freeswitch/libs/libyuv/unit_test/planar_test.cc

3352 lines
117 KiB
C++

/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include "../unit_test/unit_test.h"
#include "libyuv/compare.h"
#include "libyuv/convert.h"
#include "libyuv/convert_argb.h"
#include "libyuv/convert_from.h"
#include "libyuv/convert_from_argb.h"
#include "libyuv/cpu_id.h"
#include "libyuv/planar_functions.h"
#include "libyuv/rotate.h"
#ifdef ENABLE_ROW_TESTS
// row.h defines SIMD_ALIGNED, overriding unit_test.h
// TODO(fbarchard): Remove row.h from unittests. Test public functions.
#include "libyuv/row.h" /* For ScaleSumSamples_Neon */
#endif
namespace libyuv {
TEST_F(LibYUVPlanarTest, TestAttenuate) {
const int kSize = 1280 * 4;
align_buffer_page_end(orig_pixels, kSize);
align_buffer_page_end(atten_pixels, kSize);
align_buffer_page_end(unatten_pixels, kSize);
align_buffer_page_end(atten2_pixels, kSize);
// Test unattenuation clamps
orig_pixels[0 * 4 + 0] = 200u;
orig_pixels[0 * 4 + 1] = 129u;
orig_pixels[0 * 4 + 2] = 127u;
orig_pixels[0 * 4 + 3] = 128u;
// Test unattenuation transparent and opaque are unaffected
orig_pixels[1 * 4 + 0] = 16u;
orig_pixels[1 * 4 + 1] = 64u;
orig_pixels[1 * 4 + 2] = 192u;
orig_pixels[1 * 4 + 3] = 0u;
orig_pixels[2 * 4 + 0] = 16u;
orig_pixels[2 * 4 + 1] = 64u;
orig_pixels[2 * 4 + 2] = 192u;
orig_pixels[2 * 4 + 3] = 255u;
orig_pixels[3 * 4 + 0] = 16u;
orig_pixels[3 * 4 + 1] = 64u;
orig_pixels[3 * 4 + 2] = 192u;
orig_pixels[3 * 4 + 3] = 128u;
ARGBUnattenuate(orig_pixels, 0, unatten_pixels, 0, 4, 1);
EXPECT_EQ(255u, unatten_pixels[0 * 4 + 0]);
EXPECT_EQ(255u, unatten_pixels[0 * 4 + 1]);
EXPECT_EQ(254u, unatten_pixels[0 * 4 + 2]);
EXPECT_EQ(128u, unatten_pixels[0 * 4 + 3]);
EXPECT_EQ(0u, unatten_pixels[1 * 4 + 0]);
EXPECT_EQ(0u, unatten_pixels[1 * 4 + 1]);
EXPECT_EQ(0u, unatten_pixels[1 * 4 + 2]);
EXPECT_EQ(0u, unatten_pixels[1 * 4 + 3]);
EXPECT_EQ(16u, unatten_pixels[2 * 4 + 0]);
EXPECT_EQ(64u, unatten_pixels[2 * 4 + 1]);
EXPECT_EQ(192u, unatten_pixels[2 * 4 + 2]);
EXPECT_EQ(255u, unatten_pixels[2 * 4 + 3]);
EXPECT_EQ(32u, unatten_pixels[3 * 4 + 0]);
EXPECT_EQ(128u, unatten_pixels[3 * 4 + 1]);
EXPECT_EQ(255u, unatten_pixels[3 * 4 + 2]);
EXPECT_EQ(128u, unatten_pixels[3 * 4 + 3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i * 4 + 0] = i;
orig_pixels[i * 4 + 1] = i / 2;
orig_pixels[i * 4 + 2] = i / 3;
orig_pixels[i * 4 + 3] = i;
}
ARGBAttenuate(orig_pixels, 0, atten_pixels, 0, 1280, 1);
ARGBUnattenuate(atten_pixels, 0, unatten_pixels, 0, 1280, 1);
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBAttenuate(unatten_pixels, 0, atten2_pixels, 0, 1280, 1);
}
for (int i = 0; i < 1280; ++i) {
EXPECT_NEAR(atten_pixels[i * 4 + 0], atten2_pixels[i * 4 + 0], 2);
EXPECT_NEAR(atten_pixels[i * 4 + 1], atten2_pixels[i * 4 + 1], 2);
EXPECT_NEAR(atten_pixels[i * 4 + 2], atten2_pixels[i * 4 + 2], 2);
EXPECT_NEAR(atten_pixels[i * 4 + 3], atten2_pixels[i * 4 + 3], 2);
}
// Make sure transparent, 50% and opaque are fully accurate.
