &vt.split[i].split[j];
for (m = 0; m < 4; m++) fill_variance_tree(&vtemp->split[m], BLOCK_8X8);
fill_variance_tree(vtemp, BLOCK_16X16);
// If variance of this 16x16 block is above the threshold, force block
// to split. This also forces a split on the upper levels.
get_variance(&vtemp->part_variances.none);
if (vtemp->part_variances.none.variance > thresholds[2]) {
force_split[5 + i2 + j] = 1;
force_split[i + 1] = 1;
force_split[0] = 1;
}
}
}
fill_variance_tree(&vt.split[i], BLOCK_32X32);
// If variance of this 32x32 block is above the threshold, or if its above
// (some threshold of) the average variance over the sub-16x16 blocks, then
// force this block to split. This also forces a split on the upper
// (64x64) level.
if (!force_split[i + 1]) {
get_variance(&vt.split[i].part_variances.none);
var_32x32 = vt.split[i].part_variances.none.variance;
max_var_32x32 = VPXMAX(var_32x32, max_var_32x32);
min_var_32x32 = VPXMIN(var_32x32, min_var_32x32);
if (vt.split[i].part_variances.none.variance > thresholds[1] ||
(!is_key_frame &&
vt.split[i].part_variances.none.variance > (thresholds[1] >> 1) &&
vt.split[i].part_variances.none.variance > (avg_16x16[i] >> 1))) {
force_split[i + 1] = 1;
force_split[0] = 1;
} else if (!is_key_frame && noise_level < kLow && cm->height <= 360 &&
(maxvar_16x16[i] - minvar_16x16[i]) > (thresholds[1] >> 1) &&
maxvar_16x16[i] > thresholds[1]) {
force_split[i + 1] = 1;
force_split[0] = 1;
}
avg_32x32 += var_32x32;
}
}
if (!force_split[0]) {
fill_variance_tree(&vt, BLOCK_64X64);
get_variance(&vt.part_variances.none);
// If variance of this 64x64 block is above (some threshold of) the average
// variance over the sub-32x32 blocks, then force this block to split.
// Only checking this for noise level >= medium for now.
if (!is_key_frame && noise_level >= kMedium &&
vt.part_variances.none.variance > (9 * avg_32x32) >> 5)
force_split[0] = 1;
// Else if the maximum 32x32 variance minus the miniumum 32x32 variance in
// a 64x64 block is greater than threshold and the maximum 32x32 variance is
// above a miniumum threshold, then force the split of a 64x64 block
// Only check this for low noise.
else if (!is_key_frame && noise_level < kMedium &&
(max_var_32x32 - min_var_32x32) > 3 * (thresholds[0] >> 3) &&
max_var_32x32 > thresholds[0] >> 1)
force_split[0] = 1;
}
// Now go through the entire structure, splitting every block size until
// we get to one that's got a variance lower than our threshold.
if (mi_col + 8 > cm->mi_cols || mi_row + 8 > cm->mi_rows ||
!set_vt_partitioning(cpi, x, xd, &vt, BLOCK_64X64, mi_row, mi_col,
thresholds[0], BLOCK_16X16, force_split[0])) {
for (i = 0; i < 4; ++i) {
const int x32_idx = ((i & 1) << 2);
const int y32_idx = ((i >> 1) << 2);
const int i2 = i << 2;
if (!set_vt_partitioning(cpi, x, xd, &vt.split[i], BLOCK_32X32,
(mi_row + y32_idx), (mi_col + x32_idx),
thresholds[1], BLOCK_16X16,
force_split[i + 1])) {
for (j = 0; j < 4; ++j) {
const int x16_idx = ((j & 1) << 1);
const int y16_idx = ((j >> 1) << 1);
// For inter frames: if variance4x4downsample[] == 1 for this 16x16
// block, then the variance is based on 4x4 down-sampling, so use vt2
// in set_vt_partioning(), otherwise use vt.
v16x16 *vtemp = (!is_key_frame && variance4x4downsample[i2 + j] == 1)
? &vt2[i2 + j]
: &vt.split[i].split[j];
if (!set_vt_partitioning(
cpi, x, xd, vtemp, BLOCK_16X16, mi_row + y32_idx + y16_idx,
mi_col + x32_idx + x16_idx, thresholds[2], cpi->vbp_bsize_min,
force_split[5 + i2 + j])) {
for (k = 0; k < 4; ++k) {
const int x8_idx = (k & 1);
const int y8_idx = (k >> 1);
if (use_4x4_partition) {
if (!set_vt_partitioning(cpi, x, xd, &vtemp->split[k],
BLOCK_8X8,
mi_row + y32_idx + y16_idx + y8_idx,
mi_col + x32_idx + x16_idx + x8_idx,
thresholds[3], BLOCK_8X8, 0)) {
set_block_size(
cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx),
(mi_col + x32_idx + x16_idx + x8_idx), BLOCK_4X4);
}
} else {
set_block_size(
cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx),
(mi_col + x32_idx + x16_idx + x8_idx), BLOCK_8X8);
}
}
}
}
}
}
}
if (!frame_is_intra_only(cm) && cpi->sf.copy_partition_flag) {
update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
}
if (!frame_is_intra_only(cm) && cpi->sf.svc_use_lowres_part &&
cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
if (cpi->sf.short_circuit_low_temp_var) {
set_low_temp_var_flag(cpi, x, xd, &vt, thresholds, ref_frame_partition,
mi_col, mi_row);
}
chroma_check(cpi, x, bsize, y_sad, is_key_frame);
if (vt2) vpx_free(vt2);
return 0;
}
#if !CONFIG_REALTIME_ONLY
static void update_state(VP9_COMP *cpi, ThreadData *td, PICK_MODE_CONTEXT *ctx,
int mi_row, int mi_col, BLOCK_SIZE bsize,
int output_enabled) {
int i, x_idx, y;
VP9_COMMON *const cm = &cpi->common;
RD_COUNTS *const rdc = &td->rd_counts;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
MODE_INFO *mi = &ctx->mic;
MODE_INFO *const xdmi = xd->mi[0];
MODE_INFO *mi_addr = xd->mi[0];
const struct segmentation *const seg = &cm->seg;
const int bw = num_8x8_blocks_wide_lookup[mi->sb_type];
const int bh = num_8x8_blocks_high_lookup[mi->sb_type];
const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
int w, h;
const int mis = cm->mi_stride;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
int max_plane;
assert(mi->sb_type == bsize);
*mi_addr = *mi;
*x->mbmi_ext = ctx->mbmi_ext;
// If segmentation in use
if (seg->enabled) {
// For in frame complexity AQ copy the segment id from the segment map.
if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
mi_addr->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
}
// Else for cyclic refresh mode update the segment map, set the segment id
// and then update the quantizer.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
vp9_cyclic_refresh_update_segment(cpi, xd->mi[0], mi_row, mi_col, bsize,
ctx->rate, ctx->dist, x->skip, p);
}
}
max_plane = is_inter_block(xdmi) ? MAX_MB_PLANE : 1;
for (i = 0; i < max_plane; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][1];
p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
p[i].eobs = ctx->eobs_pbuf[i][1];
}
for (i = max_plane; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][2];
p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
p[i].eobs = ctx->eobs_pbuf[i][2];
}
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
for (y = 0; y < mi_height; y++)
for (x_idx = 0; x_idx < mi_width; x_idx++)
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
xd->mi[x_idx + y * mis] = mi_addr;
}
if (cpi->oxcf.aq_mode != NO_AQ) vp9_init_plane_quantizers(cpi, x);
if (is_inter_block(xdmi) && xdmi->sb_type < BLOCK_8X8) {
xdmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
xdmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
}
x->skip = ctx->skip;
memcpy(x->zcoeff_blk[xdmi->tx_size], ctx->zcoeff_blk,
sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
if (!output_enabled) return;
#if CONFIG_INTERNAL_STATS
if (frame_is_intra_only(cm)) {
static const int kf_mode_index[] = {
THR_DC /*DC_PRED*/, THR_V_PRED /*V_PRED*/,
THR_H_PRED /*H_PRED*/, THR_D45_PRED /*D45_PRED*/,
THR_D135_PRED /*D135_PRED*/, THR_D117_PRED /*D117_PRED*/,
THR_D153_PRED /*D153_PRED*/, THR_D207_PRED /*D207_PRED*/,
THR_D63_PRED /*D63_PRED*/, THR_TM /*TM_PRED*/,
};
++cpi->mode_chosen_counts[kf_mode_index[xdmi->mode]];
} else {
// Note how often each mode chosen as best
++cpi->mode_chosen_counts[ctx->best_mode_index];
}
#endif
if (!frame_is_intra_only(cm)) {
if (is_inter_block(xdmi)) {
vp9_update_mv_count(td);
if (cm->interp_filter == SWITCHABLE) {
const int ctx = get_pred_context_switchable_interp(xd);
++td->counts->switchable_interp[ctx][xdmi->interp_filter];
}
}
rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
rdc->filter_diff[i] += ctx->best_filter_diff[i];
}
for (h = 0; h < y_mis; ++h) {
MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
for (w = 0; w < x_mis; ++w) {
MV_REF *const mv = frame_mv + w;
mv->ref_frame[0] = mi->ref_frame[0];
mv->ref_frame[1] = mi->ref_frame[1];
mv->mv[0].as_int = mi->mv[0].as_int;
mv->mv[1].as_int = mi->mv[1].as_int;
}
}
}
#endif // !CONFIG_REALTIME_ONLY
void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col) {
uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer };
const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
int i;
// Set current frame pointer.
x->e_mbd.cur_buf = src;
for (i = 0; i < MAX_MB_PLANE; i++)
setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
NULL, x->e_mbd.plane[i].subsampling_x,
x->e_mbd.plane[i].subsampling_y);
}
static void set_mode_info_seg_skip(MACROBLOCK *x, TX_MODE tx_mode,
RD_COST *rd_cost, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mi = xd->mi[0];
INTERP_FILTER filter_ref;
filter_ref = get_pred_context_switchable_interp(xd);
if (filter_ref == SWITCHABLE_FILTERS) filter_ref = EIGHTTAP;
mi->sb_type = bsize;
mi->mode = ZEROMV;
mi->tx_size =
VPXMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[tx_mode]);
mi->skip = 1;
mi->uv_mode = DC_PRED;
mi->ref_frame[0] = LAST_FRAME;
mi->ref_frame[1] = NONE;
mi->mv[0].as_int = 0;
mi->interp_filter = filter_ref;
xd->mi[0]->bmi[0].as_mv[0].as_int = 0;
x->skip = 1;
vp9_rd_cost_init(rd_cost);
}
#if !CONFIG_REALTIME_ONLY
static void set_segment_rdmult(VP9_COMP *const cpi, MACROBLOCK *const x,
int mi_row, int mi_col, BLOCK_SIZE bsize,
AQ_MODE aq_mode) {
VP9_COMMON *const cm = &cpi->common;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
const uint8_t *const map =
cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
vp9_init_plane_quantizers(cpi, x);
vpx_clear_system_state();
if (aq_mode == NO_AQ || aq_mode == PSNR_AQ) {
if (cpi->sf.enable_tpl_model) x->rdmult = x->cb_rdmult;
} else if (aq_mode == PERCEPTUAL_AQ) {
x->rdmult = x->cb_rdmult;
} else if (aq_mode == CYCLIC_REFRESH_AQ) {
// If segment is boosted, use rdmult for that segment.
if (cyclic_refresh_segment_id_boosted(
get_segment_id(cm, map, bsize, mi_row, mi_col)))
x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
} else {
x->rdmult = vp9_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q);
}
if (oxcf->tuning == VP8_TUNE_SSIM) {
set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
}
}
static void rd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data,
MACROBLOCK *const x, int mi_row, int mi_col,
RD_COST *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx, int rate_in_best_rd,
int64_t dist_in_best_rd) {
VP9_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
int i, orig_rdmult;
int64_t best_rd = INT64_MAX;
vpx_clear_system_state();
// Use the lower precision, but faster, 32x32 fdct for mode selection.
x->use_lp32x32fdct = 1;
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
mi = xd->mi[0];
mi->sb_type = bsize;
for (i = 0; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][0];
p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
p[i].eobs = ctx->eobs_pbuf[i][0];
}
ctx->is_coded = 0;
ctx->skippable = 0;
ctx->pred_pixel_ready = 0;
x->skip_recode = 0;
// Set to zero to make sure we do not use the previous encoded frame stats
mi->skip = 0;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
x->source_variance = vp9_high_get_sby_perpixel_variance(
cpi, &x->plane[0].src, bsize, xd->bd);
} else {
x->source_variance =
vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
}
#else
x->source_variance =
vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
#endif // CONFIG_VP9_HIGHBITDEPTH
// Save rdmult before it might be changed, so it can be restored later.
orig_rdmult = x->rdmult;
if ((cpi->sf.tx_domain_thresh > 0.0) || (cpi->sf.quant_opt_thresh > 0.0)) {
double logvar = vp9_log_block_var(cpi, x, bsize);
// Check block complexity as part of descision on using pixel or transform
// domain distortion in rd tests.
x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion &&
(logvar >= cpi->sf.tx_domain_thresh);
// Check block complexity as part of descision on using quantized
// coefficient optimisation inside the rd loop.
x->block_qcoeff_opt =
cpi->sf.allow_quant_coeff_opt && (logvar <= cpi->sf.quant_opt_thresh);
} else {
x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion;
x->block_qcoeff_opt = cpi->sf.allow_quant_coeff_opt;
}
set_segment_index(cpi, x, mi_row, mi_col, bsize, 0);
set_segment_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode);
if (rate_in_best_rd < INT_MAX && dist_in_best_rd < INT64_MAX) {
best_rd = vp9_calculate_rd_cost(x->rdmult, x->rddiv, rate_in_best_rd,
dist_in_best_rd);
}
// Find best coding mode & reconstruct the MB so it is available
// as a predictor for MBs that follow in the SB
if (frame_is_intra_only(cm)) {
vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd);
} else {
if (bsize >= BLOCK_8X8) {
if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP))
vp9_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize,
ctx, best_rd);
else
vp9_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost,
bsize, ctx, best_rd);
} else {
vp9_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col, rd_cost,
bsize, ctx, best_rd);
}
}
// Examine the resulting rate and for AQ mode 2 make a segment choice.
if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) &&
(bsize >= BLOCK_16X16) &&
(cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
vp9_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
}
// TODO(jingning) The rate-distortion optimization flow needs to be
// refactored to provide proper exit/return handle.
if (rd_cost->rate == INT_MAX || rd_cost->dist == INT64_MAX)
rd_cost->rdcost = INT64_MAX;
else
rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist);
x->rdmult = orig_rdmult;
ctx->rate = rd_cost->rate;
ctx->dist = rd_cost->dist;
}
#endif // !CONFIG_REALTIME_ONLY
static void update_stats(VP9_COMMON *cm, ThreadData *td) {
const MACROBLOCK *x = &td->mb;
const MACROBLOCKD *const xd = &x->e_mbd;
const MODE_INFO *const mi = xd->mi[0];
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const BLOCK_SIZE bsize = mi->sb_type;
if (!frame_is_intra_only(cm)) {
FRAME_COUNTS *const counts = td->counts;
const int inter_block = is_inter_block(mi);
const int seg_ref_active =
segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_REF_FRAME);
if (!seg_ref_active) {
counts->intra_inter[get_intra_inter_context(xd)][inter_block]++;
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (inter_block) {
const MV_REFERENCE_FRAME ref0 = mi->ref_frame[0];
if (cm->reference_mode == REFERENCE_MODE_SELECT)
counts->comp_inter[vp9_get_reference_mode_context(cm, xd)]
[has_second_ref(mi)]++;
if (has_second_ref(mi)) {
const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
const int ctx = vp9_get_pred_context_comp_ref_p(cm, xd);
const int bit = mi->ref_frame[!idx] == cm->comp_var_ref[1];
counts->comp_ref[ctx][bit]++;
} else {
counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0]
[ref0 != LAST_FRAME]++;
if (ref0 != LAST_FRAME)
counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1]
[ref0 != GOLDEN_FRAME]++;
}
}
}
if (inter_block &&
!segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) {
const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]];
if (bsize >= BLOCK_8X8) {
const PREDICTION_MODE mode = mi->mode;
++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)];
} else {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int j = idy * 2 + idx;
const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
}
}
}
}
}
}
#if !CONFIG_REALTIME_ONLY
static void restore_context(MACROBLOCK *const x, int mi_row, int mi_col,
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int mi_width = num_8x8_blocks_wide_lookup[bsize];
int mi_height = num_8x8_blocks_high_lookup[bsize];
for (p = 0; p < MAX_MB_PLANE; p++) {
memcpy(xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
a + num_4x4_blocks_wide * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
memcpy(xd->left_context[p] +
((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
l + num_4x4_blocks_high * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
memcpy(xd->above_seg_context + mi_col, sa,
sizeof(*xd->above_seg_context) * mi_width);
memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl,
sizeof(xd->left_seg_context[0]) * mi_height);
}
static void save_context(MACROBLOCK *const x, int mi_row, int mi_col,
ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
BLOCK_SIZE bsize) {
const MACROBLOCKD *const xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int mi_width = num_8x8_blocks_wide_lookup[bsize];
int mi_height = num_8x8_blocks_high_lookup[bsize];
// buffer the above/left context information of the block in search.
for (p = 0; p < MAX_MB_PLANE; ++p) {
memcpy(a + num_4x4_blocks_wide * p,
xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
memcpy(l + num_4x4_blocks_high * p,
xd->left_context[p] +
((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
memcpy(sa, xd->above_seg_context + mi_col,
sizeof(*xd->above_seg_context) * mi_width);
memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK),
sizeof(xd->left_seg_context[0]) * mi_height);
}
static void encode_b(VP9_COMP *cpi, const TileInfo *const tile, ThreadData *td,
TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx) {
MACROBLOCK *const x = &td->mb;
set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
if (cpi->sf.enable_tpl_model &&
(cpi->oxcf.aq_mode == NO_AQ || cpi->oxcf.aq_mode == PERCEPTUAL_AQ)) {
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
x->rdmult = x->cb_rdmult;
if (oxcf->tuning == VP8_TUNE_SSIM) {
set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
}
}
update_state(cpi, td, ctx, mi_row, mi_col, bsize, output_enabled);
encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
if (output_enabled) {
update_stats(&cpi->common, td);
(*tp)->token = EOSB_TOKEN;
(*tp)++;
}
}
static void encode_sb(VP9_COMP *cpi, ThreadData *td, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
int ctx;
PARTITION_TYPE partition;
BLOCK_SIZE subsize = bsize;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
if (bsize >= BLOCK_8X8) {
ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
subsize = get_subsize(bsize, pc_tree->partitioning);
} else {
ctx = 0;
subsize = BLOCK_4X4;
}
partition = partition_lookup[bsl][subsize];
if (output_enabled && bsize != BLOCK_4X4)
td->counts->partition[ctx][partition]++;
switch (partition) {
case PARTITION_NONE:
encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->none);
break;
case PARTITION_VERT:
encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->vertical[0]);
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled,
subsize, &pc_tree->vertical[1]);
}
break;
case PARTITION_HORZ:
encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->horizontal[0]);
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled,
subsize, &pc_tree->horizontal[1]);
}
break;
default:
assert(partition == PARTITION_SPLIT);
if (bsize == BLOCK_8X8) {
encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
pc_tree->leaf_split[0]);
} else {
encode_sb(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
pc_tree->split[0]);
encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
subsize, pc_tree->split[1]);
encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
subsize, pc_tree->split[2]);
encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
subsize, pc_tree->split[3]);
}
break;
}
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
}
#endif // !CONFIG_REALTIME_ONLY
// Check to see if the given partition size is allowed for a specified number
// of 8x8 block rows and columns remaining in the image.