EXPECT_EQ(0, atten_pixels[0 * 4 + 0]);
EXPECT_EQ(0, atten_pixels[0 * 4 + 1]);
EXPECT_EQ(0, atten_pixels[0 * 4 + 2]);
EXPECT_EQ(0, atten_pixels[0 * 4 + 3]);
EXPECT_EQ(64, atten_pixels[128 * 4 + 0]);
EXPECT_EQ(32, atten_pixels[128 * 4 + 1]);
EXPECT_EQ(21, atten_pixels[128 * 4 + 2]);
EXPECT_EQ(128, atten_pixels[128 * 4 + 3]);
EXPECT_NEAR(255, atten_pixels[255 * 4 + 0], 1);
EXPECT_NEAR(127, atten_pixels[255 * 4 + 1], 1);
EXPECT_NEAR(85, atten_pixels[255 * 4 + 2], 1);
EXPECT_EQ(255, atten_pixels[255 * 4 + 3]);
free_aligned_buffer_page_end(atten2_pixels);
free_aligned_buffer_page_end(unatten_pixels);
free_aligned_buffer_page_end(atten_pixels);
free_aligned_buffer_page_end(orig_pixels);
}
static int TestAttenuateI(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
for (int i = 0; i < kStride * height; ++i) {
src_argb[i + off] = (fastrand() & 0xff);
}
memset(dst_argb_c, 0, kStride * height);
memset(dst_argb_opt, 0, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBAttenuate(src_argb + off, kStride, dst_argb_c, kStride, width,
invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBAttenuate(src_argb + off, kStride, dst_argb_opt, kStride, width,
invert * height);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBAttenuate_Any) {
int max_diff = TestAttenuateI(benchmark_width_ - 1, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 2);
}
TEST_F(LibYUVPlanarTest, ARGBAttenuate_Unaligned) {
int max_diff =
TestAttenuateI(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
EXPECT_LE(max_diff, 2);
}
TEST_F(LibYUVPlanarTest, ARGBAttenuate_Invert) {
int max_diff =
TestAttenuateI(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0);
EXPECT_LE(max_diff, 2);
}
TEST_F(LibYUVPlanarTest, ARGBAttenuate_Opt) {
int max_diff =
TestAttenuateI(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 2);
}
static int TestUnattenuateI(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
for (int i = 0; i < kStride * height; ++i) {
src_argb[i + off] = (fastrand() & 0xff);
}
ARGBAttenuate(src_argb + off, kStride, src_argb + off, kStride, width,
height);
memset(dst_argb_c, 0, kStride * height);
memset(dst_argb_opt, 0, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBUnattenuate(src_argb + off, kStride, dst_argb_c, kStride, width,
invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBUnattenuate(src_argb + off, kStride, dst_argb_opt, kStride, width,
invert * height);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBUnattenuate_Any) {
int max_diff = TestUnattenuateI(benchmark_width_ - 1, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 2);
}
TEST_F(LibYUVPlanarTest, ARGBUnattenuate_Unaligned) {
int max_diff = TestUnattenuateI(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 1);
EXPECT_LE(max_diff, 2);
}
TEST_F(LibYUVPlanarTest, ARGBUnattenuate_Invert) {
int max_diff = TestUnattenuateI(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, -1, 0);
EXPECT_LE(max_diff, 2);
}
TEST_F(LibYUVPlanarTest, ARGBUnattenuate_Opt) {
int max_diff = TestUnattenuateI(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 2);
}
TEST_F(LibYUVPlanarTest, TestARGBComputeCumulativeSum) {
SIMD_ALIGNED(uint8_t orig_pixels[16][16][4]);
SIMD_ALIGNED(int32_t added_pixels[16][16][4]);
for (int y = 0; y < 16; ++y) {
for (int x = 0; x < 16; ++x) {
orig_pixels[y][x][0] = 1u;
orig_pixels[y][x][1] = 2u;
orig_pixels[y][x][2] = 3u;
orig_pixels[y][x][3] = 255u;
}
}
ARGBComputeCumulativeSum(&orig_pixels[0][0][0], 16 * 4,
&added_pixels[0][0][0], 16 * 4, 16, 16);
for (int y = 0; y < 16; ++y) {
for (int x = 0; x < 16; ++x) {
EXPECT_EQ((x + 1) * (y + 1), added_pixels[y][x][0]);
EXPECT_EQ((x + 1) * (y + 1) * 2, added_pixels[y][x][1]);
EXPECT_EQ((x + 1) * (y + 1) * 3, added_pixels[y][x][2]);
EXPECT_EQ((x + 1) * (y + 1) * 255, added_pixels[y][x][3]);
}
}
}
TEST_F(LibYUVPlanarTest, TestARGBGray) {
SIMD_ALIGNED(uint8_t orig_pixels[1280][4]);
memset(orig_pixels, 0, sizeof(orig_pixels));
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test black
orig_pixels[3][0] = 0u;
orig_pixels[3][1] = 0u;
orig_pixels[3][2] = 0u;
orig_pixels[3][3] = 255u;
// Test white
orig_pixels[4][0] = 255u;
orig_pixels[4][1] = 255u;
orig_pixels[4][2] = 255u;
orig_pixels[4][3] = 255u;
// Test color
orig_pixels[5][0] = 16u;
orig_pixels[5][1] = 64u;
orig_pixels[5][2] = 192u;
orig_pixels[5][3] = 224u;
// Do 16 to test asm version.
ARGBGray(&orig_pixels[0][0], 0, 0, 0, 16, 1);
EXPECT_EQ(30u, orig_pixels[0][0]);
EXPECT_EQ(30u, orig_pixels[0][1]);
EXPECT_EQ(30u, orig_pixels[0][2]);
EXPECT_EQ(128u, orig_pixels[0][3]);
EXPECT_EQ(149u, orig_pixels[1][0]);
EXPECT_EQ(149u, orig_pixels[1][1]);
EXPECT_EQ(149u, orig_pixels[1][2]);
EXPECT_EQ(0u, orig_pixels[1][3]);
EXPECT_EQ(76u, orig_pixels[2][0]);
EXPECT_EQ(76u, orig_pixels[2][1]);
EXPECT_EQ(76u, orig_pixels[2][2]);
EXPECT_EQ(255u, orig_pixels[2][3]);
EXPECT_EQ(0u, orig_pixels[3][0]);
EXPECT_EQ(0u, orig_pixels[3][1]);
EXPECT_EQ(0u, orig_pixels[3][2]);
EXPECT_EQ(255u, orig_pixels[3][3]);
EXPECT_EQ(255u, orig_pixels[4][0]);
EXPECT_EQ(255u, orig_pixels[4][1]);
EXPECT_EQ(255u, orig_pixels[4][2]);
EXPECT_EQ(255u, orig_pixels[4][3]);
EXPECT_EQ(96u, orig_pixels[5][0]);
EXPECT_EQ(96u, orig_pixels[5][1]);
EXPECT_EQ(96u, orig_pixels[5][2]);
EXPECT_EQ(224u, orig_pixels[5][3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBGray(&orig_pixels[0][0], 0, 0, 0, 1280, 1);
}
}
TEST_F(LibYUVPlanarTest, TestARGBGrayTo) {
SIMD_ALIGNED(uint8_t orig_pixels[1280][4]);
SIMD_ALIGNED(uint8_t gray_pixels[1280][4]);
memset(orig_pixels, 0, sizeof(orig_pixels));
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test black
orig_pixels[3][0] = 0u;
orig_pixels[3][1] = 0u;
orig_pixels[3][2] = 0u;
orig_pixels[3][3] = 255u;
// Test white
orig_pixels[4][0] = 255u;
orig_pixels[4][1] = 255u;
orig_pixels[4][2] = 255u;
orig_pixels[4][3] = 255u;
// Test color
orig_pixels[5][0] = 16u;
orig_pixels[5][1] = 64u;
orig_pixels[5][2] = 192u;
orig_pixels[5][3] = 224u;
// Do 16 to test asm version.
ARGBGrayTo(&orig_pixels[0][0], 0, &gray_pixels[0][0], 0, 16, 1);
EXPECT_EQ(30u, gray_pixels[0][0]);
EXPECT_EQ(30u, gray_pixels[0][1]);
EXPECT_EQ(30u, gray_pixels[0][2]);
EXPECT_EQ(128u, gray_pixels[0][3]);
EXPECT_EQ(149u, gray_pixels[1][0]);
EXPECT_EQ(149u, gray_pixels[1][1]);
EXPECT_EQ(149u, gray_pixels[1][2]);
EXPECT_EQ(0u, gray_pixels[1][3]);
EXPECT_EQ(76u, gray_pixels[2][0]);
EXPECT_EQ(76u, gray_pixels[2][1]);
EXPECT_EQ(76u, gray_pixels[2][2]);
EXPECT_EQ(255u, gray_pixels[2][3]);
EXPECT_EQ(0u, gray_pixels[3][0]);
EXPECT_EQ(0u, gray_pixels[3][1]);
EXPECT_EQ(0u, gray_pixels[3][2]);
EXPECT_EQ(255u, gray_pixels[3][3]);
EXPECT_EQ(255u, gray_pixels[4][0]);
EXPECT_EQ(255u, gray_pixels[4][1]);
EXPECT_EQ(255u, gray_pixels[4][2]);
EXPECT_EQ(255u, gray_pixels[4][3]);
EXPECT_EQ(96u, gray_pixels[5][0]);
EXPECT_EQ(96u, gray_pixels[5][1]);
EXPECT_EQ(96u, gray_pixels[5][2]);
EXPECT_EQ(224u, gray_pixels[5][3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBGrayTo(&orig_pixels[0][0], 0, &gray_pixels[0][0], 0, 1280, 1);
}
}
TEST_F(LibYUVPlanarTest, TestARGBSepia) {
SIMD_ALIGNED(uint8_t orig_pixels[1280][4]);
memset(orig_pixels, 0, sizeof(orig_pixels));
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test black
orig_pixels[3][0] = 0u;
orig_pixels[3][1] = 0u;
orig_pixels[3][2] = 0u;
orig_pixels[3][3] = 255u;
// Test white
orig_pixels[4][0] = 255u;
orig_pixels[4][1] = 255u;
orig_pixels[4][2] = 255u;
orig_pixels[4][3] = 255u;
// Test color
orig_pixels[5][0] = 16u;
orig_pixels[5][1] = 64u;
orig_pixels[5][2] = 192u;
orig_pixels[5][3] = 224u;
// Do 16 to test asm version.
ARGBSepia(&orig_pixels[0][0], 0, 0, 0, 16, 1);
EXPECT_EQ(33u, orig_pixels[0][0]);
EXPECT_EQ(43u, orig_pixels[0][1]);
EXPECT_EQ(47u, orig_pixels[0][2]);
EXPECT_EQ(128u, orig_pixels[0][3]);
EXPECT_EQ(135u, orig_pixels[1][0]);
EXPECT_EQ(175u, orig_pixels[1][1]);
EXPECT_EQ(195u, orig_pixels[1][2]);
EXPECT_EQ(0u, orig_pixels[1][3]);
EXPECT_EQ(69u, orig_pixels[2][0]);
EXPECT_EQ(89u, orig_pixels[2][1]);
EXPECT_EQ(99u, orig_pixels[2][2]);
EXPECT_EQ(255u, orig_pixels[2][3]);
EXPECT_EQ(0u, orig_pixels[3][0]);
EXPECT_EQ(0u, orig_pixels[3][1]);
EXPECT_EQ(0u, orig_pixels[3][2]);
EXPECT_EQ(255u, orig_pixels[3][3]);
EXPECT_EQ(239u, orig_pixels[4][0]);
EXPECT_EQ(255u, orig_pixels[4][1]);
EXPECT_EQ(255u, orig_pixels[4][2]);
EXPECT_EQ(255u, orig_pixels[4][3]);
EXPECT_EQ(88u, orig_pixels[5][0]);
EXPECT_EQ(114u, orig_pixels[5][1]);
EXPECT_EQ(127u, orig_pixels[5][2]);
EXPECT_EQ(224u, orig_pixels[5][3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBSepia(&orig_pixels[0][0], 0, 0, 0, 1280, 1);
}
}
TEST_F(LibYUVPlanarTest, TestARGBColorMatrix) {
SIMD_ALIGNED(uint8_t orig_pixels[1280][4]);
SIMD_ALIGNED(uint8_t dst_pixels_opt[1280][4]);
SIMD_ALIGNED(uint8_t dst_pixels_c[1280][4]);
// Matrix for Sepia.
SIMD_ALIGNED(static const int8_t kRGBToSepia[]) = {
17 / 2, 68 / 2, 35 / 2, 0, 22 / 2, 88 / 2, 45 / 2, 0,
24 / 2, 98 / 2, 50 / 2, 0, 0, 0, 0, 64, // Copy alpha.
};
memset(orig_pixels, 0, sizeof(orig_pixels));
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test color
orig_pixels[3][0] = 16u;
orig_pixels[3][1] = 64u;
orig_pixels[3][2] = 192u;
orig_pixels[3][3] = 224u;
// Do 16 to test asm version.