// If not then return the largest allowed partition size
static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left,
int cols_left, int *bh, int *bw) {
if (rows_left <= 0 || cols_left <= 0) {
return VPXMIN(bsize, BLOCK_8X8);
} else {
for (; bsize > 0; bsize -= 3) {
*bh = num_8x8_blocks_high_lookup[bsize];
*bw = num_8x8_blocks_wide_lookup[bsize];
if ((*bh <= rows_left) && (*bw <= cols_left)) {
break;
}
}
}
return bsize;
}
static void set_partial_b64x64_partition(MODE_INFO *mi, int mis, int bh_in,
int bw_in, int row8x8_remaining,
int col8x8_remaining, BLOCK_SIZE bsize,
MODE_INFO **mi_8x8) {
int bh = bh_in;
int r, c;
for (r = 0; r < MI_BLOCK_SIZE; r += bh) {
int bw = bw_in;
for (c = 0; c < MI_BLOCK_SIZE; c += bw) {
const int index = r * mis + c;
mi_8x8[index] = mi + index;
mi_8x8[index]->sb_type = find_partition_size(
bsize, row8x8_remaining - r, col8x8_remaining - c, &bh, &bw);
}
}
}
// This function attempts to set all mode info entries in a given SB64
// to the same block partition size.
// However, at the bottom and right borders of the image the requested size
// may not be allowed in which case this code attempts to choose the largest
// allowable partition.
static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
MODE_INFO **mi_8x8, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
const int mis = cm->mi_stride;
const int row8x8_remaining = tile->mi_row_end - mi_row;
const int col8x8_remaining = tile->mi_col_end - mi_col;
int block_row, block_col;
MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
int bh = num_8x8_blocks_high_lookup[bsize];
int bw = num_8x8_blocks_wide_lookup[bsize];
assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
// Apply the requested partition size to the SB64 if it is all "in image"
if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
(row8x8_remaining >= MI_BLOCK_SIZE)) {
for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
int index = block_row * mis + block_col;
mi_8x8[index] = mi_upper_left + index;
mi_8x8[index]->sb_type = bsize;
}
}
} else {
// Else this is a partial SB64.
set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
col8x8_remaining, bsize, mi_8x8);
}
}
static const struct {
int row;
int col;
} coord_lookup[16] = {
// 32x32 index = 0
{ 0, 0 },
{ 0, 2 },
{ 2, 0 },
{ 2, 2 },
// 32x32 index = 1
{ 0, 4 },
{ 0, 6 },
{ 2, 4 },
{ 2, 6 },
// 32x32 index = 2
{ 4, 0 },
{ 4, 2 },
{ 6, 0 },
{ 6, 2 },
// 32x32 index = 3
{ 4, 4 },
{ 4, 6 },
{ 6, 4 },
{ 6, 6 },
};
static void set_source_var_based_partition(VP9_COMP *cpi,
const TileInfo *const tile,
MACROBLOCK *const x,
MODE_INFO **mi_8x8, int mi_row,
int mi_col) {
VP9_COMMON *const cm = &cpi->common;
const int mis = cm->mi_stride;
const int row8x8_remaining = tile->mi_row_end - mi_row;
const int col8x8_remaining = tile->mi_col_end - mi_col;
MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
// In-image SB64
if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
(row8x8_remaining >= MI_BLOCK_SIZE)) {
int i, j;
int index;
diff d32[4];
const int offset = (mi_row >> 1) * cm->mb_cols + (mi_col >> 1);
int is_larger_better = 0;
int use32x32 = 0;
unsigned int thr = cpi->source_var_thresh;
memset(d32, 0, 4 * sizeof(diff));
for (i = 0; i < 4; i++) {
diff *d16[4];
for (j = 0; j < 4; j++) {
int b_mi_row = coord_lookup[i * 4 + j].row;
int b_mi_col = coord_lookup[i * 4 + j].col;
int boffset = b_mi_row / 2 * cm->mb_cols + b_mi_col / 2;
d16[j] = cpi->source_diff_var + offset + boffset;
index = b_mi_row * mis + b_mi_col;
mi_8x8[index] = mi_upper_left + index;
mi_8x8[index]->sb_type = BLOCK_16X16;
// TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition
// size to further improve quality.
}
is_larger_better = (d16[0]->var < thr) && (d16[1]->var < thr) &&
(d16[2]->var < thr) && (d16[3]->var < thr);
// Use 32x32 partition
if (is_larger_better) {
use32x32 += 1;
for (j = 0; j < 4; j++) {
d32[i].sse += d16[j]->sse;
d32[i].sum += d16[j]->sum;
}
d32[i].var =
(unsigned int)(d32[i].sse -
(unsigned int)(((int64_t)d32[i].sum * d32[i].sum) >>
10));
index = coord_lookup[i * 4].row * mis + coord_lookup[i * 4].col;
mi_8x8[index] = mi_upper_left + index;
mi_8x8[index]->sb_type = BLOCK_32X32;
}
}
if (use32x32 == 4) {
thr <<= 1;
is_larger_better = (d32[0].var < thr) && (d32[1].var < thr) &&
(d32[2].var < thr) && (d32[3].var < thr);
// Use 64x64 partition
if (is_larger_better) {
mi_8x8[0] = mi_upper_left;
mi_8x8[0]->sb_type = BLOCK_64X64;
}
}
} else { // partial in-image SB64
int bh = num_8x8_blocks_high_lookup[BLOCK_16X16];
int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16];
set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
col8x8_remaining, BLOCK_16X16, mi_8x8);
}
}
static void update_state_rt(VP9_COMP *cpi, ThreadData *td,
PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
int bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mi = xd->mi[0];
struct macroblock_plane *const p = x->plane;
const struct segmentation *const seg = &cm->seg;
const int bw = num_8x8_blocks_wide_lookup[mi->sb_type];
const int bh = num_8x8_blocks_high_lookup[mi->sb_type];
const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
*(xd->mi[0]) = ctx->mic;
*(x->mbmi_ext) = ctx->mbmi_ext;
if (seg->enabled && (cpi->oxcf.aq_mode != NO_AQ || cpi->roi.enabled)) {
// Setting segmentation map for cyclic_refresh.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
vp9_cyclic_refresh_update_segment(cpi, mi, mi_row, mi_col, bsize,
ctx->rate, ctx->dist, x->skip, p);
} else {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
}
vp9_init_plane_quantizers(cpi, x);
}
if (is_inter_block(mi)) {
vp9_update_mv_count(td);
if (cm->interp_filter == SWITCHABLE) {
const int pred_ctx = get_pred_context_switchable_interp(xd);
++td->counts->switchable_interp[pred_ctx][mi->interp_filter];
}
if (mi->sb_type < BLOCK_8X8) {
mi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
mi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
}
}
if (cm->use_prev_frame_mvs || !cm->error_resilient_mode ||
(cpi->svc.use_base_mv && cpi->svc.number_spatial_layers > 1 &&
cpi->svc.spatial_layer_id != cpi->svc.number_spatial_layers - 1)) {
MV_REF *const frame_mvs =
cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
int w, h;
for (h = 0; h < y_mis; ++h) {
MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
for (w = 0; w < x_mis; ++w) {
MV_REF *const mv = frame_mv + w;
mv->ref_frame[0] = mi->ref_frame[0];
mv->ref_frame[1] = mi->ref_frame[1];
mv->mv[0].as_int = mi->mv[0].as_int;
mv->mv[1].as_int = mi->mv[1].as_int;
}
}
}
x->skip = ctx->skip;
x->skip_txfm[0] = (mi->segment_id || xd->lossless) ? 0 : ctx->skip_txfm[0];
}
static void encode_b_rt(VP9_COMP *cpi, ThreadData *td,
const TileInfo *const tile, TOKENEXTRA **tp, int mi_row,
int mi_col, int output_enabled, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx) {
MACROBLOCK *const x = &td->mb;
set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
update_state_rt(cpi, td, ctx, mi_row, mi_col, bsize);
encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
update_stats(&cpi->common, td);
(*tp)->token = EOSB_TOKEN;
(*tp)++;
}
static void encode_sb_rt(VP9_COMP *cpi, ThreadData *td,
const TileInfo *const tile, TOKENEXTRA **tp,
int mi_row, int mi_col, int output_enabled,
BLOCK_SIZE bsize, PC_TREE *pc_tree) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
int ctx;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
if (bsize >= BLOCK_8X8) {
const int idx_str = xd->mi_stride * mi_row + mi_col;
MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str;
ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
subsize = mi_8x8[0]->sb_type;
} else {
ctx = 0;
subsize = BLOCK_4X4;
}
partition = partition_lookup[bsl][subsize];
if (output_enabled && bsize != BLOCK_4X4)
td->counts->partition[ctx][partition]++;
switch (partition) {
case PARTITION_NONE:
encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->none);
break;
case PARTITION_VERT:
encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->vertical[0]);
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
encode_b_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
subsize, &pc_tree->vertical[1]);
}
break;
case PARTITION_HORZ:
encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->horizontal[0]);
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
encode_b_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
subsize, &pc_tree->horizontal[1]);
}
break;
default:
assert(partition == PARTITION_SPLIT);
subsize = get_subsize(bsize, PARTITION_SPLIT);
encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
pc_tree->split[0]);
encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
subsize, pc_tree->split[1]);
encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
subsize, pc_tree->split[2]);
encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs,
output_enabled, subsize, pc_tree->split[3]);
break;
}
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
}
#if !CONFIG_REALTIME_ONLY
static void rd_use_partition(VP9_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, MODE_INFO **mi_8x8,
TOKENEXTRA **tp, int mi_row, int mi_col,
BLOCK_SIZE bsize, int *rate, int64_t *dist,
int do_recon, PC_TREE *pc_tree) {
VP9_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int mis = cm->mi_stride;
const int bsl = b_width_log2_lookup[bsize];
const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2;
const int bss = (1 << bsl) / 4;
int i, pl;
PARTITION_TYPE partition = PARTITION_NONE;
BLOCK_SIZE subsize;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
RD_COST last_part_rdc, none_rdc, chosen_rdc;
BLOCK_SIZE sub_subsize = BLOCK_4X4;
int splits_below = 0;
BLOCK_SIZE bs_type = mi_8x8[0]->sb_type;
int do_partition_search = 1;
PICK_MODE_CONTEXT *ctx = &pc_tree->none;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
assert(num_4x4_blocks_wide_lookup[bsize] ==
num_4x4_blocks_high_lookup[bsize]);
vp9_rd_cost_reset(&last_part_rdc);
vp9_rd_cost_reset(&none_rdc);
vp9_rd_cost_reset(&chosen_rdc);
partition = partition_lookup[bsl][bs_type];
subsize = get_subsize(bsize, partition);
pc_tree->partitioning = partition;
save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
x->mb_energy = vp9_block_energy(cpi, x, bsize);
}
if (do_partition_search &&
cpi->sf.partition_search_type == SEARCH_PARTITION &&
cpi->sf.adjust_partitioning_from_last_frame) {
// Check if any of the sub blocks are further split.
if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
splits_below = 1;
for (i = 0; i < 4; i++) {
int jj = i >> 1, ii = i & 0x01;
MODE_INFO *this_mi = mi_8x8[jj * bss * mis + ii * bss];
if (this_mi && this_mi->sb_type >= sub_subsize) {
splits_below = 0;
}
}
}
// If partition is not none try none unless each of the 4 splits are split
// even further..
if (partition != PARTITION_NONE && !splits_below &&
mi_row + (mi_step >> 1) < cm->mi_rows &&
mi_col + (mi_step >> 1) < cm->mi_cols) {
pc_tree->partitioning = PARTITION_NONE;
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize, ctx,
INT_MAX, INT64_MAX);
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
if (none_rdc.rate < INT_MAX) {
none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
none_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, none_rdc.rate, none_rdc.dist);
}
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
mi_8x8[0]->sb_type = bs_type;
pc_tree->partitioning = partition;
}
}
switch (partition) {
case PARTITION_NONE:
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, bsize,
ctx, INT_MAX, INT64_MAX);
break;
case PARTITION_HORZ:
pc_tree->horizontal[0].skip_ref_frame_mask = 0;
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
subsize, &pc_tree->horizontal[0], INT_MAX, INT64_MAX);
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
mi_row + (mi_step >> 1) < cm->mi_rows) {
RD_COST tmp_rdc;
PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
vp9_rd_cost_init(&tmp_rdc);
update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
pc_tree->horizontal[1].skip_ref_frame_mask = 0;
rd_pick_sb_modes(cpi, tile_data, x, mi_row + (mi_step >> 1), mi_col,
&tmp_rdc, subsize, &pc_tree->horizontal[1], INT_MAX,
INT64_MAX);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
vp9_rd_cost_reset(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
case PARTITION_VERT:
pc_tree->vertical[0].skip_ref_frame_mask = 0;
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
subsize, &pc_tree->vertical[0], INT_MAX, INT64_MAX);
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
mi_col + (mi_step >> 1) < cm->mi_cols) {
RD_COST tmp_rdc;
PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0];
vp9_rd_cost_init(&tmp_rdc);
update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
pc_tree->vertical[bsize > BLOCK_8X8].skip_ref_frame_mask = 0;
rd_pick_sb_modes(
cpi, tile_data, x, mi_row, mi_col + (mi_step >> 1), &tmp_rdc,
subsize, &pc_tree->vertical[bsize > BLOCK_8X8], INT_MAX, INT64_MAX);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
vp9_rd_cost_reset(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
default:
assert(partition == PARTITION_SPLIT);
if (bsize == BLOCK_8X8) {
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
subsize, pc_tree->leaf_split[0], INT_MAX, INT64_MAX);
break;
}
last_part_rdc.rate = 0;
last_part_rdc.dist = 0;
last_part_rdc.rdcost = 0;
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * (mi_step >> 1);
int y_idx = (i >> 1) * (mi_step >> 1);
int jj = i >> 1, ii = i & 0x01;
RD_COST tmp_rdc;
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
vp9_rd_cost_init(&tmp_rdc);
rd_use_partition(cpi, td, tile_data, mi_8x8 + jj * bss * mis + ii * bss,
tp, mi_row + y_idx, mi_col + x_idx, subsize,
&tmp_rdc.rate, &tmp_rdc.dist, i != 3,
pc_tree->split[i]);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
vp9_rd_cost_reset(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
}
break;
}
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
if (last_part_rdc.rate < INT_MAX) {
last_part_rdc.rate += cpi->partition_cost[pl][partition];
last_part_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, last_part_rdc.rate, last_part_rdc.dist);
}
if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame &&
cpi->sf.partition_search_type == SEARCH_PARTITION &&
partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
(mi_row + mi_step < cm->mi_rows ||
mi_row + (mi_step >> 1) == cm->mi_rows) &&
(mi_col + mi_step < cm->mi_cols ||
mi_col + (mi_step >> 1) == cm->mi_cols)) {
BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
chosen_rdc.rate = 0;
chosen_rdc.dist = 0;
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
pc_tree->partitioning = PARTITION_SPLIT;
// Split partition.
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * (mi_step >> 1);
int y_idx = (i >> 1) * (mi_step >> 1);
RD_COST tmp_rdc;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
pc_tree->split[i]->partitioning = PARTITION_NONE;
rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
&tmp_rdc, split_subsize, &pc_tree->split[i]->none,
INT_MAX, INT64_MAX);
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
vp9_rd_cost_reset(&chosen_rdc);
break;
}
chosen_rdc.rate += tmp_rdc.rate;
chosen_rdc.dist += tmp_rdc.dist;
if (i != 3)
encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx, 0,
split_subsize, pc_tree->split[i]);
pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx,
split_subsize);
chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
}
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
if (chosen_rdc.rate < INT_MAX) {
chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
chosen_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, chosen_rdc.rate, chosen_rdc.dist);
}
}
// If last_part is better set the partitioning to that.
if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
mi_8x8[0]->sb_type = bsize;
if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
chosen_rdc = last_part_rdc;
}
// If none was better set the partitioning to that.
if (none_rdc.rdcost < chosen_rdc.rdcost) {
if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
chosen_rdc = none_rdc;
}
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
// We must have chosen a partitioning and encoding or we'll fail later on.
// No other opportunities for success.
if (bsize == BLOCK_64X64)
assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
if (do_recon) {
int output_enabled = (bsize == BLOCK_64X64);
encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
pc_tree);
}
*rate = chosen_rdc.rate;
*dist = chosen_rdc.dist;
}
static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
BLOCK_4X4, BLOCK_8X8, BLOCK_8X8, BLOCK_8X8, BLOCK_16X16,
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16
};
static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32,
BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
BLOCK_64X64, BLOCK_64X64, BLOCK_64X64
};
// Look at all the mode_info entries for blocks that are part of this
// partition and find the min and max values for sb_type.
// At the moment this is designed to work on a 64x64 SB but could be
// adjusted to use a size parameter.