ARGBColorMatrix(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
&kRGBToSepia[0], 16, 1);
EXPECT_EQ(31u, dst_pixels_opt[0][0]);
EXPECT_EQ(43u, dst_pixels_opt[0][1]);
EXPECT_EQ(47u, dst_pixels_opt[0][2]);
EXPECT_EQ(128u, dst_pixels_opt[0][3]);
EXPECT_EQ(135u, dst_pixels_opt[1][0]);
EXPECT_EQ(175u, dst_pixels_opt[1][1]);
EXPECT_EQ(195u, dst_pixels_opt[1][2]);
EXPECT_EQ(0u, dst_pixels_opt[1][3]);
EXPECT_EQ(67u, dst_pixels_opt[2][0]);
EXPECT_EQ(87u, dst_pixels_opt[2][1]);
EXPECT_EQ(99u, dst_pixels_opt[2][2]);
EXPECT_EQ(255u, dst_pixels_opt[2][3]);
EXPECT_EQ(87u, dst_pixels_opt[3][0]);
EXPECT_EQ(112u, dst_pixels_opt[3][1]);
EXPECT_EQ(127u, dst_pixels_opt[3][2]);
EXPECT_EQ(224u, dst_pixels_opt[3][3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
MaskCpuFlags(disable_cpu_flags_);
ARGBColorMatrix(&orig_pixels[0][0], 0, &dst_pixels_c[0][0], 0,
&kRGBToSepia[0], 1280, 1);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBColorMatrix(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
&kRGBToSepia[0], 1280, 1);
}
for (int i = 0; i < 1280; ++i) {
EXPECT_EQ(dst_pixels_c[i][0], dst_pixels_opt[i][0]);
EXPECT_EQ(dst_pixels_c[i][1], dst_pixels_opt[i][1]);
EXPECT_EQ(dst_pixels_c[i][2], dst_pixels_opt[i][2]);
EXPECT_EQ(dst_pixels_c[i][3], dst_pixels_opt[i][3]);
}
}
TEST_F(LibYUVPlanarTest, TestRGBColorMatrix) {
SIMD_ALIGNED(uint8_t orig_pixels[1280][4]);
// Matrix for Sepia.
SIMD_ALIGNED(static const int8_t kRGBToSepia[]) = {
17, 68, 35, 0, 22, 88, 45, 0,
24, 98, 50, 0, 0, 0, 0, 0, // Unused but makes matrix 16 bytes.
};
memset(orig_pixels, 0, sizeof(orig_pixels));
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test color
orig_pixels[3][0] = 16u;
orig_pixels[3][1] = 64u;
orig_pixels[3][2] = 192u;
orig_pixels[3][3] = 224u;
// Do 16 to test asm version.
RGBColorMatrix(&orig_pixels[0][0], 0, &kRGBToSepia[0], 0, 0, 16, 1);
EXPECT_EQ(31u, orig_pixels[0][0]);
EXPECT_EQ(43u, orig_pixels[0][1]);
EXPECT_EQ(47u, orig_pixels[0][2]);
EXPECT_EQ(128u, orig_pixels[0][3]);
EXPECT_EQ(135u, orig_pixels[1][0]);
EXPECT_EQ(175u, orig_pixels[1][1]);
EXPECT_EQ(195u, orig_pixels[1][2]);
EXPECT_EQ(0u, orig_pixels[1][3]);
EXPECT_EQ(67u, orig_pixels[2][0]);
EXPECT_EQ(87u, orig_pixels[2][1]);
EXPECT_EQ(99u, orig_pixels[2][2]);
EXPECT_EQ(255u, orig_pixels[2][3]);
EXPECT_EQ(87u, orig_pixels[3][0]);
EXPECT_EQ(112u, orig_pixels[3][1]);
EXPECT_EQ(127u, orig_pixels[3][2]);
EXPECT_EQ(224u, orig_pixels[3][3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
RGBColorMatrix(&orig_pixels[0][0], 0, &kRGBToSepia[0], 0, 0, 1280, 1);
}
}
TEST_F(LibYUVPlanarTest, TestARGBColorTable) {
SIMD_ALIGNED(uint8_t orig_pixels[1280][4]);
memset(orig_pixels, 0, sizeof(orig_pixels));
// Matrix for Sepia.
static const uint8_t kARGBTable[256 * 4] = {
1u, 2u, 3u, 4u, 5u, 6u, 7u, 8u, 9u, 10u, 11u, 12u, 13u, 14u, 15u, 16u,
};
orig_pixels[0][0] = 0u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 0u;
orig_pixels[1][0] = 1u;
orig_pixels[1][1] = 1u;
orig_pixels[1][2] = 1u;
orig_pixels[1][3] = 1u;
orig_pixels[2][0] = 2u;
orig_pixels[2][1] = 2u;
orig_pixels[2][2] = 2u;
orig_pixels[2][3] = 2u;
orig_pixels[3][0] = 0u;
orig_pixels[3][1] = 1u;
orig_pixels[3][2] = 2u;
orig_pixels[3][3] = 3u;
// Do 16 to test asm version.
ARGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 16, 1);
EXPECT_EQ(1u, orig_pixels[0][0]);
EXPECT_EQ(2u, orig_pixels[0][1]);
EXPECT_EQ(3u, orig_pixels[0][2]);
EXPECT_EQ(4u, orig_pixels[0][3]);
EXPECT_EQ(5u, orig_pixels[1][0]);
EXPECT_EQ(6u, orig_pixels[1][1]);
EXPECT_EQ(7u, orig_pixels[1][2]);
EXPECT_EQ(8u, orig_pixels[1][3]);
EXPECT_EQ(9u, orig_pixels[2][0]);
EXPECT_EQ(10u, orig_pixels[2][1]);
EXPECT_EQ(11u, orig_pixels[2][2]);
EXPECT_EQ(12u, orig_pixels[2][3]);
EXPECT_EQ(1u, orig_pixels[3][0]);
EXPECT_EQ(6u, orig_pixels[3][1]);
EXPECT_EQ(11u, orig_pixels[3][2]);
EXPECT_EQ(16u, orig_pixels[3][3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 1280, 1);
}
}
// Same as TestARGBColorTable except alpha does not change.
TEST_F(LibYUVPlanarTest, TestRGBColorTable) {
SIMD_ALIGNED(uint8_t orig_pixels[1280][4]);
memset(orig_pixels, 0, sizeof(orig_pixels));
// Matrix for Sepia.
static const uint8_t kARGBTable[256 * 4] = {
1u, 2u, 3u, 4u, 5u, 6u, 7u, 8u, 9u, 10u, 11u, 12u, 13u, 14u, 15u, 16u,
};
orig_pixels[0][0] = 0u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 0u;
orig_pixels[1][0] = 1u;
orig_pixels[1][1] = 1u;
orig_pixels[1][2] = 1u;
orig_pixels[1][3] = 1u;
orig_pixels[2][0] = 2u;
orig_pixels[2][1] = 2u;
orig_pixels[2][2] = 2u;
orig_pixels[2][3] = 2u;
orig_pixels[3][0] = 0u;
orig_pixels[3][1] = 1u;
orig_pixels[3][2] = 2u;
orig_pixels[3][3] = 3u;
// Do 16 to test asm version.
RGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 16, 1);
EXPECT_EQ(1u, orig_pixels[0][0]);
EXPECT_EQ(2u, orig_pixels[0][1]);
EXPECT_EQ(3u, orig_pixels[0][2]);
EXPECT_EQ(0u, orig_pixels[0][3]); // Alpha unchanged.
EXPECT_EQ(5u, orig_pixels[1][0]);
EXPECT_EQ(6u, orig_pixels[1][1]);
EXPECT_EQ(7u, orig_pixels[1][2]);
EXPECT_EQ(1u, orig_pixels[1][3]); // Alpha unchanged.
EXPECT_EQ(9u, orig_pixels[2][0]);
EXPECT_EQ(10u, orig_pixels[2][1]);
EXPECT_EQ(11u, orig_pixels[2][2]);
EXPECT_EQ(2u, orig_pixels[2][3]); // Alpha unchanged.
EXPECT_EQ(1u, orig_pixels[3][0]);
EXPECT_EQ(6u, orig_pixels[3][1]);
EXPECT_EQ(11u, orig_pixels[3][2]);
EXPECT_EQ(3u, orig_pixels[3][3]); // Alpha unchanged.
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
RGBColorTable(&orig_pixels[0][0], 0, &kARGBTable[0], 0, 0, 1280, 1);
}
}
TEST_F(LibYUVPlanarTest, TestARGBQuantize) {
SIMD_ALIGNED(uint8_t orig_pixels[1280][4]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
ARGBQuantize(&orig_pixels[0][0], 0, (65536 + (8 / 2)) / 8, 8, 8 / 2, 0, 0,
1280, 1);
for (int i = 0; i < 1280; ++i) {
EXPECT_EQ((i / 8 * 8 + 8 / 2) & 255, orig_pixels[i][0]);
EXPECT_EQ((i / 2 / 8 * 8 + 8 / 2) & 255, orig_pixels[i][1]);
EXPECT_EQ((i / 3 / 8 * 8 + 8 / 2) & 255, orig_pixels[i][2]);
EXPECT_EQ(i & 255, orig_pixels[i][3]);
}
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBQuantize(&orig_pixels[0][0], 0, (65536 + (8 / 2)) / 8, 8, 8 / 2, 0, 0,
1280, 1);
}
}
TEST_F(LibYUVPlanarTest, TestARGBMirror) {
SIMD_ALIGNED(uint8_t orig_pixels[1280][4]);
SIMD_ALIGNED(uint8_t dst_pixels[1280][4]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i / 4;
}
ARGBMirror(&orig_pixels[0][0], 0, &dst_pixels[0][0], 0, 1280, 1);
for (int i = 0; i < 1280; ++i) {
EXPECT_EQ(i & 255, dst_pixels[1280 - 1 - i][0]);
EXPECT_EQ((i / 2) & 255, dst_pixels[1280 - 1 - i][1]);
EXPECT_EQ((i / 3) & 255, dst_pixels[1280 - 1 - i][2]);
EXPECT_EQ((i / 4) & 255, dst_pixels[1280 - 1 - i][3]);
}
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBMirror(&orig_pixels[0][0], 0, &dst_pixels[0][0], 0, 1280, 1);
}
}
TEST_F(LibYUVPlanarTest, TestShade) {
SIMD_ALIGNED(uint8_t orig_pixels[1280][4]);
SIMD_ALIGNED(uint8_t shade_pixels[1280][4]);
memset(orig_pixels, 0, sizeof(orig_pixels));
orig_pixels[0][0] = 10u;
orig_pixels[0][1] = 20u;
orig_pixels[0][2] = 40u;
orig_pixels[0][3] = 80u;
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 0u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 255u;
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 0u;
orig_pixels[2][3] = 0u;
orig_pixels[3][0] = 0u;
orig_pixels[3][1] = 0u;
orig_pixels[3][2] = 0u;
orig_pixels[3][3] = 0u;
// Do 8 pixels to allow opt version to be used.
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 8, 1, 0x80ffffff);
EXPECT_EQ(10u, shade_pixels[0][0]);
EXPECT_EQ(20u, shade_pixels[0][1]);
EXPECT_EQ(40u, shade_pixels[0][2]);
EXPECT_EQ(40u, shade_pixels[0][3]);
EXPECT_EQ(0u, shade_pixels[1][0]);
EXPECT_EQ(0u, shade_pixels[1][1]);
EXPECT_EQ(0u, shade_pixels[1][2]);
EXPECT_EQ(128u, shade_pixels[1][3]);
EXPECT_EQ(0u, shade_pixels[2][0]);
EXPECT_EQ(0u, shade_pixels[2][1]);
EXPECT_EQ(0u, shade_pixels[2][2]);
EXPECT_EQ(0u, shade_pixels[2][3]);
EXPECT_EQ(0u, shade_pixels[3][0]);
EXPECT_EQ(0u, shade_pixels[3][1]);
EXPECT_EQ(0u, shade_pixels[3][2]);
EXPECT_EQ(0u, shade_pixels[3][3]);
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 8, 1, 0x80808080);
EXPECT_EQ(5u, shade_pixels[0][0]);
EXPECT_EQ(10u, shade_pixels[0][1]);
EXPECT_EQ(20u, shade_pixels[0][2]);
EXPECT_EQ(40u, shade_pixels[0][3]);
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 8, 1, 0x10204080);
EXPECT_EQ(5u, shade_pixels[0][0]);
EXPECT_EQ(5u, shade_pixels[0][1]);
EXPECT_EQ(5u, shade_pixels[0][2]);
EXPECT_EQ(5u, shade_pixels[0][3]);
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBShade(&orig_pixels[0][0], 0, &shade_pixels[0][0], 0, 1280, 1,
0x80808080);
}
}
TEST_F(LibYUVPlanarTest, TestARGBInterpolate) {
SIMD_ALIGNED(uint8_t orig_pixels_0[1280][4]);
SIMD_ALIGNED(uint8_t orig_pixels_1[1280][4]);
SIMD_ALIGNED(uint8_t interpolate_pixels[1280][4]);
memset(orig_pixels_0, 0, sizeof(orig_pixels_0));
memset(orig_pixels_1, 0, sizeof(orig_pixels_1));
orig_pixels_0[0][0] = 16u;
orig_pixels_0[0][1] = 32u;
orig_pixels_0[0][2] = 64u;
orig_pixels_0[0][3] = 128u;
orig_pixels_0[1][0] = 0u;
orig_pixels_0[1][1] = 0u;
orig_pixels_0[1][2] = 0u;
orig_pixels_0[1][3] = 255u;