//
// The min and max are assumed to have been initialized prior to calling this
// function so repeat calls can accumulate a min and max of more than one sb64.
static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO **mi_8x8,
BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size,
int bs_hist[BLOCK_SIZES]) {
int sb_width_in_blocks = MI_BLOCK_SIZE;
int sb_height_in_blocks = MI_BLOCK_SIZE;
int i, j;
int index = 0;
// Check the sb_type for each block that belongs to this region.
for (i = 0; i < sb_height_in_blocks; ++i) {
for (j = 0; j < sb_width_in_blocks; ++j) {
MODE_INFO *mi = mi_8x8[index + j];
BLOCK_SIZE sb_type = mi ? mi->sb_type : 0;
bs_hist[sb_type]++;
*min_block_size = VPXMIN(*min_block_size, sb_type);
*max_block_size = VPXMAX(*max_block_size, sb_type);
}
index += xd->mi_stride;
}
}
// Next square block size less or equal than current block size.
static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8,
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32,
BLOCK_32X32, BLOCK_32X32, BLOCK_64X64
};
// Look at neighboring blocks and set a min and max partition size based on
// what they chose.
static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
MACROBLOCKD *const xd, int mi_row,
int mi_col, BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size) {
VP9_COMMON *const cm = &cpi->common;
MODE_INFO **mi = xd->mi;
const int left_in_image = !!xd->left_mi;
const int above_in_image = !!xd->above_mi;
const int row8x8_remaining = tile->mi_row_end - mi_row;
const int col8x8_remaining = tile->mi_col_end - mi_col;
int bh, bw;
BLOCK_SIZE min_size = BLOCK_4X4;
BLOCK_SIZE max_size = BLOCK_64X64;
int bs_hist[BLOCK_SIZES] = { 0 };
// Trap case where we do not have a prediction.
if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
// Default "min to max" and "max to min"
min_size = BLOCK_64X64;
max_size = BLOCK_4X4;
// NOTE: each call to get_sb_partition_size_range() uses the previous
// passed in values for min and max as a starting point.
// Find the min and max partition used in previous frame at this location
if (cm->frame_type != KEY_FRAME) {
MODE_INFO **prev_mi =
&cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
get_sb_partition_size_range(xd, prev_mi, &min_size, &max_size, bs_hist);
}
// Find the min and max partition sizes used in the left SB64
if (left_in_image) {
MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE];
get_sb_partition_size_range(xd, left_sb64_mi, &min_size, &max_size,
bs_hist);
}
// Find the min and max partition sizes used in the above SB64.
if (above_in_image) {
MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE];
get_sb_partition_size_range(xd, above_sb64_mi, &min_size, &max_size,
bs_hist);
}
// Adjust observed min and max for "relaxed" auto partition case.
if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
min_size = min_partition_size[min_size];
max_size = max_partition_size[max_size];
}
}
// Check border cases where max and min from neighbors may not be legal.
max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining,
&bh, &bw);
// Test for blocks at the edge of the active image.
// This may be the actual edge of the image or where there are formatting
// bars.
if (vp9_active_edge_sb(cpi, mi_row, mi_col)) {
min_size = BLOCK_4X4;
} else {
min_size =
VPXMIN(cpi->sf.rd_auto_partition_min_limit, VPXMIN(min_size, max_size));
}
// When use_square_partition_only is true, make sure at least one square
// partition is allowed by selecting the next smaller square size as
// *min_block_size.
if (cpi->sf.use_square_partition_only &&
next_square_size[max_size] < min_size) {
min_size = next_square_size[max_size];
}
*min_block_size = min_size;
*max_block_size = max_size;
}
// TODO(jingning) refactor functions setting partition search range
static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd, int mi_row,
int mi_col, BLOCK_SIZE bsize,
BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) {
int mi_width = num_8x8_blocks_wide_lookup[bsize];
int mi_height = num_8x8_blocks_high_lookup[bsize];
int idx, idy;
MODE_INFO *mi;
const int idx_str = cm->mi_stride * mi_row + mi_col;
MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[idx_str];
BLOCK_SIZE bs, min_size, max_size;
min_size = BLOCK_64X64;
max_size = BLOCK_4X4;
if (prev_mi) {
for (idy = 0; idy < mi_height; ++idy) {
for (idx = 0; idx < mi_width; ++idx) {
mi = prev_mi[idy * cm->mi_stride + idx];
bs = mi ? mi->sb_type : bsize;
min_size = VPXMIN(min_size, bs);
max_size = VPXMAX(max_size, bs);
}
}
}
if (xd->left_mi) {
for (idy = 0; idy < mi_height; ++idy) {
mi = xd->mi[idy * cm->mi_stride - 1];
bs = mi ? mi->sb_type : bsize;
min_size = VPXMIN(min_size, bs);
max_size = VPXMAX(max_size, bs);
}
}
if (xd->above_mi) {
for (idx = 0; idx < mi_width; ++idx) {
mi = xd->mi[idx - cm->mi_stride];
bs = mi ? mi->sb_type : bsize;
min_size = VPXMIN(min_size, bs);
max_size = VPXMAX(max_size, bs);
}
}
if (min_size == max_size) {
min_size = min_partition_size[min_size];
max_size = max_partition_size[max_size];
}
*min_bs = min_size;
*max_bs = max_size;
}
#endif // !CONFIG_REALTIME_ONLY
static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
}
static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
}
#if CONFIG_FP_MB_STATS
const int num_16x16_blocks_wide_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1,
1, 2, 2, 2, 4, 4 };
const int num_16x16_blocks_high_lookup[BLOCK_SIZES] = { 1, 1, 1, 1, 1, 1, 1,
2, 1, 2, 4, 2, 4 };
const int qindex_skip_threshold_lookup[BLOCK_SIZES] = { 0, 10, 10, 30, 40,
40, 60, 80, 80, 90,
100, 100, 120 };
const int qindex_split_threshold_lookup[BLOCK_SIZES] = { 0, 3, 3, 7, 15,
15, 30, 40, 40, 60,
80, 80, 120 };
const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = { 1, 1, 1, 1, 1,
1, 1, 1, 1, 1,
4, 4, 6 };
typedef enum {
MV_ZERO = 0,
MV_LEFT = 1,
MV_UP = 2,
MV_RIGHT = 3,
MV_DOWN = 4,
MV_INVALID
} MOTION_DIRECTION;
static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) {
if (fp_byte & FPMB_MOTION_ZERO_MASK) {
return MV_ZERO;
} else if (fp_byte & FPMB_MOTION_LEFT_MASK) {
return MV_LEFT;
} else if (fp_byte & FPMB_MOTION_RIGHT_MASK) {
return MV_RIGHT;
} else if (fp_byte & FPMB_MOTION_UP_MASK) {
return MV_UP;
} else {
return MV_DOWN;
}
}
static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv,
MOTION_DIRECTION that_mv) {
if (this_mv == that_mv) {
return 0;
} else {
return abs(this_mv - that_mv) == 2 ? 2 : 1;
}
}
#endif
// Calculate prediction based on the given input features and neural net config.
// Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden
// layer.
static void nn_predict(const float *features, const NN_CONFIG *nn_config,
float *output) {
int num_input_nodes = nn_config->num_inputs;
int buf_index = 0;
float buf[2][NN_MAX_NODES_PER_LAYER];
const float *input_nodes = features;
// Propagate hidden layers.
const int num_layers = nn_config->num_hidden_layers;
int layer, node, i;
assert(num_layers <= NN_MAX_HIDDEN_LAYERS);
for (layer = 0; layer < num_layers; ++layer) {
const float *weights = nn_config->weights[layer];
const float *bias = nn_config->bias[layer];
float *output_nodes = buf[buf_index];
const int num_output_nodes = nn_config->num_hidden_nodes[layer];
assert(num_output_nodes < NN_MAX_NODES_PER_LAYER);
for (node = 0; node < num_output_nodes; ++node) {
float val = 0.0f;
for (i = 0; i < num_input_nodes; ++i) val += weights[i] * input_nodes[i];
val += bias[node];
// ReLU as activation function.
val = VPXMAX(val, 0.0f);
output_nodes[node] = val;
weights += num_input_nodes;
}
num_input_nodes = num_output_nodes;
input_nodes = output_nodes;
buf_index = 1 - buf_index;
}
// Final output layer.
{
const float *weights = nn_config->weights[num_layers];
for (node = 0; node < nn_config->num_outputs; ++node) {
const float *bias = nn_config->bias[num_layers];
float val = 0.0f;
for (i = 0; i < num_input_nodes; ++i) val += weights[i] * input_nodes[i];
output[node] = val + bias[node];
weights += num_input_nodes;
}
}
}
#if !CONFIG_REALTIME_ONLY
#define FEATURES 7
// Machine-learning based partition search early termination.
// Return 1 to skip split and rect partitions.
static int ml_pruning_partition(VP9_COMMON *const cm, MACROBLOCKD *const xd,
PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const int mag_mv =
abs(ctx->mic.mv[0].as_mv.col) + abs(ctx->mic.mv[0].as_mv.row);
const int left_in_image = !!xd->left_mi;
const int above_in_image = !!xd->above_mi;
MODE_INFO **prev_mi =
&cm->prev_mi_grid_visible[mi_col + cm->mi_stride * mi_row];
int above_par = 0; // above_partitioning
int left_par = 0; // left_partitioning
int last_par = 0; // last_partitioning
int offset = 0;
int i;
BLOCK_SIZE context_size;
const NN_CONFIG *nn_config = NULL;
const float *mean, *sd, *linear_weights;
float nn_score, linear_score;
float features[FEATURES];
assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
vpx_clear_system_state();
switch (bsize) {
case BLOCK_64X64:
offset = 0;
nn_config = &vp9_partition_nnconfig_64x64;
break;
case BLOCK_32X32:
offset = 8;
nn_config = &vp9_partition_nnconfig_32x32;
break;
case BLOCK_16X16:
offset = 16;
nn_config = &vp9_partition_nnconfig_16x16;
break;
default: assert(0 && "Unexpected block size."); return 0;
}
if (above_in_image) {
context_size = xd->above_mi->sb_type;
if (context_size < bsize)
above_par = 2;
else if (context_size == bsize)
above_par = 1;
}
if (left_in_image) {
context_size = xd->left_mi->sb_type;
if (context_size < bsize)
left_par = 2;
else if (context_size == bsize)
left_par = 1;
}
if (prev_mi) {
context_size = prev_mi[0]->sb_type;
if (context_size < bsize)
last_par = 2;
else if (context_size == bsize)
last_par = 1;
}
mean = &vp9_partition_feature_mean[offset];
sd = &vp9_partition_feature_std[offset];
features[0] = ((float)ctx->rate - mean[0]) / sd[0];
features[1] = ((float)ctx->dist - mean[1]) / sd[1];
features[2] = ((float)mag_mv / 2 - mean[2]) * sd[2];
features[3] = ((float)(left_par + above_par) / 2 - mean[3]) * sd[3];
features[4] = ((float)ctx->sum_y_eobs - mean[4]) / sd[4];
features[5] = ((float)cm->base_qindex - mean[5]) * sd[5];
features[6] = ((float)last_par - mean[6]) * sd[6];
// Predict using linear model.
linear_weights = &vp9_partition_linear_weights[offset];
linear_score = linear_weights[FEATURES];
for (i = 0; i < FEATURES; ++i)
linear_score += linear_weights[i] * features[i];
if (linear_score > 0.1f) return 0;
// Predict using neural net model.
nn_predict(features, nn_config, &nn_score);
if (linear_score < -0.0f && nn_score < 0.1f) return 1;
if (nn_score < -0.0f && linear_score < 0.1f) return 1;
return 0;
}
#undef FEATURES
#define FEATURES 4
// ML-based partition search breakout.
static int ml_predict_breakout(VP9_COMP *const cpi, BLOCK_SIZE bsize,
const MACROBLOCK *const x,
const RD_COST *const rd_cost) {
DECLARE_ALIGNED(16, static const uint8_t, vp9_64_zeros[64]) = { 0 };
const VP9_COMMON *const cm = &cpi->common;
float features[FEATURES];
const float *linear_weights = NULL; // Linear model weights.
float linear_score = 0.0f;
const int qindex = cm->base_qindex;
const int q_ctx = qindex >= 200 ? 0 : (qindex >= 150 ? 1 : 2);
const int is_720p_or_larger = VPXMIN(cm->width, cm->height) >= 720;
const int resolution_ctx = is_720p_or_larger ? 1 : 0;
switch (bsize) {
case BLOCK_64X64:
linear_weights = vp9_partition_breakout_weights_64[resolution_ctx][q_ctx];
break;
case BLOCK_32X32:
linear_weights = vp9_partition_breakout_weights_32[resolution_ctx][q_ctx];
break;
case BLOCK_16X16:
linear_weights = vp9_partition_breakout_weights_16[resolution_ctx][q_ctx];
break;
case BLOCK_8X8:
linear_weights = vp9_partition_breakout_weights_8[resolution_ctx][q_ctx];
break;
default: assert(0 && "Unexpected block size."); return 0;
}
if (!linear_weights) return 0;
{ // Generate feature values.
#if CONFIG_VP9_HIGHBITDEPTH
const int ac_q =
vp9_ac_quant(cm->base_qindex, 0, cm->bit_depth) >> (x->e_mbd.bd - 8);
#else
const int ac_q = vp9_ac_quant(qindex, 0, cm->bit_depth);
#endif // CONFIG_VP9_HIGHBITDEPTH
const int num_pels_log2 = num_pels_log2_lookup[bsize];
int feature_index = 0;
unsigned int var, sse;
float rate_f, dist_f;
#if CONFIG_VP9_HIGHBITDEPTH
if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
var =
vp9_high_get_sby_variance(cpi, &x->plane[0].src, bsize, x->e_mbd.bd);
} else {
var = cpi->fn_ptr[bsize].vf(x->plane[0].src.buf, x->plane[0].src.stride,
vp9_64_zeros, 0, &sse);
}
#else
var = cpi->fn_ptr[bsize].vf(x->plane[0].src.buf, x->plane[0].src.stride,
vp9_64_zeros, 0, &sse);
#endif
var = var >> num_pels_log2;
vpx_clear_system_state();
rate_f = (float)VPXMIN(rd_cost->rate, INT_MAX);
dist_f = (float)(VPXMIN(rd_cost->dist, INT_MAX) >> num_pels_log2);
rate_f =
((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) *
rate_f;
features[feature_index++] = rate_f;
features[feature_index++] = dist_f;
features[feature_index++] = (float)var;
features[feature_index++] = (float)ac_q;
assert(feature_index == FEATURES);
}
{ // Calculate the output score.
int i;
linear_score = linear_weights[FEATURES];
for (i = 0; i < FEATURES; ++i)
linear_score += linear_weights[i] * features[i];
}
return linear_score >= cpi->sf.rd_ml_partition.search_breakout_thresh[q_ctx];
}
#undef FEATURES
#define FEATURES 8
#define LABELS 4
static void ml_prune_rect_partition(VP9_COMP *const cpi, MACROBLOCK *const x,
BLOCK_SIZE bsize,
const PC_TREE *const pc_tree,
int *allow_horz, int *allow_vert,
int64_t ref_rd) {
const NN_CONFIG *nn_config = NULL;
float score[LABELS] = {
0.0f,
};
int thresh = -1;
int i;
(void)x;
if (ref_rd <= 0 || ref_rd > 1000000000) return;
switch (bsize) {
case BLOCK_8X8: break;
case BLOCK_16X16:
nn_config = &vp9_rect_part_nnconfig_16;
thresh = cpi->sf.rd_ml_partition.prune_rect_thresh[1];
break;
case BLOCK_32X32:
nn_config = &vp9_rect_part_nnconfig_32;
thresh = cpi->sf.rd_ml_partition.prune_rect_thresh[2];
break;
case BLOCK_64X64:
nn_config = &vp9_rect_part_nnconfig_64;
thresh = cpi->sf.rd_ml_partition.prune_rect_thresh[3];
break;
default: assert(0 && "Unexpected block size."); return;
}
if (!nn_config || thresh < 0) return;
// Feature extraction and model score calculation.
{
const VP9_COMMON *const cm = &cpi->common;
#if CONFIG_VP9_HIGHBITDEPTH
const int dc_q =
vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth) >> (x->e_mbd.bd - 8);
#else
const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth);
#endif // CONFIG_VP9_HIGHBITDEPTH
const int bs = 4 * num_4x4_blocks_wide_lookup[bsize];
int feature_index = 0;
float features[FEATURES];
features[feature_index++] = logf((float)dc_q + 1.0f);
features[feature_index++] =
(float)(pc_tree->partitioning == PARTITION_NONE);
features[feature_index++] = logf((float)ref_rd / bs / bs + 1.0f);
{
const float norm_factor = 1.0f / ((float)ref_rd + 1.0f);
const int64_t none_rdcost = pc_tree->none.rdcost;
float rd_ratio = 2.0f;
if (none_rdcost > 0 && none_rdcost < 1000000000)
rd_ratio = (float)none_rdcost * norm_factor;
features[feature_index++] = VPXMIN(rd_ratio, 2.0f);
for (i = 0; i < 4; ++i) {
const int64_t this_rd = pc_tree->split[i]->none.rdcost;
const int rd_valid = this_rd > 0 && this_rd < 1000000000;
// Ratio between sub-block RD and whole block RD.
features[feature_index++] =
rd_valid ? (float)this_rd * norm_factor : 1.0f;
}
}
assert(feature_index == FEATURES);
nn_predict(features, nn_config, score);
}
// Make decisions based on the model score.
{
int max_score = -1000;
int horz = 0, vert = 0;
int int_score[LABELS];
for (i = 0; i < LABELS; ++i) {
int_score[i] = (int)(100 * score[i]);
max_score = VPXMAX(int_score[i], max_score);
}
thresh = max_score - thresh;
for (i = 0; i < LABELS; ++i) {
if (int_score[i] >= thresh) {
if ((i >> 0) & 1) horz = 1;
if ((i >> 1) & 1) vert = 1;
}
}
*allow_horz = *allow_horz && horz;
*allow_vert = *allow_vert && vert;
}
}
#undef FEATURES
#undef LABELS
// Perform fast and coarse motion search for the given block. This is a
// pre-processing step for the ML based partition search speedup.
static void simple_motion_search(const VP9_COMP *const cpi, MACROBLOCK *const x,
BLOCK_SIZE bsize, int mi_row, int mi_col,
MV ref_mv, MV_REFERENCE_FRAME ref,
uint8_t *const pred_buf) {
const VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *const mi = xd->mi[0];
const YV12_BUFFER_CONFIG *const yv12 = get_ref_frame_buffer(cpi, ref);
const int step_param = 1;
const MvLimits tmp_mv_limits = x->mv_limits;
const SEARCH_METHODS search_method = NSTEP;
const int sadpb = x->sadperbit16;
MV ref_mv_full = { ref_mv.row >> 3, ref_mv.col >> 3 };
MV best_mv = { 0, 0 };
int cost_list[5];
assert(yv12 != NULL);
if (!yv12) return;
vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
&cm->frame_refs[ref - 1].sf);
mi->ref_frame[0] = ref;
mi->ref_frame[1] = NONE;
mi->sb_type = bsize;
vp9_set_mv_search_range(&x->mv_limits, &ref_mv);
vp9_full_pixel_search(cpi, x, bsize, &ref_mv_full, step_param, search_method,
sadpb, cond_cost_list(cpi, cost_list), &ref_mv,
&best_mv, 0, 0);
best_mv.row *= 8;
best_mv.col *= 8;
x->mv_limits = tmp_mv_limits;
mi->mv[0].as_mv = best_mv;
set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
xd->plane[0].dst.buf = pred_buf;
xd->plane[0].dst.stride = 64;
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
}
// Use a neural net model to prune partition-none and partition-split search.