orig_pixels_0[2][0] = 0u;
orig_pixels_0[2][1] = 0u;
orig_pixels_0[2][2] = 0u;
orig_pixels_0[2][3] = 0u;
orig_pixels_0[3][0] = 0u;
orig_pixels_0[3][1] = 0u;
orig_pixels_0[3][2] = 0u;
orig_pixels_0[3][3] = 0u;
orig_pixels_1[0][0] = 0u;
orig_pixels_1[0][1] = 0u;
orig_pixels_1[0][2] = 0u;
orig_pixels_1[0][3] = 0u;
orig_pixels_1[1][0] = 0u;
orig_pixels_1[1][1] = 0u;
orig_pixels_1[1][2] = 0u;
orig_pixels_1[1][3] = 0u;
orig_pixels_1[2][0] = 0u;
orig_pixels_1[2][1] = 0u;
orig_pixels_1[2][2] = 0u;
orig_pixels_1[2][3] = 0u;
orig_pixels_1[3][0] = 255u;
orig_pixels_1[3][1] = 255u;
orig_pixels_1[3][2] = 255u;
orig_pixels_1[3][3] = 255u;
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
&interpolate_pixels[0][0], 0, 4, 1, 128);
EXPECT_EQ(8u, interpolate_pixels[0][0]);
EXPECT_EQ(16u, interpolate_pixels[0][1]);
EXPECT_EQ(32u, interpolate_pixels[0][2]);
EXPECT_EQ(64u, interpolate_pixels[0][3]);
EXPECT_EQ(0u, interpolate_pixels[1][0]);
EXPECT_EQ(0u, interpolate_pixels[1][1]);
EXPECT_EQ(0u, interpolate_pixels[1][2]);
EXPECT_EQ(128u, interpolate_pixels[1][3]);
EXPECT_EQ(0u, interpolate_pixels[2][0]);
EXPECT_EQ(0u, interpolate_pixels[2][1]);
EXPECT_EQ(0u, interpolate_pixels[2][2]);
EXPECT_EQ(0u, interpolate_pixels[2][3]);
EXPECT_EQ(128u, interpolate_pixels[3][0]);
EXPECT_EQ(128u, interpolate_pixels[3][1]);
EXPECT_EQ(128u, interpolate_pixels[3][2]);
EXPECT_EQ(128u, interpolate_pixels[3][3]);
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
&interpolate_pixels[0][0], 0, 4, 1, 0);
EXPECT_EQ(16u, interpolate_pixels[0][0]);
EXPECT_EQ(32u, interpolate_pixels[0][1]);
EXPECT_EQ(64u, interpolate_pixels[0][2]);
EXPECT_EQ(128u, interpolate_pixels[0][3]);
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
&interpolate_pixels[0][0], 0, 4, 1, 192);
EXPECT_EQ(4u, interpolate_pixels[0][0]);
EXPECT_EQ(8u, interpolate_pixels[0][1]);
EXPECT_EQ(16u, interpolate_pixels[0][2]);
EXPECT_EQ(32u, interpolate_pixels[0][3]);
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBInterpolate(&orig_pixels_0[0][0], 0, &orig_pixels_1[0][0], 0,
&interpolate_pixels[0][0], 0, 1280, 1, 128);
}
}
TEST_F(LibYUVPlanarTest, TestInterpolatePlane) {
SIMD_ALIGNED(uint8_t orig_pixels_0[1280]);
SIMD_ALIGNED(uint8_t orig_pixels_1[1280]);
SIMD_ALIGNED(uint8_t interpolate_pixels[1280]);
memset(orig_pixels_0, 0, sizeof(orig_pixels_0));
memset(orig_pixels_1, 0, sizeof(orig_pixels_1));
orig_pixels_0[0] = 16u;
orig_pixels_0[1] = 32u;
orig_pixels_0[2] = 64u;
orig_pixels_0[3] = 128u;
orig_pixels_0[4] = 0u;
orig_pixels_0[5] = 0u;
orig_pixels_0[6] = 0u;
orig_pixels_0[7] = 255u;
orig_pixels_0[8] = 0u;
orig_pixels_0[9] = 0u;
orig_pixels_0[10] = 0u;
orig_pixels_0[11] = 0u;
orig_pixels_0[12] = 0u;
orig_pixels_0[13] = 0u;
orig_pixels_0[14] = 0u;
orig_pixels_0[15] = 0u;
orig_pixels_1[0] = 0u;
orig_pixels_1[1] = 0u;
orig_pixels_1[2] = 0u;
orig_pixels_1[3] = 0u;
orig_pixels_1[4] = 0u;
orig_pixels_1[5] = 0u;
orig_pixels_1[6] = 0u;
orig_pixels_1[7] = 0u;
orig_pixels_1[8] = 0u;
orig_pixels_1[9] = 0u;
orig_pixels_1[10] = 0u;
orig_pixels_1[11] = 0u;
orig_pixels_1[12] = 255u;
orig_pixels_1[13] = 255u;
orig_pixels_1[14] = 255u;
orig_pixels_1[15] = 255u;
InterpolatePlane(&orig_pixels_0[0], 0, &orig_pixels_1[0], 0,
&interpolate_pixels[0], 0, 16, 1, 128);
EXPECT_EQ(8u, interpolate_pixels[0]);
EXPECT_EQ(16u, interpolate_pixels[1]);
EXPECT_EQ(32u, interpolate_pixels[2]);
EXPECT_EQ(64u, interpolate_pixels[3]);
EXPECT_EQ(0u, interpolate_pixels[4]);
EXPECT_EQ(0u, interpolate_pixels[5]);
EXPECT_EQ(0u, interpolate_pixels[6]);
EXPECT_EQ(128u, interpolate_pixels[7]);
EXPECT_EQ(0u, interpolate_pixels[8]);
EXPECT_EQ(0u, interpolate_pixels[9]);
EXPECT_EQ(0u, interpolate_pixels[10]);
EXPECT_EQ(0u, interpolate_pixels[11]);
EXPECT_EQ(128u, interpolate_pixels[12]);
EXPECT_EQ(128u, interpolate_pixels[13]);
EXPECT_EQ(128u, interpolate_pixels[14]);
EXPECT_EQ(128u, interpolate_pixels[15]);
InterpolatePlane(&orig_pixels_0[0], 0, &orig_pixels_1[0], 0,
&interpolate_pixels[0], 0, 16, 1, 0);
EXPECT_EQ(16u, interpolate_pixels[0]);
EXPECT_EQ(32u, interpolate_pixels[1]);
EXPECT_EQ(64u, interpolate_pixels[2]);
EXPECT_EQ(128u, interpolate_pixels[3]);
InterpolatePlane(&orig_pixels_0[0], 0, &orig_pixels_1[0], 0,
&interpolate_pixels[0], 0, 16, 1, 192);
EXPECT_EQ(4u, interpolate_pixels[0]);
EXPECT_EQ(8u, interpolate_pixels[1]);
EXPECT_EQ(16u, interpolate_pixels[2]);
EXPECT_EQ(32u, interpolate_pixels[3]);
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
InterpolatePlane(&orig_pixels_0[0], 0, &orig_pixels_1[0], 0,
&interpolate_pixels[0], 0, 1280, 1, 123);
}
}
#define TESTTERP(FMT_A, BPP_A, STRIDE_A, FMT_B, BPP_B, STRIDE_B, W1280, TERP, \
N, NEG, OFF) \
TEST_F(LibYUVPlanarTest, ARGBInterpolate##TERP##N) { \
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
const int kHeight = benchmark_height_; \
const int kStrideA = \
(kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A; \
const int kStrideB = \
(kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B; \
align_buffer_page_end(src_argb_a, kStrideA* kHeight + OFF); \
align_buffer_page_end(src_argb_b, kStrideA* kHeight + OFF); \
align_buffer_page_end(dst_argb_c, kStrideB* kHeight); \
align_buffer_page_end(dst_argb_opt, kStrideB* kHeight); \
for (int i = 0; i < kStrideA * kHeight; ++i) { \
src_argb_a[i + OFF] = (fastrand() & 0xff); \
src_argb_b[i + OFF] = (fastrand() & 0xff); \
} \
MaskCpuFlags(disable_cpu_flags_); \
ARGBInterpolate(src_argb_a + OFF, kStrideA, src_argb_b + OFF, kStrideA, \
dst_argb_c, kStrideB, kWidth, NEG kHeight, TERP); \
MaskCpuFlags(benchmark_cpu_info_); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
ARGBInterpolate(src_argb_a + OFF, kStrideA, src_argb_b + OFF, kStrideA, \
dst_argb_opt, kStrideB, kWidth, NEG kHeight, TERP); \
} \
for (int i = 0; i < kStrideB * kHeight; ++i) { \
EXPECT_EQ(dst_argb_c[i], dst_argb_opt[i]); \
} \
free_aligned_buffer_page_end(src_argb_a); \
free_aligned_buffer_page_end(src_argb_b); \
free_aligned_buffer_page_end(dst_argb_c); \
free_aligned_buffer_page_end(dst_argb_opt); \
}
#define TESTINTERPOLATE(TERP) \
TESTTERP(ARGB, 4, 1, ARGB, 4, 1, benchmark_width_ - 1, TERP, _Any, +, 0) \
TESTTERP(ARGB, 4, 1, ARGB, 4, 1, benchmark_width_, TERP, _Unaligned, +, 1) \
TESTTERP(ARGB, 4, 1, ARGB, 4, 1, benchmark_width_, TERP, _Invert, -, 0) \
TESTTERP(ARGB, 4, 1, ARGB, 4, 1, benchmark_width_, TERP, _Opt, +, 0)
TESTINTERPOLATE(0)
TESTINTERPOLATE(64)
TESTINTERPOLATE(128)
TESTINTERPOLATE(192)
TESTINTERPOLATE(255)
static int TestBlend(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb_a, kStride * height + off);
align_buffer_page_end(src_argb_b, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
for (int i = 0; i < kStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
src_argb_b[i + off] = (fastrand() & 0xff);
}
ARGBAttenuate(src_argb_a + off, kStride, src_argb_a + off, kStride, width,
height);
ARGBAttenuate(src_argb_b + off, kStride, src_argb_b + off, kStride, width,
height);
memset(dst_argb_c, 255, kStride * height);
memset(dst_argb_opt, 255, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBBlend(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_c,
kStride, width, invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBBlend(src_argb_a + off, kStride, src_argb_b + off, kStride,
dst_argb_opt, kStride, width, invert * height);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(src_argb_b);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBBlend_Any) {
int max_diff =
TestBlend(benchmark_width_ - 4, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlend_Unaligned) {
int max_diff =
TestBlend(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlend_Invert) {
int max_diff =
TestBlend(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlend_Opt) {
int max_diff =
TestBlend(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 1);
}
static void TestBlendPlane(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 1;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb_a, kStride * height + off);
align_buffer_page_end(src_argb_b, kStride * height + off);
align_buffer_page_end(src_argb_alpha, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height + off);
align_buffer_page_end(dst_argb_opt, kStride * height + off);
memset(dst_argb_c, 255, kStride * height + off);
memset(dst_argb_opt, 255, kStride * height + off);
// Test source is maintained exactly if alpha is 255.
for (int i = 0; i < width; ++i) {
src_argb_a[i + off] = i & 255;
src_argb_b[i + off] = 255 - (i & 255);
}
memset(src_argb_alpha + off, 255, width);
BlendPlane(src_argb_a + off, width, src_argb_b + off, width,
src_argb_alpha + off, width, dst_argb_opt + off, width, width, 1);
for (int i = 0; i < width; ++i) {
EXPECT_EQ(src_argb_a[i + off], dst_argb_opt[i + off]);
}
// Test destination is maintained exactly if alpha is 0.