// Features used: QP; spatial block size contexts; variance of prediction
// residue after simple_motion_search.
#define FEATURES 12
static void ml_predict_var_rd_paritioning(const VP9_COMP *const cpi,
MACROBLOCK *const x,
PC_TREE *const pc_tree,
BLOCK_SIZE bsize, int mi_row,
int mi_col, int *none, int *split) {
const VP9_COMMON *const cm = &cpi->common;
const NN_CONFIG *nn_config = NULL;
#if CONFIG_VP9_HIGHBITDEPTH
MACROBLOCKD *xd = &x->e_mbd;
DECLARE_ALIGNED(16, uint8_t, pred_buffer[64 * 64 * 2]);
uint8_t *const pred_buf = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
? (CONVERT_TO_BYTEPTR(pred_buffer))
: pred_buffer;
#else
DECLARE_ALIGNED(16, uint8_t, pred_buffer[64 * 64]);
uint8_t *const pred_buf = pred_buffer;
#endif // CONFIG_VP9_HIGHBITDEPTH
const int speed = cpi->oxcf.speed;
float thresh = 0.0f;
switch (bsize) {
case BLOCK_64X64:
nn_config = &vp9_part_split_nnconfig_64;
thresh = speed > 0 ? 2.8f : 3.0f;
break;
case BLOCK_32X32:
nn_config = &vp9_part_split_nnconfig_32;
thresh = speed > 0 ? 3.5f : 3.0f;
break;
case BLOCK_16X16:
nn_config = &vp9_part_split_nnconfig_16;
thresh = speed > 0 ? 3.8f : 4.0f;
break;
case BLOCK_8X8:
nn_config = &vp9_part_split_nnconfig_8;
if (cm->width >= 720 && cm->height >= 720)
thresh = speed > 0 ? 2.5f : 2.0f;
else
thresh = speed > 0 ? 3.8f : 2.0f;
break;
default: assert(0 && "Unexpected block size."); return;
}
if (!nn_config) return;
// Do a simple single motion search to find a prediction for current block.
// The variance of the residue will be used as input features.
{
MV ref_mv;
const MV_REFERENCE_FRAME ref =
cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME;
// If bsize is 64x64, use zero MV as reference; otherwise, use MV result
// of previous(larger) block as reference.
if (bsize == BLOCK_64X64)
ref_mv.row = ref_mv.col = 0;
else
ref_mv = pc_tree->mv;
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
simple_motion_search(cpi, x, bsize, mi_row, mi_col, ref_mv, ref, pred_buf);
pc_tree->mv = x->e_mbd.mi[0]->mv[0].as_mv;
}
vpx_clear_system_state();
{
float features[FEATURES] = { 0.0f };
#if CONFIG_VP9_HIGHBITDEPTH
const int dc_q =
vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth) >> (xd->bd - 8);
#else
const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth);
#endif // CONFIG_VP9_HIGHBITDEPTH
int feature_idx = 0;
float score;
// Generate model input features.
features[feature_idx++] = logf((float)dc_q + 1.0f);
// Get the variance of the residue as input features.
{
const int bs = 4 * num_4x4_blocks_wide_lookup[bsize];
const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
const uint8_t *pred = pred_buf;
const uint8_t *src = x->plane[0].src.buf;
const int src_stride = x->plane[0].src.stride;
const int pred_stride = 64;
unsigned int sse;
// Variance of whole block.
const unsigned int var =
cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);
const MACROBLOCKD *const xd = &x->e_mbd;
const int has_above = !!xd->above_mi;
const int has_left = !!xd->left_mi;
const BLOCK_SIZE above_bsize = has_above ? xd->above_mi->sb_type : bsize;
const BLOCK_SIZE left_bsize = has_left ? xd->left_mi->sb_type : bsize;
int i;
features[feature_idx++] = (float)has_above;
features[feature_idx++] = (float)b_width_log2_lookup[above_bsize];
features[feature_idx++] = (float)b_height_log2_lookup[above_bsize];
features[feature_idx++] = (float)has_left;
features[feature_idx++] = (float)b_width_log2_lookup[left_bsize];
features[feature_idx++] = (float)b_height_log2_lookup[left_bsize];
features[feature_idx++] = logf((float)var + 1.0f);
for (i = 0; i < 4; ++i) {
const int x_idx = (i & 1) * bs / 2;
const int y_idx = (i >> 1) * bs / 2;
const int src_offset = y_idx * src_stride + x_idx;
const int pred_offset = y_idx * pred_stride + x_idx;
// Variance of quarter block.
const unsigned int sub_var =
cpi->fn_ptr[subsize].vf(src + src_offset, src_stride,
pred + pred_offset, pred_stride, &sse);
const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
features[feature_idx++] = var_ratio;
}
}
assert(feature_idx == FEATURES);
// Feed the features into the model to get the confidence score.
nn_predict(features, nn_config, &score);
// Higher score means that the model has higher confidence that the split
// partition is better than the non-split partition. So if the score is
// high enough, we skip the none-split partition search; if the score is
// low enough, we skip the split partition search.
if (score > thresh) *none = 0;
if (score < -thresh) *split = 0;
}
}
#undef FEATURES
#endif // !CONFIG_REALTIME_ONLY
static double log_wiener_var(int64_t wiener_variance) {
return log(1.0 + wiener_variance) / log(2.0);
}
static void build_kmeans_segmentation(VP9_COMP *cpi) {
VP9_COMMON *cm = &cpi->common;
BLOCK_SIZE bsize = BLOCK_64X64;
KMEANS_DATA *kmeans_data;
vp9_disable_segmentation(&cm->seg);
if (cm->show_frame) {
int mi_row, mi_col;
cpi->kmeans_data_size = 0;
cpi->kmeans_ctr_num = 8;
for (mi_row = 0; mi_row < cm->mi_rows; mi_row += MI_BLOCK_SIZE) {
for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
int mb_row_start = mi_row >> 1;
int mb_col_start = mi_col >> 1;
int mb_row_end = VPXMIN(
(mi_row + num_8x8_blocks_high_lookup[bsize]) >> 1, cm->mb_rows);
int mb_col_end = VPXMIN(
(mi_col + num_8x8_blocks_wide_lookup[bsize]) >> 1, cm->mb_cols);
int row, col;
int64_t wiener_variance = 0;
for (row = mb_row_start; row < mb_row_end; ++row)
for (col = mb_col_start; col < mb_col_end; ++col)
wiener_variance += cpi->mb_wiener_variance[row * cm->mb_cols + col];
wiener_variance /=
(mb_row_end - mb_row_start) * (mb_col_end - mb_col_start);
#if CONFIG_MULTITHREAD
pthread_mutex_lock(&cpi->kmeans_mutex);
#endif // CONFIG_MULTITHREAD
kmeans_data = &cpi->kmeans_data_arr[cpi->kmeans_data_size++];
kmeans_data->value = log_wiener_var(wiener_variance);
kmeans_data->pos = mi_row * cpi->kmeans_data_stride + mi_col;
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(&cpi->kmeans_mutex);
#endif // CONFIG_MULTITHREAD
}
}
vp9_kmeans(cpi->kmeans_ctr_ls, cpi->kmeans_boundary_ls,
cpi->kmeans_count_ls, cpi->kmeans_ctr_num, cpi->kmeans_data_arr,
cpi->kmeans_data_size);
vp9_perceptual_aq_mode_setup(cpi, &cm->seg);
}
}
#if !CONFIG_REALTIME_ONLY
static int wiener_var_segment(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col) {
VP9_COMMON *cm = &cpi->common;
int mb_row_start = mi_row >> 1;
int mb_col_start = mi_col >> 1;
int mb_row_end =
VPXMIN((mi_row + num_8x8_blocks_high_lookup[bsize]) >> 1, cm->mb_rows);
int mb_col_end =
VPXMIN((mi_col + num_8x8_blocks_wide_lookup[bsize]) >> 1, cm->mb_cols);
int row, col, idx;
int64_t wiener_variance = 0;
int segment_id;
int8_t seg_hist[MAX_SEGMENTS] = { 0 };
int8_t max_count = 0, max_index = -1;
vpx_clear_system_state();
assert(cpi->norm_wiener_variance > 0);
for (row = mb_row_start; row < mb_row_end; ++row) {
for (col = mb_col_start; col < mb_col_end; ++col) {
wiener_variance = cpi->mb_wiener_variance[row * cm->mb_cols + col];
segment_id =
vp9_get_group_idx(log_wiener_var(wiener_variance),
cpi->kmeans_boundary_ls, cpi->kmeans_ctr_num);
++seg_hist[segment_id];
}
}
for (idx = 0; idx < cpi->kmeans_ctr_num; ++idx) {
if (seg_hist[idx] > max_count) {
max_count = seg_hist[idx];
max_index = idx;
}
}
assert(max_index >= 0);
segment_id = max_index;
return segment_id;
}
static int get_rdmult_delta(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col, int orig_rdmult) {
const int gf_group_index = cpi->twopass.gf_group.index;
TplDepFrame *tpl_frame = &cpi->tpl_stats[gf_group_index];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
int tpl_stride = tpl_frame->stride;
int64_t intra_cost = 0;
int64_t mc_dep_cost = 0;
int mi_wide = num_8x8_blocks_wide_lookup[bsize];
int mi_high = num_8x8_blocks_high_lookup[bsize];
int row, col;
int dr = 0;
int count = 0;
double r0, rk, beta;
if (tpl_frame->is_valid == 0) return orig_rdmult;
if (cpi->twopass.gf_group.layer_depth[gf_group_index] > 1) return orig_rdmult;
if (gf_group_index >= MAX_ARF_GOP_SIZE) return orig_rdmult;
for (row = mi_row; row < mi_row + mi_high; ++row) {
for (col = mi_col; col < mi_col + mi_wide; ++col) {
TplDepStats *this_stats = &tpl_stats[row * tpl_stride + col];
if (row >= cpi->common.mi_rows || col >= cpi->common.mi_cols) continue;
intra_cost += this_stats->intra_cost;
mc_dep_cost += this_stats->mc_dep_cost;
++count;
}
}
vpx_clear_system_state();
r0 = cpi->rd.r0;
rk = (double)intra_cost / mc_dep_cost;
beta = r0 / rk;
dr = vp9_get_adaptive_rdmult(cpi, beta);
dr = VPXMIN(dr, orig_rdmult * 3 / 2);
dr = VPXMAX(dr, orig_rdmult * 1 / 2);
dr = VPXMAX(1, dr);
return dr;
}
#endif // !CONFIG_REALTIME_ONLY
#if !CONFIG_REALTIME_ONLY
// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
// unlikely to be selected depending on previous rate-distortion optimization
// results, for encoding speed-up.
static int rd_pick_partition(VP9_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, TOKENEXTRA **tp,
int mi_row, int mi_col, BLOCK_SIZE bsize,
RD_COST *rd_cost, RD_COST best_rdc,
PC_TREE *pc_tree) {
VP9_COMMON *const cm = &cpi->common;
const VP9EncoderConfig *const oxcf = &cpi->oxcf;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
TOKENEXTRA *tp_orig = *tp;
PICK_MODE_CONTEXT *const ctx = &pc_tree->none;
int i;
const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
BLOCK_SIZE subsize;
RD_COST this_rdc, sum_rdc;
int do_split = bsize >= BLOCK_8X8;
int do_rect = 1;
INTERP_FILTER pred_interp_filter;
// Override skipping rectangular partition operations for edge blocks
const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
const int xss = x->e_mbd.plane[1].subsampling_x;
const int yss = x->e_mbd.plane[1].subsampling_y;
BLOCK_SIZE min_size = x->min_partition_size;
BLOCK_SIZE max_size = x->max_partition_size;
#if CONFIG_FP_MB_STATS
unsigned int src_diff_var = UINT_MAX;
int none_complexity = 0;
#endif
int partition_none_allowed = !force_horz_split && !force_vert_split;
int partition_horz_allowed =
!force_vert_split && yss <= xss && bsize >= BLOCK_8X8;
int partition_vert_allowed =
!force_horz_split && xss <= yss && bsize >= BLOCK_8X8;
int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_thr.dist;
int rate_breakout_thr = cpi->sf.partition_search_breakout_thr.rate;
int must_split = 0;
int should_encode_sb = 0;
// Ref frames picked in the [i_th] quarter subblock during square partition
// RD search. It may be used to prune ref frame selection of rect partitions.
uint8_t ref_frames_used[4] = { 0, 0, 0, 0 };
int partition_mul = x->cb_rdmult;
(void)*tp_orig;
assert(num_8x8_blocks_wide_lookup[bsize] ==
num_8x8_blocks_high_lookup[bsize]);
dist_breakout_thr >>=
8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
rate_breakout_thr *= num_pels_log2_lookup[bsize];
vp9_rd_cost_init(&this_rdc);
vp9_rd_cost_init(&sum_rdc);
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
if (oxcf->tuning == VP8_TUNE_SSIM) {
set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &partition_mul);
}
vp9_rd_cost_update(partition_mul, x->rddiv, &best_rdc);
if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ &&
cpi->oxcf.aq_mode != LOOKAHEAD_AQ)
x->mb_energy = vp9_block_energy(cpi, x, bsize);
if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
int cb_partition_search_ctrl =
((pc_tree->index == 0 || pc_tree->index == 3) +
get_chessboard_index(cm->current_video_frame)) &
0x1;
if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
}
// Get sub block energy range
if (bsize >= BLOCK_16X16) {
int min_energy, max_energy;
vp9_get_sub_block_energy(cpi, x, mi_row, mi_col, bsize, &min_energy,
&max_energy);
must_split = (min_energy < -3) && (max_energy - min_energy > 2);
}
// Determine partition types in search according to the speed features.
// The threshold set here has to be of square block size.
if (cpi->sf.auto_min_max_partition_size) {
partition_none_allowed &= (bsize <= max_size);
partition_horz_allowed &=
((bsize <= max_size && bsize > min_size) || force_horz_split);
partition_vert_allowed &=
((bsize <= max_size && bsize > min_size) || force_vert_split);
do_split &= bsize > min_size;
}
if (cpi->sf.use_square_partition_only &&
(bsize > cpi->sf.use_square_only_thresh_high ||
bsize < cpi->sf.use_square_only_thresh_low)) {
if (cpi->use_svc) {
if (!vp9_active_h_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless)
partition_horz_allowed &= force_horz_split;
if (!vp9_active_v_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless)
partition_vert_allowed &= force_vert_split;
} else {
partition_horz_allowed &= force_horz_split;
partition_vert_allowed &= force_vert_split;
}
}
save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row,
mi_col, bsize);
}
#endif
#if CONFIG_FP_MB_STATS
// Decide whether we shall split directly and skip searching NONE by using
// the first pass block statistics
if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_split &&
partition_none_allowed && src_diff_var > 4 &&
cm->base_qindex < qindex_split_threshold_lookup[bsize]) {
int mb_row = mi_row >> 1;
int mb_col = mi_col >> 1;
int mb_row_end =
VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
int mb_col_end =
VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
int r, c;
// compute a complexity measure, basically measure inconsistency of motion
// vectors obtained from the first pass in the current block
for (r = mb_row; r < mb_row_end; r++) {
for (c = mb_col; c < mb_col_end; c++) {
const int mb_index = r * cm->mb_cols + c;
MOTION_DIRECTION this_mv;
MOTION_DIRECTION right_mv;
MOTION_DIRECTION bottom_mv;
this_mv =
get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]);
// to its right
if (c != mb_col_end - 1) {
right_mv = get_motion_direction_fp(
cpi->twopass.this_frame_mb_stats[mb_index + 1]);
none_complexity += get_motion_inconsistency(this_mv, right_mv);
}
// to its bottom
if (r != mb_row_end - 1) {
bottom_mv = get_motion_direction_fp(
cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]);
none_complexity += get_motion_inconsistency(this_mv, bottom_mv);
}
// do not count its left and top neighbors to avoid double counting
}
}
if (none_complexity > complexity_16x16_blocks_threshold[bsize]) {
partition_none_allowed = 0;
}
}
#endif
pc_tree->partitioning = PARTITION_NONE;
if (cpi->sf.rd_ml_partition.var_pruning && !frame_is_intra_only(cm)) {
const int do_rd_ml_partition_var_pruning =
partition_none_allowed && do_split &&
mi_row + num_8x8_blocks_high_lookup[bsize] <= cm->mi_rows &&
mi_col + num_8x8_blocks_wide_lookup[bsize] <= cm->mi_cols;
if (do_rd_ml_partition_var_pruning) {
ml_predict_var_rd_paritioning(cpi, x, pc_tree, bsize, mi_row, mi_col,
&partition_none_allowed, &do_split);
} else {
vp9_zero(pc_tree->mv);
}
if (bsize > BLOCK_8X8) { // Store MV result as reference for subblocks.
for (i = 0; i < 4; ++i) pc_tree->split[i]->mv = pc_tree->mv;
}
}
// PARTITION_NONE
if (partition_none_allowed) {
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize, ctx,
best_rdc.rate, best_rdc.dist);
ctx->rdcost = this_rdc.rdcost;
if (this_rdc.rate != INT_MAX) {
if (cpi->sf.prune_ref_frame_for_rect_partitions) {
const int ref1 = ctx->mic.ref_frame[0];
const int ref2 = ctx->mic.ref_frame[1];
for (i = 0; i < 4; ++i) {
ref_frames_used[i] |= (1 << ref1);
if (ref2 > 0) ref_frames_used[i] |= (1 << ref2);
}
}
if (bsize >= BLOCK_8X8) {
this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
vp9_rd_cost_update(partition_mul, x->rddiv, &this_rdc);
}
if (this_rdc.rdcost < best_rdc.rdcost) {
MODE_INFO *mi = xd->mi[0];
best_rdc = this_rdc;
should_encode_sb = 1;
if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
if (cpi->sf.rd_ml_partition.search_early_termination) {
// Currently, the machine-learning based partition search early
// termination is only used while bsize is 16x16, 32x32 or 64x64,
// VPXMIN(cm->width, cm->height) >= 480, and speed = 0.
if (!x->e_mbd.lossless &&
!segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP) &&
ctx->mic.mode >= INTRA_MODES && bsize >= BLOCK_16X16) {
if (ml_pruning_partition(cm, xd, ctx, mi_row, mi_col, bsize)) {
do_split = 0;
do_rect = 0;
}
}
}
if ((do_split || do_rect) && !x->e_mbd.lossless && ctx->skippable) {
const int use_ml_based_breakout =
cpi->sf.rd_ml_partition.search_breakout && cm->base_qindex >= 100;
if (use_ml_based_breakout) {
if (ml_predict_breakout(cpi, bsize, x, &this_rdc)) {
do_split = 0;
do_rect = 0;
}
} else {
if (!cpi->sf.rd_ml_partition.search_early_termination) {
if ((best_rdc.dist < (dist_breakout_thr >> 2)) ||
(best_rdc.dist < dist_breakout_thr &&
best_rdc.rate < rate_breakout_thr)) {
do_split = 0;
do_rect = 0;
}
}
}
}
#if CONFIG_FP_MB_STATS
// Check if every 16x16 first pass block statistics has zero
// motion and the corresponding first pass residue is small enough.
// If that is the case, check the difference variance between the
// current frame and the last frame. If the variance is small enough,
// stop further splitting in RD optimization
if (cpi->use_fp_mb_stats && do_split != 0 &&
cm->base_qindex > qindex_skip_threshold_lookup[bsize]) {
int mb_row = mi_row >> 1;
int mb_col = mi_col >> 1;
int mb_row_end =
VPXMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
int mb_col_end =
VPXMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
int r, c;
int skip = 1;
for (r = mb_row; r < mb_row_end; r++) {
for (c = mb_col; c < mb_col_end; c++) {
const int mb_index = r * cm->mb_cols + c;
if (!(cpi->twopass.this_frame_mb_stats[mb_index] &
FPMB_MOTION_ZERO_MASK) ||
!(cpi->twopass.this_frame_mb_stats[mb_index] &
FPMB_ERROR_SMALL_MASK)) {
skip = 0;
break;
}
}
if (skip == 0) {
break;
}
}
if (skip) {
if (src_diff_var == UINT_MAX) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
src_diff_var = get_sby_perpixel_diff_variance(
cpi, &x->plane[0].src, mi_row, mi_col, bsize);
}
if (src_diff_var < 8) {
do_split = 0;
do_rect = 0;
}
}
}
#endif
}
}
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
} else {
vp9_zero(ctx->pred_mv);
ctx->mic.interp_filter = EIGHTTAP;
}
// store estimated motion vector
store_pred_mv(x, ctx);
// If the interp_filter is marked as SWITCHABLE_FILTERS, it was for an
// intra block and used for context purposes.
if (ctx->mic.interp_filter == SWITCHABLE_FILTERS) {
pred_interp_filter = EIGHTTAP;
} else {
pred_interp_filter = ctx->mic.interp_filter;
}
// PARTITION_SPLIT
// TODO(jingning): use the motion vectors given by the above search as
// the starting point of motion search in the following partition type check.
pc_tree->split[0]->none.rdcost = 0;
pc_tree->split[1]->none.rdcost = 0;
pc_tree->split[2]->none.rdcost = 0;
pc_tree->split[3]->none.rdcost = 0;
if (do_split || must_split) {
subsize = get_subsize(bsize, PARTITION_SPLIT);
load_pred_mv(x, ctx);
if (bsize == BLOCK_8X8) {
i = 4;
if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
pc_tree->leaf_split[0]->pred_interp_filter = pred_interp_filter;
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
pc_tree->leaf_split[0], best_rdc.rate, best_rdc.dist);
if (sum_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
} else {
if (cpi->sf.prune_ref_frame_for_rect_partitions) {
const int ref1 = pc_tree->leaf_split[0]->mic.ref_frame[0];
const int ref2 = pc_tree->leaf_split[0]->mic.ref_frame[1];
for (i = 0; i < 4; ++i) {
ref_frames_used[i] |= (1 << ref1);
if (ref2 > 0) ref_frames_used[i] |= (1 << ref2);
}
}
}
} else {
for (i = 0; (i < 4) && ((sum_rdc.rdcost < best_rdc.rdcost) || must_split);
++i) {
const int x_idx = (i & 1) * mi_step;
const int y_idx = (i >> 1) * mi_step;
int found_best_rd = 0;
RD_COST best_rdc_split;
vp9_rd_cost_reset(&best_rdc_split);
if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) {
// A must split test here increases the number of sub
// partitions but hurts metrics results quite a bit,
// so this extra test is commented out pending
// further tests on whether it adds much in terms of
// visual quality.
// (must_split) ? best_rdc.rate
// : best_rdc.rate - sum_rdc.rate,
// (must_split) ? best_rdc.dist
// : best_rdc.dist - sum_rdc.dist,
best_rdc_split.rate = best_rdc.rate - sum_rdc.rate;
best_rdc_split.dist = best_rdc.dist - sum_rdc.dist;
}
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
continue;
pc_tree->split[i]->index = i;
if (cpi->sf.prune_ref_frame_for_rect_partitions)
pc_tree->split[i]->none.rate = INT_MAX;
found_best_rd = rd_pick_partition(
cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize,
&this_rdc, best_rdc_split, pc_tree->split[i]);
if (found_best_rd == 0) {
sum_rdc.rdcost = INT64_MAX;
break;
} else {
if (cpi->sf.prune_ref_frame_for_rect_partitions &&
pc_tree->split[i]->none.rate != INT_MAX) {
const int ref1 = pc_tree->split[i]->none.mic.ref_frame[0];
const int ref2 = pc_tree->split[i]->none.mic.ref_frame[1];
ref_frames_used[i] |= (1 << ref1);
if (ref2 > 0) ref_frames_used[i] |= (1 << ref2);
}
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
}
}
}
if (((sum_rdc.rdcost < best_rdc.rdcost) || must_split) && i == 4) {
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
if ((sum_rdc.rdcost < best_rdc.rdcost) ||
(must_split && (sum_rdc.dist < best_rdc.dist))) {
best_rdc = sum_rdc;
should_encode_sb = 1;
pc_tree->partitioning = PARTITION_SPLIT;
// Rate and distortion based partition search termination clause.
if (!cpi->sf.rd_ml_partition.search_early_termination &&
!x->e_mbd.lossless &&
((best_rdc.dist < (dist_breakout_thr >> 2)) ||
(best_rdc.dist < dist_breakout_thr &&
best_rdc.rate < rate_breakout_thr))) {
do_rect = 0;
}
}
} else {
// skip rectangular partition test when larger block size
// gives better rd cost
if (cpi->sf.less_rectangular_check &&
(bsize > cpi->sf.use_square_only_thresh_high ||
best_rdc.dist < dist_breakout_thr))
do_rect &= !partition_none_allowed;
}
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
}
pc_tree->horizontal[0].skip_ref_frame_mask = 0;
pc_tree->horizontal[1].skip_ref_frame_mask = 0;
pc_tree->vertical[0].skip_ref_frame_mask = 0;
pc_tree->vertical[1].skip_ref_frame_mask = 0;
if (cpi->sf.prune_ref_frame_for_rect_partitions) {
uint8_t used_frames;
used_frames = ref_frames_used[0] | ref_frames_used[1];
if (used_frames) pc_tree->horizontal[0].skip_ref_frame_mask = ~used_frames;
used_frames = ref_frames_used[2] | ref_frames_used[3];
if (used_frames) pc_tree->horizontal[1].skip_ref_frame_mask = ~used_frames;
used_frames = ref_frames_used[0] | ref_frames_used[2];
if (used_frames) pc_tree->vertical[0].skip_ref_frame_mask = ~used_frames;
used_frames = ref_frames_used[1] | ref_frames_used[3];
if (used_frames) pc_tree->vertical[1].skip_ref_frame_mask = ~used_frames;
}
{
const int do_ml_rect_partition_pruning =
!frame_is_intra_only(cm) && !force_horz_split && !force_vert_split &&
(partition_horz_allowed || partition_vert_allowed) && bsize > BLOCK_8X8;
if (do_ml_rect_partition_pruning) {
ml_prune_rect_partition(cpi, x, bsize, pc_tree, &partition_horz_allowed,
&partition_vert_allowed, best_rdc.rdcost);
}
}
// PARTITION_HORZ
if (partition_horz_allowed &&
(do_rect || vp9_active_h_edge(cpi, mi_row, mi_step))) {
const int part_mode_rate = cpi->partition_cost[pl][PARTITION_HORZ];
subsize = get_subsize(bsize, PARTITION_HORZ);
load_pred_mv(x, ctx);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->horizontal[0].pred_interp_filter = pred_interp_filter;
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
&pc_tree->horizontal[0], best_rdc.rate - part_mode_rate,
best_rdc.dist);
if (sum_rdc.rdcost < INT64_MAX) {
sum_rdc.rate += part_mode_rate;
vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
}
if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + mi_step < cm->mi_rows &&
bsize > BLOCK_8X8) {
PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->horizontal[1].pred_interp_filter = pred_interp_filter;
rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
subsize, &pc_tree->horizontal[1],
best_rdc.rate - sum_rdc.rate,
best_rdc.dist - sum_rdc.dist);
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
}
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
should_encode_sb = 1;
pc_tree->partitioning = PARTITION_HORZ;
if (cpi->sf.less_rectangular_check &&
bsize > cpi->sf.use_square_only_thresh_high)
do_rect = 0;
}
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
}
// PARTITION_VERT
if (partition_vert_allowed &&
(do_rect || vp9_active_v_edge(cpi, mi_col, mi_step))) {
const int part_mode_rate = cpi->partition_cost[pl][PARTITION_VERT];
subsize = get_subsize(bsize, PARTITION_VERT);
load_pred_mv(x, ctx);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->vertical[0].pred_interp_filter = pred_interp_filter;
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
&pc_tree->vertical[0], best_rdc.rate - part_mode_rate,
best_rdc.dist);
if (sum_rdc.rdcost < INT64_MAX) {
sum_rdc.rate += part_mode_rate;
vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
}
if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + mi_step < cm->mi_cols &&
bsize > BLOCK_8X8) {
update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0);
encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize,
&pc_tree->vertical[0]);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->vertical[1].pred_interp_filter = pred_interp_filter;
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
subsize, &pc_tree->vertical[1],
best_rdc.rate - sum_rdc.rate,
best_rdc.dist - sum_rdc.dist);
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
}
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
should_encode_sb = 1;
pc_tree->partitioning = PARTITION_VERT;
}
restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
}
*rd_cost = best_rdc;
if (should_encode_sb && pc_tree->index != 3) {
int output_enabled = (bsize == BLOCK_64X64);
encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
pc_tree);
}
if (bsize == BLOCK_64X64) {
assert(tp_orig < *tp);
assert(best_rdc.rate < INT_MAX);
assert(best_rdc.dist < INT64_MAX);
} else {
assert(tp_orig == *tp);
}
return should_encode_sb;
}
static void encode_rd_sb_row(VP9_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, int mi_row,
TOKENEXTRA **tp) {
VP9_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
SPEED_FEATURES *const sf = &cpi->sf;
const int mi_col_start = tile_info->mi_col_start;
const int mi_col_end = tile_info->mi_col_end;
int mi_col;
const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
const int num_sb_cols =
get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2);
int sb_col_in_tile;
// Initialize the left context for the new SB row
memset(&xd->left_context, 0, sizeof(xd->left_context));
memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
// Code each SB in the row
for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end;
mi_col += MI_BLOCK_SIZE, sb_col_in_tile++) {
const struct segmentation *const seg = &cm->seg;
int dummy_rate;
int64_t dummy_dist;
RD_COST dummy_rdc;
int i;
int seg_skip = 0;
int orig_rdmult = cpi->rd.RDMULT;
const int idx_str = cm->mi_stride * mi_row + mi_col;
MODE_INFO **mi = cm->mi_grid_visible + idx_str;
vp9_rd_cost_reset(&dummy_rdc);
(*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row,
sb_col_in_tile);
if (sf->adaptive_pred_interp_filter) {
for (i = 0; i < 64; ++i) td->leaf_tree[i].pred_interp_filter = SWITCHABLE;
for (i = 0; i < 64; ++i) {
td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
}
}
for (i = 0; i < MAX_REF_FRAMES; ++i) {
x->pred_mv[i].row = INT16_MAX;
x->pred_mv[i].col = INT16_MAX;
}
td->pc_root->index = 0;
if (seg->enabled) {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
}
x->source_variance = UINT_MAX;
x->cb_rdmult = orig_rdmult;
if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
const BLOCK_SIZE bsize =
seg_skip ? BLOCK_64X64 : sf->always_this_block_size;
set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1, td->pc_root);
} else if (cpi->partition_search_skippable_frame) {
BLOCK_SIZE bsize;
set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1, td->pc_root);
} else if (sf->partition_search_type == VAR_BASED_PARTITION &&
cm->frame_type != KEY_FRAME) {
choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1, td->pc_root);
} else {
if (cpi->twopass.gf_group.index > 0 && cpi->sf.enable_tpl_model) {
int dr =
get_rdmult_delta(cpi, BLOCK_64X64, mi_row, mi_col, orig_rdmult);
x->cb_rdmult = dr;
}
if (cpi->oxcf.aq_mode == PERCEPTUAL_AQ && cm->show_frame) {
x->segment_id = wiener_var_segment(cpi, BLOCK_64X64, mi_row, mi_col);
x->cb_rdmult = vp9_compute_rd_mult(
cpi, vp9_get_qindex(&cm->seg, x->segment_id, cm->base_qindex));
}
// If required set upper and lower partition size limits
if (sf->auto_min_max_partition_size) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col,
&x->min_partition_size, &x->max_partition_size);
}
td->pc_root->none.rdcost = 0;
rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rdc, dummy_rdc, td->pc_root);
}
(*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row,
sb_col_in_tile, num_sb_cols);
}
}
#endif // !CONFIG_REALTIME_ONLY
static void init_encode_frame_mb_context(VP9_COMP *cpi) {
MACROBLOCK *const x = &cpi->td.mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
// Copy data over into macro block data structures.
vp9_setup_src_planes(x, cpi->Source, 0, 0);
vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
memset(xd->above_context[0], 0,
sizeof(*xd->above_context[0]) * 2 * aligned_mi_cols * MAX_MB_PLANE);
memset(xd->above_seg_context, 0,
sizeof(*xd->above_seg_context) * aligned_mi_cols);
}
static int check_dual_ref_flags(VP9_COMP *cpi) {
const int ref_flags = cpi->ref_frame_flags;
if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
return 0;
} else {
return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG) +
!!(ref_flags & VP9_ALT_FLAG)) >= 2;
}
}
static void reset_skip_tx_size(VP9_COMMON *cm, TX_SIZE max_tx_size) {
int mi_row, mi_col;
const int mis = cm->mi_stride;
MODE_INFO **mi_ptr = cm->mi_grid_visible;
for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
if (mi_ptr[mi_col]->tx_size > max_tx_size)
mi_ptr[mi_col]->tx_size = max_tx_size;
}
}
}
static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) {
if (frame_is_intra_only(&cpi->common))
return INTRA_FRAME;
else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
return ALTREF_FRAME;
else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
return GOLDEN_FRAME;
else
return LAST_FRAME;
}
static TX_MODE select_tx_mode(const VP9_COMP *cpi, MACROBLOCKD *const xd) {
if (xd->lossless) return ONLY_4X4;
if (cpi->common.frame_type == KEY_FRAME && cpi->sf.use_nonrd_pick_mode)
return ALLOW_16X16;
if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
return ALLOW_32X32;
else if (cpi->sf.tx_size_search_method == USE_FULL_RD ||
cpi->sf.tx_size_search_method == USE_TX_8X8)
return TX_MODE_SELECT;
else
return cpi->common.tx_mode;
}
static void hybrid_intra_mode_search(VP9_COMP *cpi, MACROBLOCK *const x,
RD_COST *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx) {
if (!cpi->sf.nonrd_keyframe && bsize < BLOCK_16X16)
vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
else
vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
}
static void hybrid_search_svc_baseiskey(VP9_COMP *cpi, MACROBLOCK *const x,
RD_COST *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx,
TileDataEnc *tile_data, int mi_row,
int mi_col) {
if (!cpi->sf.nonrd_keyframe && bsize <= BLOCK_8X8) {
vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
} else {
if (cpi->svc.disable_inter_layer_pred == INTER_LAYER_PRED_OFF)
vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
else if (bsize >= BLOCK_8X8)
vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize,
ctx);
else
vp9_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx);
}
}
static void hybrid_search_scene_change(VP9_COMP *cpi, MACROBLOCK *const x,
RD_COST *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx,
TileDataEnc *tile_data, int mi_row,
int mi_col) {
if (!cpi->sf.nonrd_keyframe && bsize <= BLOCK_8X8) {
vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
} else {
vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize, ctx);
}
}
static void nonrd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data,
MACROBLOCK *const x, int mi_row, int mi_col,
RD_COST *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx) {
VP9_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
BLOCK_SIZE bs = VPXMAX(bsize, BLOCK_8X8); // processing unit block size
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bs];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bs];
int plane;
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
set_segment_index(cpi, x, mi_row, mi_col, bsize, 0);
mi = xd->mi[0];
mi->sb_type = bsize;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
struct macroblockd_plane *pd = &xd->plane[plane];
memcpy(a + num_4x4_blocks_wide * plane, pd->above_context,
(sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x);
memcpy(l + num_4x4_blocks_high * plane, pd->left_context,
(sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y);
}
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled)
if (cyclic_refresh_segment_id_boosted(mi->segment_id))
x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
if (frame_is_intra_only(cm))
hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx);
else if (cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)
hybrid_search_svc_baseiskey(cpi, x, rd_cost, bsize, ctx, tile_data, mi_row,
mi_col);
else if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP))
set_mode_info_seg_skip(x, cm->tx_mode, rd_cost, bsize);
else if (bsize >= BLOCK_8X8) {
if (cpi->rc.hybrid_intra_scene_change)
hybrid_search_scene_change(cpi, x, rd_cost, bsize, ctx, tile_data, mi_row,
mi_col);
else
vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize,
ctx);
} else {
vp9_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx);
}
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
struct macroblockd_plane *pd = &xd->plane[plane];
memcpy(pd->above_context, a + num_4x4_blocks_wide * plane,
(sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x);
memcpy(pd->left_context, l + num_4x4_blocks_high * plane,
(sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y);
}
if (rd_cost->rate == INT_MAX) vp9_rd_cost_reset(rd_cost);
ctx->rate = rd_cost->rate;
ctx->dist = rd_cost->dist;
}
static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x, int mi_row,
int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
MACROBLOCKD *xd = &x->e_mbd;
int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
PARTITION_TYPE partition = pc_tree->partitioning;
BLOCK_SIZE subsize = get_subsize(bsize, partition);
assert(bsize >= BLOCK_8X8);
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
switch (partition) {
case PARTITION_NONE:
set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
*(xd->mi[0]) = pc_tree->none.mic;
*(x->mbmi_ext) = pc_tree->none.mbmi_ext;
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
break;
case PARTITION_VERT:
set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
*(xd->mi[0]) = pc_tree->vertical[0].mic;
*(x->mbmi_ext) = pc_tree->vertical[0].mbmi_ext;
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
if (mi_col + hbs < cm->mi_cols) {
set_mode_info_offsets(cm, x, xd, mi_row, mi_col + hbs);
*(xd->mi[0]) = pc_tree->vertical[1].mic;
*(x->mbmi_ext) = pc_tree->vertical[1].mbmi_ext;
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, subsize);
}
break;
case PARTITION_HORZ:
set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
*(xd->mi[0]) = pc_tree->horizontal[0].mic;
*(x->mbmi_ext) = pc_tree->horizontal[0].mbmi_ext;
duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
if (mi_row + hbs < cm->mi_rows) {
set_mode_info_offsets(cm, x, xd, mi_row + hbs, mi_col);
*(xd->mi[0]) = pc_tree->horizontal[1].mic;
*(x->mbmi_ext) = pc_tree->horizontal[1].mbmi_ext;
duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, subsize);
}
break;
case PARTITION_SPLIT: {
fill_mode_info_sb(cm, x, mi_row, mi_col, subsize, pc_tree->split[0]);
fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize,
pc_tree->split[1]);
fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize,
pc_tree->split[2]);
fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize,
pc_tree->split[3]);
break;
}
default: break;
}
}
// Reset the prediction pixel ready flag recursively.
static void pred_pixel_ready_reset(PC_TREE *pc_tree, BLOCK_SIZE bsize) {
pc_tree->none.pred_pixel_ready = 0;
pc_tree->horizontal[0].pred_pixel_ready = 0;
pc_tree->horizontal[1].pred_pixel_ready = 0;
pc_tree->vertical[0].pred_pixel_ready = 0;
pc_tree->vertical[1].pred_pixel_ready = 0;
if (bsize > BLOCK_8X8) {
BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
int i;
for (i = 0; i < 4; ++i) pred_pixel_ready_reset(pc_tree->split[i], subsize);
}
}
#define FEATURES 6
#define LABELS 2
static int ml_predict_var_paritioning(VP9_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int mi_row,
int mi_col) {
VP9_COMMON *const cm = &cpi->common;
const NN_CONFIG *nn_config = NULL;
switch (bsize) {
case BLOCK_64X64: nn_config = &vp9_var_part_nnconfig_64; break;
case BLOCK_32X32: nn_config = &vp9_var_part_nnconfig_32; break;
case BLOCK_16X16: nn_config = &vp9_var_part_nnconfig_16; break;
case BLOCK_8X8: break;
default: assert(0 && "Unexpected block size."); return -1;
}
if (!nn_config) return -1;
vpx_clear_system_state();
{
const float thresh = cpi->oxcf.speed <= 5 ? 1.25f : 0.0f;
float features[FEATURES] = { 0.0f };
const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth);
int feature_idx = 0;
float score[LABELS];
features[feature_idx++] = logf((float)(dc_q * dc_q) / 256.0f + 1.0f);
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
{
const int bs = 4 * num_4x4_blocks_wide_lookup[bsize];
const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
const int sb_offset_row = 8 * (mi_row & 7);
const int sb_offset_col = 8 * (mi_col & 7);
const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col;
const uint8_t *src = x->plane[0].src.buf;
const int src_stride = x->plane[0].src.stride;
const int pred_stride = 64;
unsigned int sse;
int i;
// Variance of whole block.
const unsigned int var =
cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);
features[feature_idx++] = logf((float)var + 1.0f);
for (i = 0; i < 4; ++i) {
const int x_idx = (i & 1) * bs / 2;
const int y_idx = (i >> 1) * bs / 2;
const int src_offset = y_idx * src_stride + x_idx;
const int pred_offset = y_idx * pred_stride + x_idx;
// Variance of quarter block.
const unsigned int sub_var =
cpi->fn_ptr[subsize].vf(src + src_offset, src_stride,
pred + pred_offset, pred_stride, &sse);
const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
features[feature_idx++] = var_ratio;
}
}
assert(feature_idx == FEATURES);
nn_predict(features, nn_config, score);
if (score[0] > thresh) return PARTITION_SPLIT;
if (score[0] < -thresh) return PARTITION_NONE;
return -1;
}
}
#undef FEATURES
#undef LABELS
static void nonrd_pick_partition(VP9_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, TOKENEXTRA **tp,
int mi_row, int mi_col, BLOCK_SIZE bsize,
RD_COST *rd_cost, int do_recon,
int64_t best_rd, PC_TREE *pc_tree) {
const SPEED_FEATURES *const sf = &cpi->sf;
VP9_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
TOKENEXTRA *tp_orig = *tp;
PICK_MODE_CONTEXT *ctx = &pc_tree->none;
int i;
BLOCK_SIZE subsize = bsize;
RD_COST this_rdc, sum_rdc, best_rdc;
int do_split = bsize >= BLOCK_8X8;
int do_rect = 1;
// Override skipping rectangular partition operations for edge blocks
const int force_horz_split = (mi_row + ms >= cm->mi_rows);
const int force_vert_split = (mi_col + ms >= cm->mi_cols);
const int xss = x->e_mbd.plane[1].subsampling_x;
const int yss = x->e_mbd.plane[1].subsampling_y;
int partition_none_allowed = !force_horz_split && !force_vert_split;
int partition_horz_allowed =
!force_vert_split && yss <= xss && bsize >= BLOCK_8X8;
int partition_vert_allowed =
!force_horz_split && xss <= yss && bsize >= BLOCK_8X8;
const int use_ml_based_partitioning =
sf->partition_search_type == ML_BASED_PARTITION;
(void)*tp_orig;
// Avoid checking for rectangular partitions for speed >= 6.
if (cpi->oxcf.speed >= 6) do_rect = 0;
assert(num_8x8_blocks_wide_lookup[bsize] ==
num_8x8_blocks_high_lookup[bsize]);
vp9_rd_cost_init(&sum_rdc);
vp9_rd_cost_reset(&best_rdc);
best_rdc.rdcost = best_rd;
// Determine partition types in search according to the speed features.
// The threshold set here has to be of square block size.
if (sf->auto_min_max_partition_size) {
partition_none_allowed &=
(bsize <= x->max_partition_size && bsize >= x->min_partition_size);
partition_horz_allowed &=
((bsize <= x->max_partition_size && bsize > x->min_partition_size) ||
force_horz_split);
partition_vert_allowed &=
((bsize <= x->max_partition_size && bsize > x->min_partition_size) ||
force_vert_split);
do_split &= bsize > x->min_partition_size;
}
if (sf->use_square_partition_only) {
partition_horz_allowed &= force_horz_split;
partition_vert_allowed &= force_vert_split;
}
if (use_ml_based_partitioning) {
if (partition_none_allowed || do_split) do_rect = 0;
if (partition_none_allowed && do_split) {
const int ml_predicted_partition =
ml_predict_var_paritioning(cpi, x, bsize, mi_row, mi_col);
if (ml_predicted_partition == PARTITION_NONE) do_split = 0;
if (ml_predicted_partition == PARTITION_SPLIT) partition_none_allowed = 0;
}
}
if (!partition_none_allowed && !do_split) do_rect = 1;
ctx->pred_pixel_ready =
!(partition_vert_allowed || partition_horz_allowed || do_split);
// PARTITION_NONE
if (partition_none_allowed) {
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize,
ctx);
ctx->mic = *xd->mi[0];
ctx->mbmi_ext = *x->mbmi_ext;
ctx->skip_txfm[0] = x->skip_txfm[0];
ctx->skip = x->skip;
if (this_rdc.rate != INT_MAX) {
const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
this_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
if (this_rdc.rdcost < best_rdc.rdcost) {
best_rdc = this_rdc;
if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
if (!use_ml_based_partitioning) {
int64_t dist_breakout_thr = sf->partition_search_breakout_thr.dist;
int64_t rate_breakout_thr = sf->partition_search_breakout_thr.rate;
dist_breakout_thr >>=
8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
rate_breakout_thr *= num_pels_log2_lookup[bsize];
if (!x->e_mbd.lossless && this_rdc.rate < rate_breakout_thr &&
this_rdc.dist < dist_breakout_thr) {
do_split = 0;
do_rect = 0;
}
}
}
}
}
// store estimated motion vector
store_pred_mv(x, ctx);
// PARTITION_SPLIT
if (do_split) {
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
subsize = get_subsize(bsize, PARTITION_SPLIT);
for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
const int x_idx = (i & 1) * ms;
const int y_idx = (i >> 1) * ms;
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
continue;
load_pred_mv(x, ctx);
nonrd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
mi_col + x_idx, subsize, &this_rdc, 0,
best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
if (this_rdc.rate == INT_MAX) {
vp9_rd_cost_reset(&sum_rdc);
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
}
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_SPLIT;
} else {
// skip rectangular partition test when larger block size
// gives better rd cost
if (sf->less_rectangular_check) do_rect &= !partition_none_allowed;
}
}
// PARTITION_HORZ
if (partition_horz_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_HORZ);
load_pred_mv(x, ctx);
pc_tree->horizontal[0].pred_pixel_ready = 1;
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
&pc_tree->horizontal[0]);
pc_tree->horizontal[0].mic = *xd->mi[0];
pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
pc_tree->horizontal[0].skip = x->skip;
if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + ms < cm->mi_rows) {
load_pred_mv(x, ctx);
pc_tree->horizontal[1].pred_pixel_ready = 1;
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + ms, mi_col, &this_rdc,
subsize, &pc_tree->horizontal[1]);
pc_tree->horizontal[1].mic = *xd->mi[0];
pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
pc_tree->horizontal[1].skip = x->skip;
if (this_rdc.rate == INT_MAX) {
vp9_rd_cost_reset(&sum_rdc);
} else {
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
this_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ];
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
}
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_HORZ;
} else {
pred_pixel_ready_reset(pc_tree, bsize);
}
}
// PARTITION_VERT
if (partition_vert_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_VERT);
load_pred_mv(x, ctx);
pc_tree->vertical[0].pred_pixel_ready = 1;
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
&pc_tree->vertical[0]);
pc_tree->vertical[0].mic = *xd->mi[0];
pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
pc_tree->vertical[0].skip = x->skip;
if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + ms < cm->mi_cols) {
load_pred_mv(x, ctx);
pc_tree->vertical[1].pred_pixel_ready = 1;
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + ms, &this_rdc,
subsize, &pc_tree->vertical[1]);
pc_tree->vertical[1].mic = *xd->mi[0];
pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
pc_tree->vertical[1].skip = x->skip;
if (this_rdc.rate == INT_MAX) {
vp9_rd_cost_reset(&sum_rdc);
} else {
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT];
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
}
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_VERT;
} else {
pred_pixel_ready_reset(pc_tree, bsize);
}
}
*rd_cost = best_rdc;
if (best_rdc.rate == INT_MAX) {
vp9_rd_cost_reset(rd_cost);
return;
}
// update mode info array
fill_mode_info_sb(cm, x, mi_row, mi_col, bsize, pc_tree);
if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && do_recon) {
int output_enabled = (bsize == BLOCK_64X64);
encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
pc_tree);
}
if (bsize == BLOCK_64X64 && do_recon) {
assert(tp_orig < *tp);
assert(best_rdc.rate < INT_MAX);
assert(best_rdc.dist < INT64_MAX);
} else {
assert(tp_orig == *tp);
}
}
static void nonrd_select_partition(VP9_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, MODE_INFO **mi,
TOKENEXTRA **tp, int mi_row, int mi_col,
BLOCK_SIZE bsize, int output_enabled,
RD_COST *rd_cost, PC_TREE *pc_tree) {
VP9_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
const int mis = cm->mi_stride;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
RD_COST this_rdc;
BLOCK_SIZE subsize_ref =
(cpi->sf.adapt_partition_source_sad) ? BLOCK_8X8 : BLOCK_16X16;
vp9_rd_cost_reset(&this_rdc);
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4;
partition = partition_lookup[bsl][subsize];
if (bsize == BLOCK_32X32 && subsize == BLOCK_32X32) {
x->max_partition_size = BLOCK_32X32;
x->min_partition_size = BLOCK_16X16;
nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
0, INT64_MAX, pc_tree);
} else if (bsize == BLOCK_32X32 && partition != PARTITION_NONE &&
subsize >= subsize_ref) {
x->max_partition_size = BLOCK_32X32;
x->min_partition_size = BLOCK_8X8;
nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
0, INT64_MAX, pc_tree);
} else if (bsize == BLOCK_16X16 && partition != PARTITION_NONE) {
x->max_partition_size = BLOCK_16X16;
x->min_partition_size = BLOCK_8X8;
nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
0, INT64_MAX, pc_tree);
} else {
switch (partition) {
case PARTITION_NONE:
pc_tree->none.pred_pixel_ready = 1;
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
&pc_tree->none);
pc_tree->none.mic = *xd->mi[0];
pc_tree->none.mbmi_ext = *x->mbmi_ext;
pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
pc_tree->none.skip = x->skip;
break;
case PARTITION_VERT:
pc_tree->vertical[0].pred_pixel_ready = 1;
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
&pc_tree->vertical[0]);
pc_tree->vertical[0].mic = *xd->mi[0];
pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
pc_tree->vertical[0].skip = x->skip;
if (mi_col + hbs < cm->mi_cols) {
pc_tree->vertical[1].pred_pixel_ready = 1;
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs,
&this_rdc, subsize, &pc_tree->vertical[1]);
pc_tree->vertical[1].mic = *xd->mi[0];
pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
pc_tree->vertical[1].skip = x->skip;
if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
rd_cost->rate += this_rdc.rate;
rd_cost->dist += this_rdc.dist;
}
}
break;
case PARTITION_HORZ:
pc_tree->horizontal[0].pred_pixel_ready = 1;
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
&pc_tree->horizontal[0]);
pc_tree->horizontal[0].mic = *xd->mi[0];
pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
pc_tree->horizontal[0].skip = x->skip;
if (mi_row + hbs < cm->mi_rows) {
pc_tree->horizontal[1].pred_pixel_ready = 1;
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col,
&this_rdc, subsize, &pc_tree->horizontal[1]);
pc_tree->horizontal[1].mic = *xd->mi[0];
pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
pc_tree->horizontal[1].skip = x->skip;
if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
rd_cost->rate += this_rdc.rate;
rd_cost->dist += this_rdc.dist;
}
}
break;
default:
assert(partition == PARTITION_SPLIT);
subsize = get_subsize(bsize, PARTITION_SPLIT);
nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
subsize, output_enabled, rd_cost,
pc_tree->split[0]);
nonrd_select_partition(cpi, td, tile_data, mi + hbs, tp, mi_row,
mi_col + hbs, subsize, output_enabled, &this_rdc,
pc_tree->split[1]);
if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
rd_cost->rate += this_rdc.rate;
rd_cost->dist += this_rdc.dist;
}
nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis, tp,
mi_row + hbs, mi_col, subsize, output_enabled,
&this_rdc, pc_tree->split[2]);
if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
rd_cost->rate += this_rdc.rate;
rd_cost->dist += this_rdc.dist;
}
nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp,
mi_row + hbs, mi_col + hbs, subsize,
output_enabled, &this_rdc, pc_tree->split[3]);
if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
rd_cost->rate += this_rdc.rate;
rd_cost->dist += this_rdc.dist;
}
break;
}
}
if (bsize == BLOCK_64X64 && output_enabled)
encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, 1, bsize, pc_tree);
}
static void nonrd_use_partition(VP9_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, MODE_INFO **mi,
TOKENEXTRA **tp, int mi_row, int mi_col,
BLOCK_SIZE bsize, int output_enabled,
RD_COST *dummy_cost, PC_TREE *pc_tree) {
VP9_COMMON *const cm = &cpi->common;
TileInfo *tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
const int mis = cm->mi_stride;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4;
partition = partition_lookup[bsl][subsize];
if (output_enabled && bsize != BLOCK_4X4) {
int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
td->counts->partition[ctx][partition]++;
}
switch (partition) {
case PARTITION_NONE:
pc_tree->none.pred_pixel_ready = 1;
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
subsize, &pc_tree->none);
pc_tree->none.mic = *xd->mi[0];
pc_tree->none.mbmi_ext = *x->mbmi_ext;
pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
pc_tree->none.skip = x->skip;
encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
subsize, &pc_tree->none);
break;
case PARTITION_VERT:
pc_tree->vertical[0].pred_pixel_ready = 1;
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
subsize, &pc_tree->vertical[0]);
pc_tree->vertical[0].mic = *xd->mi[0];
pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
pc_tree->vertical[0].skip = x->skip;
encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
subsize, &pc_tree->vertical[0]);
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
pc_tree->vertical[1].pred_pixel_ready = 1;
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, dummy_cost,
subsize, &pc_tree->vertical[1]);
pc_tree->vertical[1].mic = *xd->mi[0];
pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
pc_tree->vertical[1].skip = x->skip;
encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col + hbs,
output_enabled, subsize, &pc_tree->vertical[1]);
}
break;
case PARTITION_HORZ:
pc_tree->horizontal[0].pred_pixel_ready = 1;
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
subsize, &pc_tree->horizontal[0]);
pc_tree->horizontal[0].mic = *xd->mi[0];
pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
pc_tree->horizontal[0].skip = x->skip;
encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
subsize, &pc_tree->horizontal[0]);
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
pc_tree->horizontal[1].pred_pixel_ready = 1;
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, dummy_cost,
subsize, &pc_tree->horizontal[1]);
pc_tree->horizontal[1].mic = *xd->mi[0];
pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
pc_tree->horizontal[1].skip = x->skip;
encode_b_rt(cpi, td, tile_info, tp, mi_row + hbs, mi_col,
output_enabled, subsize, &pc_tree->horizontal[1]);
}
break;
default:
assert(partition == PARTITION_SPLIT);
subsize = get_subsize(bsize, PARTITION_SPLIT);
if (bsize == BLOCK_8X8) {
nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
subsize, pc_tree->leaf_split[0]);
encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
subsize, pc_tree->leaf_split[0]);
} else {
nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, subsize,
output_enabled, dummy_cost, pc_tree->split[0]);
nonrd_use_partition(cpi, td, tile_data, mi + hbs, tp, mi_row,
mi_col + hbs, subsize, output_enabled, dummy_cost,
pc_tree->split[1]);
nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis, tp,
mi_row + hbs, mi_col, subsize, output_enabled,
dummy_cost, pc_tree->split[2]);
nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp,
mi_row + hbs, mi_col + hbs, subsize, output_enabled,
dummy_cost, pc_tree->split[3]);
}
break;
}
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
}
// Get a prediction(stored in x->est_pred) for the whole 64x64 superblock.
static void get_estimated_pred(VP9_COMP *cpi, const TileInfo *const tile,
MACROBLOCK *x, int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
const int is_key_frame = frame_is_intra_only(cm);
MACROBLOCKD *xd = &x->e_mbd;
set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);
if (!is_key_frame) {
MODE_INFO *mi = xd->mi[0];
YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
const YV12_BUFFER_CONFIG *yv12_g = NULL;
const BLOCK_SIZE bsize = BLOCK_32X32 + (mi_col + 4 < cm->mi_cols) * 2 +
(mi_row + 4 < cm->mi_rows);
unsigned int y_sad_g, y_sad_thr;
unsigned int y_sad = UINT_MAX;
assert(yv12 != NULL);
if (!(is_one_pass_cbr_svc(cpi) && cpi->svc.spatial_layer_id) ||
cpi->svc.use_gf_temporal_ref_current_layer) {
// For now, GOLDEN will not be used for non-zero spatial layers, since
// it may not be a temporal reference.
yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
}
// Only compute y_sad_g (sad for golden reference) for speed < 8.
if (cpi->oxcf.speed < 8 && yv12_g && yv12_g != yv12 &&
(cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
&cm->frame_refs[GOLDEN_FRAME - 1].sf);
y_sad_g = cpi->fn_ptr[bsize].sdf(
x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
xd->plane[0].pre[0].stride);
} else {
y_sad_g = UINT_MAX;
}
if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR &&
cpi->rc.is_src_frame_alt_ref) {
yv12 = get_ref_frame_buffer(cpi, ALTREF_FRAME);
vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
&cm->frame_refs[ALTREF_FRAME - 1].sf);
mi->ref_frame[0] = ALTREF_FRAME;
y_sad_g = UINT_MAX;
} else {
vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
&cm->frame_refs[LAST_FRAME - 1].sf);
mi->ref_frame[0] = LAST_FRAME;
}
mi->ref_frame[1] = NONE;
mi->sb_type = BLOCK_64X64;
mi->mv[0].as_int = 0;
mi->interp_filter = BILINEAR;
{
const MV dummy_mv = { 0, 0 };
y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col,
&dummy_mv);
x->sb_use_mv_part = 1;
x->sb_mvcol_part = mi->mv[0].as_mv.col;
x->sb_mvrow_part = mi->mv[0].as_mv.row;
}
// Pick ref frame for partitioning, bias last frame when y_sad_g and y_sad
// are close if short_circuit_low_temp_var is on.
y_sad_thr = cpi->sf.short_circuit_low_temp_var ? (y_sad * 7) >> 3 : y_sad;
if (y_sad_g < y_sad_thr) {
vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
&cm->frame_refs[GOLDEN_FRAME - 1].sf);
mi->ref_frame[0] = GOLDEN_FRAME;
mi->mv[0].as_int = 0;
} else {
x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv;
}
set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
xd->plane[0].dst.buf = x->est_pred;
xd->plane[0].dst.stride = 64;
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64);
} else {
#if CONFIG_VP9_HIGHBITDEPTH
switch (xd->bd) {
case 8: memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0])); break;
case 10:
memset(x->est_pred, 128 * 4, 64 * 64 * sizeof(x->est_pred[0]));
break;
case 12:
memset(x->est_pred, 128 * 16, 64 * 64 * sizeof(x->est_pred[0]));
break;
}
#else
memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0]));
#endif // CONFIG_VP9_HIGHBITDEPTH
}
}
static void encode_nonrd_sb_row(VP9_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, int mi_row,
TOKENEXTRA **tp) {
SPEED_FEATURES *const sf = &cpi->sf;
VP9_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_col_start = tile_info->mi_col_start;
const int mi_col_end = tile_info->mi_col_end;
int mi_col;
const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
const int num_sb_cols =
get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2);
int sb_col_in_tile;
// Initialize the left context for the new SB row
memset(&xd->left_context, 0, sizeof(xd->left_context));
memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
// Code each SB in the row
for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end;
mi_col += MI_BLOCK_SIZE, ++sb_col_in_tile) {
const struct segmentation *const seg = &cm->seg;
RD_COST dummy_rdc;
const int idx_str = cm->mi_stride * mi_row + mi_col;
MODE_INFO **mi = cm->mi_grid_visible + idx_str;
PARTITION_SEARCH_TYPE partition_search_type = sf->partition_search_type;
BLOCK_SIZE bsize = BLOCK_64X64;
int seg_skip = 0;
int i;
(*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row,
sb_col_in_tile);
if (cpi->use_skin_detection) {
vp9_compute_skin_sb(cpi, BLOCK_16X16, mi_row, mi_col);
}
x->source_variance = UINT_MAX;
for (i = 0; i < MAX_REF_FRAMES; ++i) {
x->pred_mv[i].row = INT16_MAX;
x->pred_mv[i].col = INT16_MAX;
}
vp9_rd_cost_init(&dummy_rdc);
x->color_sensitivity[0] = 0;
x->color_sensitivity[1] = 0;
x->sb_is_skin = 0;
x->skip_low_source_sad = 0;
x->lowvar_highsumdiff = 0;
x->content_state_sb = 0;
x->zero_temp_sad_source = 0;
x->sb_use_mv_part = 0;
x->sb_mvcol_part = 0;
x->sb_mvrow_part = 0;
x->sb_pickmode_part = 0;
x->arf_frame_usage = 0;
x->lastgolden_frame_usage = 0;
if (seg->enabled) {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
if (seg_skip) {
partition_search_type = FIXED_PARTITION;
}
}
if (cpi->compute_source_sad_onepass && cpi->sf.use_source_sad) {
int shift = cpi->Source->y_stride * (mi_row << 3) + (mi_col << 3);
int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
int64_t source_sad = avg_source_sad(cpi, x, shift, sb_offset2);
if (sf->adapt_partition_source_sad &&
(cpi->oxcf.rc_mode == VPX_VBR && !cpi->rc.is_src_frame_alt_ref &&
source_sad > sf->adapt_partition_thresh &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)))
partition_search_type = REFERENCE_PARTITION;
}
// Set the partition type of the 64X64 block
switch (partition_search_type) {
case VAR_BASED_PARTITION:
// TODO(jingning, marpan): The mode decision and encoding process
// support both intra and inter sub8x8 block coding for RTC mode.
// Tune the thresholds accordingly to use sub8x8 block coding for
// coding performance improvement.
choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
break;
case ML_BASED_PARTITION:
get_estimated_pred(cpi, tile_info, x, mi_row, mi_col);
x->max_partition_size = BLOCK_64X64;
x->min_partition_size = BLOCK_8X8;
x->sb_pickmode_part = 1;
nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col,
BLOCK_64X64, &dummy_rdc, 1, INT64_MAX,
td->pc_root);
break;
case SOURCE_VAR_BASED_PARTITION:
set_source_var_based_partition(cpi, tile_info, x, mi, mi_row, mi_col);
nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
break;
case FIXED_PARTITION:
if (!seg_skip) bsize = sf->always_this_block_size;
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
break;
default:
assert(partition_search_type == REFERENCE_PARTITION);
x->sb_pickmode_part = 1;
set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
// Use nonrd_pick_partition on scene-cut for VBR mode.
// nonrd_pick_partition does not support 4x4 partition, so avoid it
// on key frame for now.
if ((cpi->oxcf.rc_mode == VPX_VBR && cpi->rc.high_source_sad &&
cpi->oxcf.speed < 6 && !frame_is_intra_only(cm) &&
(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
// Use lower max_partition_size for low resoultions.
if (cm->width <= 352 && cm->height <= 288)
x->max_partition_size = BLOCK_32X32;
else
x->max_partition_size = BLOCK_64X64;
x->min_partition_size = BLOCK_8X8;
nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col,
BLOCK_64X64, &dummy_rdc, 1, INT64_MAX,
td->pc_root);
} else {
choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
// TODO(marpan): Seems like nonrd_select_partition does not support
// 4x4 partition. Since 4x4 is used on key frame, use this switch
// for now.
if (frame_is_intra_only(cm))
nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
else
nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
}
break;
}
// Update ref_frame usage for inter frame if this group is ARF group.
if (!cpi->rc.is_src_frame_alt_ref && !cpi->refresh_golden_frame &&
!cpi->refresh_alt_ref_frame && cpi->rc.alt_ref_gf_group &&
cpi->sf.use_altref_onepass) {
int sboffset = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
if (cpi->count_arf_frame_usage != NULL)
cpi->count_arf_frame_usage[sboffset] = x->arf_frame_usage;
if (cpi->count_lastgolden_frame_usage != NULL)
cpi->count_lastgolden_frame_usage[sboffset] = x->lastgolden_frame_usage;
}
(*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row,
sb_col_in_tile, num_sb_cols);
}
}
// end RTC play code
static INLINE uint32_t variance(const diff *const d) {
return d->sse - (uint32_t)(((int64_t)d->sum * d->sum) >> 8);
}
#if CONFIG_VP9_HIGHBITDEPTH
static INLINE uint32_t variance_highbd(diff *const d) {
const int64_t var = (int64_t)d->sse - (((int64_t)d->sum * d->sum) >> 8);
return (var >= 0) ? (uint32_t)var : 0;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
static int set_var_thresh_from_histogram(VP9_COMP *cpi) {
const SPEED_FEATURES *const sf = &cpi->sf;
const VP9_COMMON *const cm = &cpi->common;
const uint8_t *src = cpi->Source->y_buffer;
const uint8_t *last_src = cpi->Last_Source->y_buffer;
const int src_stride = cpi->Source->y_stride;
const int last_stride = cpi->Last_Source->y_stride;
// Pick cutoff threshold
const int cutoff = (VPXMIN(cm->width, cm->height) >= 720)
? (cm->MBs * VAR_HIST_LARGE_CUT_OFF / 100)
: (cm->MBs * VAR_HIST_SMALL_CUT_OFF / 100);
DECLARE_ALIGNED(16, int, hist[VAR_HIST_BINS]);
diff *var16 = cpi->source_diff_var;
int sum = 0;
int i, j;
memset(hist, 0, VAR_HIST_BINS * sizeof(hist[0]));
for (i = 0; i < cm->mb_rows; i++) {
for (j = 0; j < cm->mb_cols; j++) {
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth) {
switch (cm->bit_depth) {
case VPX_BITS_8:
vpx_highbd_8_get16x16var(src, src_stride, last_src, last_stride,
&var16->sse, &var16->sum);
var16->var = variance(var16);
break;
case VPX_BITS_10:
vpx_highbd_10_get16x16var(src, src_stride, last_src, last_stride,
&var16->sse, &var16->sum);
var16->var = variance_highbd(var16);
break;
default:
assert(cm->bit_depth == VPX_BITS_12);
vpx_highbd_12_get16x16var(src, src_stride, last_src, last_stride,
&var16->sse, &var16->sum);
var16->var = variance_highbd(var16);
break;
}
} else {
vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse,
&var16->sum);
var16->var = variance(var16);
}
#else
vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse,
&var16->sum);
var16->var = variance(var16);
#endif // CONFIG_VP9_HIGHBITDEPTH
if (var16->var >= VAR_HIST_MAX_BG_VAR)
hist[VAR_HIST_BINS - 1]++;
else
hist[var16->var / VAR_HIST_FACTOR]++;
src += 16;
last_src += 16;
var16++;
}
src = src - cm->mb_cols * 16 + 16 * src_stride;
last_src = last_src - cm->mb_cols * 16 + 16 * last_stride;
}
cpi->source_var_thresh = 0;
if (hist[VAR_HIST_BINS - 1] < cutoff) {
for (i = 0; i < VAR_HIST_BINS - 1; i++) {
sum += hist[i];
if (sum > cutoff) {
cpi->source_var_thresh = (i + 1) * VAR_HIST_FACTOR;
return 0;
}
}
}
return sf->search_type_check_frequency;
}
static void source_var_based_partition_search_method(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
SPEED_FEATURES *const sf = &cpi->sf;
if (cm->frame_type == KEY_FRAME) {
// For key frame, use SEARCH_PARTITION.
sf->partition_search_type = SEARCH_PARTITION;
} else if (cm->intra_only) {
sf->partition_search_type = FIXED_PARTITION;
} else {
if (cm->last_width != cm->width || cm->last_height != cm->height) {
if (cpi->source_diff_var) vpx_free(cpi->source_diff_var);
CHECK_MEM_ERROR(cm, cpi->source_diff_var,
vpx_calloc(cm->MBs, sizeof(diff)));
}
if (!cpi->frames_till_next_var_check)
cpi->frames_till_next_var_check = set_var_thresh_from_histogram(cpi);
if (cpi->frames_till_next_var_check > 0) {
sf->partition_search_type = FIXED_PARTITION;
cpi->frames_till_next_var_check--;
}
}
}
static int get_skip_encode_frame(const VP9_COMMON *cm, ThreadData *const td) {
unsigned int intra_count = 0, inter_count = 0;
int j;
for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
intra_count += td->counts->intra_inter[j][0];
inter_count += td->counts->intra_inter[j][1];
}
return (intra_count << 2) < inter_count && cm->frame_type != KEY_FRAME &&
cm->show_frame;
}
void vp9_init_tile_data(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
int tile_col, tile_row;
TOKENEXTRA *pre_tok = cpi->tile_tok[0][0];
TOKENLIST *tplist = cpi->tplist[0][0];
int tile_tok = 0;
int tplist_count = 0;
if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) {
if (cpi->tile_data != NULL) vpx_free(cpi->tile_data);
CHECK_MEM_ERROR(
cm, cpi->tile_data,
vpx_malloc(tile_cols * tile_rows * sizeof(*cpi->tile_data)));
cpi->allocated_tiles = tile_cols * tile_rows;
for (tile_row = 0; tile_row < tile_rows; ++tile_row)
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileDataEnc *tile_data =
&cpi->tile_data[tile_row * tile_cols + tile_col];
int i, j;
for (i = 0; i < BLOCK_SIZES; ++i) {
for (j = 0; j < MAX_MODES; ++j) {
tile_data->thresh_freq_fact[i][j] = RD_THRESH_INIT_FACT;
#if CONFIG_CONSISTENT_RECODE
tile_data->thresh_freq_fact_prev[i][j] = RD_THRESH_INIT_FACT;
#endif
tile_data->mode_map[i][j] = j;
}
}
#if CONFIG_MULTITHREAD
tile_data->row_base_thresh_freq_fact = NULL;
#endif
}
}
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
TileInfo *tile_info = &this_tile->tile_info;
if (cpi->sf.adaptive_rd_thresh_row_mt &&
this_tile->row_base_thresh_freq_fact == NULL)
vp9_row_mt_alloc_rd_thresh(cpi, this_tile);
vp9_tile_init(tile_info, cm, tile_row, tile_col);
cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
pre_tok = cpi->tile_tok[tile_row][tile_col];
tile_tok = allocated_tokens(*tile_info);
cpi->tplist[tile_row][tile_col] = tplist + tplist_count;
tplist = cpi->tplist[tile_row][tile_col];
tplist_count = get_num_vert_units(*tile_info, MI_BLOCK_SIZE_LOG2);
}
}
}
void vp9_encode_sb_row(VP9_COMP *cpi, ThreadData *td, int tile_row,
int tile_col, int mi_row) {
VP9_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
const TileInfo *const tile_info = &this_tile->tile_info;
TOKENEXTRA *tok = NULL;
int tile_sb_row;
int tile_mb_cols = (tile_info->mi_col_end - tile_info->mi_col_start + 1) >> 1;
tile_sb_row = mi_cols_aligned_to_sb(mi_row - tile_info->mi_row_start) >>
MI_BLOCK_SIZE_LOG2;
get_start_tok(cpi, tile_row, tile_col, mi_row, &tok);
cpi->tplist[tile_row][tile_col][tile_sb_row].start = tok;
if (cpi->sf.use_nonrd_pick_mode)
encode_nonrd_sb_row(cpi, td, this_tile, mi_row, &tok);
#if !CONFIG_REALTIME_ONLY
else
encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok);
#endif
cpi->tplist[tile_row][tile_col][tile_sb_row].stop = tok;
cpi->tplist[tile_row][tile_col][tile_sb_row].count =
(unsigned int)(cpi->tplist[tile_row][tile_col][tile_sb_row].stop -
cpi->tplist[tile_row][tile_col][tile_sb_row].start);
assert(tok - cpi->tplist[tile_row][tile_col][tile_sb_row].start <=
get_token_alloc(MI_BLOCK_SIZE >> 1, tile_mb_cols));
(void)tile_mb_cols;
}
void vp9_encode_tile(VP9_COMP *cpi, ThreadData *td, int tile_row,
int tile_col) {
VP9_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
const TileInfo *const tile_info = &this_tile->tile_info;
const int mi_row_start = tile_info->mi_row_start;
const int mi_row_end = tile_info->mi_row_end;
int mi_row;
for (mi_row = mi_row_start; mi_row < mi_row_end; mi_row += MI_BLOCK_SIZE)
vp9_encode_sb_row(cpi, td, tile_row, tile_col, mi_row);
}
static void encode_tiles(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
int tile_col, tile_row;
vp9_init_tile_data(cpi);
for (tile_row = 0; tile_row < tile_rows; ++tile_row)
for (tile_col = 0; tile_col < tile_cols; ++tile_col)
vp9_encode_tile(cpi, &cpi->td, tile_row, tile_col);
}
#if CONFIG_FP_MB_STATS
static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats,
VP9_COMMON *cm, uint8_t **this_frame_mb_stats) {
uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start +
cm->current_video_frame * cm->MBs * sizeof(uint8_t);
if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF;
*this_frame_mb_stats = mb_stats_in;
return 1;
}
#endif
static int compare_kmeans_data(const void *a, const void *b) {
if (((const KMEANS_DATA *)a)->value > ((const KMEANS_DATA *)b)->value) {
return 1;
} else if (((const KMEANS_DATA *)a)->value <
((const KMEANS_DATA *)b)->value) {
return -1;
} else {
return 0;
}
}
static void compute_boundary_ls(const double *ctr_ls, int k,
double *boundary_ls) {
// boundary_ls[j] is the upper bound of data centered at ctr_ls[j]
int j;
for (j = 0; j < k - 1; ++j) {
boundary_ls[j] = (ctr_ls[j] + ctr_ls[j + 1]) / 2.;
}
boundary_ls[k - 1] = DBL_MAX;
}
int vp9_get_group_idx(double value, double *boundary_ls, int k) {
int group_idx = 0;
while (value >= boundary_ls[group_idx]) {
++group_idx;
if (group_idx == k - 1) {
break;
}
}
return group_idx;
}
void vp9_kmeans(double *ctr_ls, double *boundary_ls, int *count_ls, int k,
KMEANS_DATA *arr, int size) {
int i, j;
int itr;
int group_idx;
double sum[MAX_KMEANS_GROUPS];
int count[MAX_KMEANS_GROUPS];
vpx_clear_system_state();
assert(k >= 2 && k <= MAX_KMEANS_GROUPS);
qsort(arr, size, sizeof(*arr), compare_kmeans_data);
// initialize the center points
for (j = 0; j < k; ++j) {
ctr_ls[j] = arr[(size * (2 * j + 1)) / (2 * k)].value;
}
for (itr = 0; itr < 10; ++itr) {
compute_boundary_ls(ctr_ls, k, boundary_ls);
for (i = 0; i < MAX_KMEANS_GROUPS; ++i) {
sum[i] = 0;
count[i] = 0;
}
// Both the data and centers are sorted in ascending order.
// As each data point is processed in order, its corresponding group index
// can only increase. So we only need to reset the group index to zero here.
group_idx = 0;
for (i = 0; i < size; ++i) {
while (arr[i].value >= boundary_ls[group_idx]) {
// place samples into clusters
++group_idx;
if (group_idx == k - 1) {
break;
}
}
sum[group_idx] += arr[i].value;
++count[group_idx];
}
for (group_idx = 0; group_idx < k; ++group_idx) {
if (count[group_idx] > 0)
ctr_ls[group_idx] = sum[group_idx] / count[group_idx];
sum[group_idx] = 0;
count[group_idx] = 0;
}
}
// compute group_idx, boundary_ls and count_ls
for (j = 0; j < k; ++j) {
count_ls[j] = 0;
}
compute_boundary_ls(ctr_ls, k, boundary_ls);
group_idx = 0;
for (i = 0; i < size; ++i) {
while (arr[i].value >= boundary_ls[group_idx]) {
++group_idx;
if (group_idx == k - 1) {
break;
}
}
arr[i].group_idx = group_idx;
++count_ls[group_idx];
}
}
static void encode_frame_internal(VP9_COMP *cpi) {
SPEED_FEATURES *const sf = &cpi->sf;
ThreadData *const td = &cpi->td;
MACROBLOCK *const x = &td->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const int gf_group_index = cpi->twopass.gf_group.index;
xd->mi = cm->mi_grid_visible;
xd->mi[0] = cm->mi;
vp9_zero(*td->counts);
vp9_zero(cpi->td.rd_counts);
xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 &&
cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
#if CONFIG_VP9_HIGHBITDEPTH
if (cm->use_highbitdepth)
x->fwd_txfm4x4 = xd->lossless ? vp9_highbd_fwht4x4 : vpx_highbd_fdct4x4;
else
x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4;
x->highbd_inv_txfm_add =
xd->lossless ? vp9_highbd_iwht4x4_add : vp9_highbd_idct4x4_add;
#else
x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4;
#endif // CONFIG_VP9_HIGHBITDEPTH
x->inv_txfm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
#if CONFIG_CONSISTENT_RECODE
x->optimize = sf->optimize_coefficients == 1 && cpi->oxcf.pass != 1;
#endif
if (xd->lossless) x->optimize = 0;
x->sharpness = cpi->oxcf.sharpness;
x->adjust_rdmult_by_segment = (cpi->oxcf.aq_mode == VARIANCE_AQ);
cm->tx_mode = select_tx_mode(cpi, xd);
vp9_frame_init_quantizer(cpi);
vp9_initialize_rd_consts(cpi);
vp9_initialize_me_consts(cpi, x, cm->base_qindex);
init_encode_frame_mb_context(cpi);
cm->use_prev_frame_mvs =
!cm->error_resilient_mode && cm->width == cm->last_width &&
cm->height == cm->last_height && !cm->intra_only && cm->last_show_frame;
// Special case: set prev_mi to NULL when the previous mode info
// context cannot be used.
cm->prev_mi =
cm->use_prev_frame_mvs ? cm->prev_mip + cm->mi_stride + 1 : NULL;
x->quant_fp = cpi->sf.use_quant_fp;
vp9_zero(x->skip_txfm);
if (sf->use_nonrd_pick_mode) {
// Initialize internal buffer pointers for rtc coding, where non-RD
// mode decision is used and hence no buffer pointer swap needed.
int i;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
PICK_MODE_CONTEXT *ctx = &cpi->td.pc_root->none;
for (i = 0; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][0];
p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
p[i].eobs = ctx->eobs_pbuf[i][0];
}
vp9_zero(x->zcoeff_blk);
if (cm->frame_type != KEY_FRAME && cpi->rc.frames_since_golden == 0 &&
!(cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR) &&
!cpi->use_svc)
cpi->ref_frame_flags &= (~VP9_GOLD_FLAG);
if (sf->partition_search_type == SOURCE_VAR_BASED_PARTITION)
source_var_based_partition_search_method(cpi);
} else if (gf_group_index && gf_group_index < MAX_ARF_GOP_SIZE &&
cpi->sf.enable_tpl_model) {
TplDepFrame *tpl_frame = &cpi->tpl_stats[cpi->twopass.gf_group.index];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
int tpl_stride = tpl_frame->stride;
int64_t intra_cost_base = 0;
int64_t mc_dep_cost_base = 0;
int row, col;
for (row = 0; row < cm->mi_rows && tpl_frame->is_valid; ++row) {
for (col = 0; col < cm->mi_cols; ++col) {
TplDepStats *this_stats = &tpl_stats[row * tpl_stride + col];
intra_cost_base += this_stats->intra_cost;
mc_dep_cost_base += this_stats->mc_dep_cost;
}
}
vpx_clear_system_state();
if (tpl_frame->is_valid)
cpi->rd.r0 = (double)intra_cost_base / mc_dep_cost_base;
}
// Frame segmentation
if (cpi->oxcf.aq_mode == PERCEPTUAL_AQ) build_kmeans_segmentation(cpi);
{
struct vpx_usec_timer emr_timer;
vpx_usec_timer_start(&emr_timer);
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm,
&cpi->twopass.this_frame_mb_stats);
}
#endif
if (!cpi->row_mt) {
cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read_dummy;
cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write_dummy;
// If allowed, encoding tiles in parallel with one thread handling one
// tile when row based multi-threading is disabled.
if (VPXMIN(cpi->oxcf.max_threads, 1 << cm->log2_tile_cols) > 1)
vp9_encode_tiles_mt(cpi);
else
encode_tiles(cpi);
} else {
cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read;
cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write;
vp9_encode_tiles_row_mt(cpi);
}
vpx_usec_timer_mark(&emr_timer);
cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
}
sf->skip_encode_frame =
sf->skip_encode_sb ? get_skip_encode_frame(cm, td) : 0;
#if 0
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
#endif
}
static INTERP_FILTER get_interp_filter(
const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS], int is_alt_ref) {
if (!is_alt_ref && threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP] &&
threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP_SHARP] &&
threshes[EIGHTTAP_SMOOTH] > threshes[SWITCHABLE - 1]) {
return EIGHTTAP_SMOOTH;
} else if (threshes[EIGHTTAP_SHARP] > threshes[EIGHTTAP] &&
threshes[EIGHTTAP_SHARP] > threshes[SWITCHABLE - 1]) {
return EIGHTTAP_SHARP;
} else if (threshes[EIGHTTAP] > threshes[SWITCHABLE - 1]) {
return EIGHTTAP;
} else {
return SWITCHABLE;
}
}
static int compute_frame_aq_offset(struct VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible;
struct segmentation *const seg = &cm->seg;
int mi_row, mi_col;
int sum_delta = 0;
int map_index = 0;
int qdelta_index;
int segment_id;
for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) {
MODE_INFO **mi_8x8 = mi_8x8_ptr;
for (mi_col = 0; mi_col < cm->mi_cols; mi_col++, mi_8x8++) {
segment_id = mi_8x8[0]->segment_id;
qdelta_index = get_segdata(seg, segment_id, SEG_LVL_ALT_Q);
sum_delta += qdelta_index;
map_index++;
}
mi_8x8_ptr += cm->mi_stride;
}
return sum_delta / (cm->mi_rows * cm->mi_cols);
}
#if CONFIG_CONSISTENT_RECODE
static void restore_encode_params(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
int tile_col, tile_row;
int i, j;
RD_OPT *rd_opt = &cpi->rd;
for (i = 0; i < MAX_REF_FRAMES; i++) {
for (j = 0; j < REFERENCE_MODES; j++)
rd_opt->prediction_type_threshes[i][j] =
rd_opt->prediction_type_threshes_prev[i][j];
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; j++)
rd_opt->filter_threshes[i][j] = rd_opt->filter_threshes_prev[i][j];
}
if (cpi->tile_data != NULL) {
for (tile_row = 0; tile_row < tile_rows; ++tile_row)
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileDataEnc *tile_data =
&cpi->tile_data[tile_row * tile_cols + tile_col];
for (i = 0; i < BLOCK_SIZES; ++i) {
for (j = 0; j < MAX_MODES; ++j) {
tile_data->thresh_freq_fact[i][j] =
tile_data->thresh_freq_fact_prev[i][j];
}
}
}
}
cm->interp_filter = cpi->sf.default_interp_filter;
}
#endif
void vp9_encode_frame(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
#if CONFIG_CONSISTENT_RECODE
restore_encode_params(cpi);
#endif
#if CONFIG_MISMATCH_DEBUG
mismatch_reset_frame(MAX_MB_PLANE);
#endif
// In the longer term the encoder should be generalized to match the
// decoder such that we allow compound where one of the 3 buffers has a
// different sign bias and that buffer is then the fixed ref. However, this
// requires further work in the rd loop. For now the only supported encoder
// side behavior is where the ALT ref buffer has opposite sign bias to
// the other two.
if (!frame_is_intra_only(cm)) {
if (vp9_compound_reference_allowed(cm)) {
cpi->allow_comp_inter_inter = 1;
vp9_setup_compound_reference_mode(cm);
} else {
cpi->allow_comp_inter_inter = 0;
}
}
if (cpi->sf.frame_parameter_update) {
int i;
RD_OPT *const rd_opt = &cpi->rd;
FRAME_COUNTS *counts = cpi->td.counts;
RD_COUNTS *const rdc = &cpi->td.rd_counts;
// This code does a single RD pass over the whole frame assuming
// either compound, single or hybrid prediction as per whatever has
// worked best for that type of frame in the past.
// It also predicts whether another coding mode would have worked
// better than this coding mode. If that is the case, it remembers
// that for subsequent frames.
// It also does the same analysis for transform size selection.
const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
int64_t *const filter_thrs = rd_opt->filter_threshes[frame_type];
const int is_alt_ref = frame_type == ALTREF_FRAME;
/* prediction (compound, single or hybrid) mode selection */
if (is_alt_ref || !cpi->allow_comp_inter_inter)
cm->reference_mode = SINGLE_REFERENCE;
else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
mode_thrs[COMPOUND_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT] &&
check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
cm->reference_mode = COMPOUND_REFERENCE;
else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
cm->reference_mode = SINGLE_REFERENCE;
else
cm->reference_mode = REFERENCE_MODE_SELECT;
if (cm->interp_filter == SWITCHABLE)
cm->interp_filter = get_interp_filter(filter_thrs, is_alt_ref);
encode_frame_internal(cpi);
for (i = 0; i < REFERENCE_MODES; ++i)
mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2;
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
filter_thrs[i] = (filter_thrs[i] + rdc->filter_diff[i] / cm->MBs) / 2;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
int single_count_zero = 0;
int comp_count_zero = 0;
for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
single_count_zero += counts->comp_inter[i][0];
comp_count_zero += counts->comp_inter[i][1];
}
if (comp_count_zero == 0) {
cm->reference_mode = SINGLE_REFERENCE;
vp9_zero(counts->comp_inter);
} else if (single_count_zero == 0) {
cm->reference_mode = COMPOUND_REFERENCE;
vp9_zero(counts->comp_inter);
}
}
if (cm->tx_mode == TX_MODE_SELECT) {
int count4x4 = 0;
int count8x8_lp = 0, count8x8_8x8p = 0;
int count16x16_16x16p = 0, count16x16_lp = 0;
int count32x32 = 0;
for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
count4x4 += counts->tx.p32x32[i][TX_4X4];
count4x4 += counts->tx.p16x16[i][TX_4X4];
count4x4 += counts->tx.p8x8[i][TX_4X4];
count8x8_lp += counts->tx.p32x32[i][TX_8X8];
count8x8_lp += counts->tx.p16x16[i][TX_8X8];
count8x8_8x8p += counts->tx.p8x8[i][TX_8X8];
count16x16_16x16p += counts->tx.p16x16[i][TX_16X16];
count16x16_lp += counts->tx.p32x32[i][TX_16X16];
count32x32 += counts->tx.p32x32[i][TX_32X32];
}
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
count32x32 == 0) {
cm->tx_mode = ALLOW_8X8;
reset_skip_tx_size(cm, TX_8X8);
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
cm->tx_mode = ONLY_4X4;
reset_skip_tx_size(cm, TX_4X4);
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
cm->tx_mode = ALLOW_32X32;
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
cm->tx_mode = ALLOW_16X16;
reset_skip_tx_size(cm, TX_16X16);
}
}
} else {
FRAME_COUNTS *counts = cpi->td.counts;
cm->reference_mode = SINGLE_REFERENCE;
if (cpi->allow_comp_inter_inter && cpi->sf.use_compound_nonrd_pickmode &&
cpi->rc.alt_ref_gf_group && !cpi->rc.is_src_frame_alt_ref &&
cm->frame_type != KEY_FRAME)
cm->reference_mode = REFERENCE_MODE_SELECT;
encode_frame_internal(cpi);
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
int single_count_zero = 0;
int comp_count_zero = 0;
int i;
for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
single_count_zero += counts->comp_inter[i][0];
comp_count_zero += counts->comp_inter[i][1];
}
if (comp_count_zero == 0) {
cm->reference_mode = SINGLE_REFERENCE;
vp9_zero(counts->comp_inter);
} else if (single_count_zero == 0) {
cm->reference_mode = COMPOUND_REFERENCE;
vp9_zero(counts->comp_inter);
}
}
}
// If segmented AQ is enabled compute the average AQ weighting.
if (cm->seg.enabled && (cpi->oxcf.aq_mode != NO_AQ) &&
(cm->seg.update_map || cm->seg.update_data)) {
cm->seg.aq_av_offset = compute_frame_aq_offset(cpi);
}
}
static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) {
const PREDICTION_MODE y_mode = mi->mode;
const PREDICTION_MODE uv_mode = mi->uv_mode;
const BLOCK_SIZE bsize = mi->sb_type;
if (bsize < BLOCK_8X8) {
int idx, idy;
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
for (idy = 0; idy < 2; idy += num_4x4_h)
for (idx = 0; idx < 2; idx += num_4x4_w)
++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode];
} else {
++counts->y_mode[size_group_lookup[bsize]][y_mode];
}
++counts->uv_mode[y_mode][uv_mode];
}
static void update_zeromv_cnt(VP9_COMP *const cpi, const MODE_INFO *const mi,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
const VP9_COMMON *const cm = &cpi->common;
MV mv = mi->mv[0].as_mv;
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
const int block_index = mi_row * cm->mi_cols + mi_col;
int x, y;
for (y = 0; y < ymis; y++)
for (x = 0; x < xmis; x++) {
int map_offset = block_index + y * cm->mi_cols + x;
if (mi->ref_frame[0] == LAST_FRAME && is_inter_block(mi) &&
mi->segment_id <= CR_SEGMENT_ID_BOOST2) {
if (abs(mv.row) < 8 && abs(mv.col) < 8) {
if (cpi->consec_zero_mv[map_offset] < 255)
cpi->consec_zero_mv[map_offset]++;
} else {
cpi->consec_zero_mv[map_offset] = 0;
}
}
}
}
static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
int output_enabled, int mi_row, int mi_col,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi = xd->mi[0];
const int seg_skip =
segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP);
x->skip_recode = !x->select_tx_size && mi->sb_type >= BLOCK_8X8 &&
cpi->oxcf.aq_mode != COMPLEXITY_AQ &&
cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ &&
cpi->sf.allow_skip_recode;
if (!x->skip_recode && !cpi->sf.use_nonrd_pick_mode)
memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
x->skip_optimize = ctx->is_coded;
ctx->is_coded = 1;
x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
x->q_index < QIDX_SKIP_THRESH);
if (x->skip_encode) return;
if (!is_inter_block(mi)) {
int plane;
#if CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH
if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) &&
(xd->above_mi == NULL || xd->left_mi == NULL) &&
need_top_left[mi->uv_mode])
assert(0);
#endif // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH
mi->skip = 1;
for (plane = 0; plane < MAX_MB_PLANE; ++plane)
vp9_encode_intra_block_plane(x, VPXMAX(bsize, BLOCK_8X8), plane, 1);
if (output_enabled) sum_intra_stats(td->counts, mi);
vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip,
VPXMAX(bsize, BLOCK_8X8));
} else {
int ref;
const int is_compound = has_second_ref(mi);
set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
for (ref = 0; ref < 1 + is_compound; ++ref) {
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mi->ref_frame[ref]);
assert(cfg != NULL);
vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
&xd->block_refs[ref]->sf);
}
if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip)
vp9_build_inter_predictors_sby(xd, mi_row, mi_col,
VPXMAX(bsize, BLOCK_8X8));
vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col,
VPXMAX(bsize, BLOCK_8X8));
#if CONFIG_MISMATCH_DEBUG
if (output_enabled) {
int plane;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
int pixel_c, pixel_r;
const BLOCK_SIZE plane_bsize =
get_plane_block_size(VPXMAX(bsize, BLOCK_8X8), &xd->plane[plane]);
const int bw = get_block_width(plane_bsize);
const int bh = get_block_height(plane_bsize);
mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0,
pd->subsampling_x, pd->subsampling_y);
mismatch_record_block_pre(pd->dst.buf, pd->dst.stride, plane, pixel_c,
pixel_r, bw, bh,
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
}
}
#endif
vp9_encode_sb(x, VPXMAX(bsize, BLOCK_8X8), mi_row, mi_col, output_enabled);
vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip,
VPXMAX(bsize, BLOCK_8X8));
}
if (seg_skip) {
assert(mi->skip);
}
if (output_enabled) {
if (cm->tx_mode == TX_MODE_SELECT && mi->sb_type >= BLOCK_8X8 &&
!(is_inter_block(mi) && mi->skip)) {
++get_tx_counts(max_txsize_lookup[bsize], get_tx_size_context(xd),
&td->counts->tx)[mi->tx_size];
} else {
// The new intra coding scheme requires no change of transform size
if (is_inter_block(mi)) {
mi->tx_size = VPXMIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
max_txsize_lookup[bsize]);
} else {
mi->tx_size = (bsize >= BLOCK_8X8) ? mi->tx_size : TX_4X4;
}
}
++td->counts->tx.tx_totals[mi->tx_size];
++td->counts->tx.tx_totals[get_uv_tx_size(mi, &xd->plane[1])];
if (cm->seg.enabled && cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
vp9_cyclic_refresh_update_sb_postencode(cpi, mi, mi_row, mi_col, bsize);
if (cpi->oxcf.pass == 0 && cpi->svc.temporal_layer_id == 0 &&
(!cpi->use_svc ||
(cpi->use_svc &&
!cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame &&
cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)))
update_zeromv_cnt(cpi, mi, mi_row, mi_col, bsize);
}
}