memset(src_argb_alpha + off, 0, width);
BlendPlane(src_argb_a + off, width, src_argb_b + off, width,
src_argb_alpha + off, width, dst_argb_opt + off, width, width, 1);
for (int i = 0; i < width; ++i) {
EXPECT_EQ(src_argb_b[i + off], dst_argb_opt[i + off]);
}
for (int i = 0; i < kStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
src_argb_b[i + off] = (fastrand() & 0xff);
src_argb_alpha[i + off] = (fastrand() & 0xff);
}
MaskCpuFlags(disable_cpu_flags);
BlendPlane(src_argb_a + off, width, src_argb_b + off, width,
src_argb_alpha + off, width, dst_argb_c + off, width, width,
invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
BlendPlane(src_argb_a + off, width, src_argb_b + off, width,
src_argb_alpha + off, width, dst_argb_opt + off, width, width,
invert * height);
}
for (int i = 0; i < kStride * height; ++i) {
EXPECT_EQ(dst_argb_c[i + off], dst_argb_opt[i + off]);
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(src_argb_b);
free_aligned_buffer_page_end(src_argb_alpha);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
}
TEST_F(LibYUVPlanarTest, BlendPlane_Opt) {
TestBlendPlane(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
}
TEST_F(LibYUVPlanarTest, BlendPlane_Unaligned) {
TestBlendPlane(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
}
TEST_F(LibYUVPlanarTest, BlendPlane_Any) {
TestBlendPlane(benchmark_width_ - 4, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
}
TEST_F(LibYUVPlanarTest, BlendPlane_Invert) {
TestBlendPlane(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 1);
}
#define SUBSAMPLE(v, a) ((((v) + (a)-1)) / (a))
static void TestI420Blend(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
width = ((width) > 0) ? (width) : 1;
const int kStrideUV = SUBSAMPLE(width, 2);
const int kSizeUV = kStrideUV * SUBSAMPLE(height, 2);
align_buffer_page_end(src_y0, width * height + off);
align_buffer_page_end(src_u0, kSizeUV + off);
align_buffer_page_end(src_v0, kSizeUV + off);
align_buffer_page_end(src_y1, width * height + off);
align_buffer_page_end(src_u1, kSizeUV + off);
align_buffer_page_end(src_v1, kSizeUV + off);
align_buffer_page_end(src_a, width * height + off);
align_buffer_page_end(dst_y_c, width * height + off);
align_buffer_page_end(dst_u_c, kSizeUV + off);
align_buffer_page_end(dst_v_c, kSizeUV + off);
align_buffer_page_end(dst_y_opt, width * height + off);
align_buffer_page_end(dst_u_opt, kSizeUV + off);
align_buffer_page_end(dst_v_opt, kSizeUV + off);
MemRandomize(src_y0, width * height + off);
MemRandomize(src_u0, kSizeUV + off);
MemRandomize(src_v0, kSizeUV + off);
MemRandomize(src_y1, width * height + off);
MemRandomize(src_u1, kSizeUV + off);
MemRandomize(src_v1, kSizeUV + off);
MemRandomize(src_a, width * height + off);
memset(dst_y_c, 255, width * height + off);
memset(dst_u_c, 255, kSizeUV + off);
memset(dst_v_c, 255, kSizeUV + off);
memset(dst_y_opt, 255, width * height + off);
memset(dst_u_opt, 255, kSizeUV + off);
memset(dst_v_opt, 255, kSizeUV + off);
MaskCpuFlags(disable_cpu_flags);
I420Blend(src_y0 + off, width, src_u0 + off, kStrideUV, src_v0 + off,
kStrideUV, src_y1 + off, width, src_u1 + off, kStrideUV,
src_v1 + off, kStrideUV, src_a + off, width, dst_y_c + off, width,
dst_u_c + off, kStrideUV, dst_v_c + off, kStrideUV, width,
invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
I420Blend(src_y0 + off, width, src_u0 + off, kStrideUV, src_v0 + off,
kStrideUV, src_y1 + off, width, src_u1 + off, kStrideUV,
src_v1 + off, kStrideUV, src_a + off, width, dst_y_opt + off,
width, dst_u_opt + off, kStrideUV, dst_v_opt + off, kStrideUV,
width, invert * height);
}
for (int i = 0; i < width * height; ++i) {
EXPECT_EQ(dst_y_c[i + off], dst_y_opt[i + off]);
}
for (int i = 0; i < kSizeUV; ++i) {
EXPECT_EQ(dst_u_c[i + off], dst_u_opt[i + off]);
EXPECT_EQ(dst_v_c[i + off], dst_v_opt[i + off]);
}
free_aligned_buffer_page_end(src_y0);
free_aligned_buffer_page_end(src_u0);
free_aligned_buffer_page_end(src_v0);
free_aligned_buffer_page_end(src_y1);
free_aligned_buffer_page_end(src_u1);
free_aligned_buffer_page_end(src_v1);
free_aligned_buffer_page_end(src_a);
free_aligned_buffer_page_end(dst_y_c);
free_aligned_buffer_page_end(dst_u_c);
free_aligned_buffer_page_end(dst_v_c);
free_aligned_buffer_page_end(dst_y_opt);
free_aligned_buffer_page_end(dst_u_opt);
free_aligned_buffer_page_end(dst_v_opt);
}
TEST_F(LibYUVPlanarTest, I420Blend_Opt) {
TestI420Blend(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
}
TEST_F(LibYUVPlanarTest, I420Blend_Unaligned) {
TestI420Blend(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
}
// TODO(fbarchard): DISABLED because _Any uses C. Avoid C and re-enable.
TEST_F(LibYUVPlanarTest, DISABLED_I420Blend_Any) {
TestI420Blend(benchmark_width_ - 4, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
}
TEST_F(LibYUVPlanarTest, I420Blend_Invert) {
TestI420Blend(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0);
}
TEST_F(LibYUVPlanarTest, TestAffine) {
SIMD_ALIGNED(uint8_t orig_pixels_0[1280][4]);
SIMD_ALIGNED(uint8_t interpolate_pixels_C[1280][4]);
for (int i = 0; i < 1280; ++i) {
for (int j = 0; j < 4; ++j) {
orig_pixels_0[i][j] = i;
}
}
float uv_step[4] = {0.f, 0.f, 0.75f, 0.f};
ARGBAffineRow_C(&orig_pixels_0[0][0], 0, &interpolate_pixels_C[0][0], uv_step,
1280);
EXPECT_EQ(0u, interpolate_pixels_C[0][0]);
EXPECT_EQ(96u, interpolate_pixels_C[128][0]);
EXPECT_EQ(191u, interpolate_pixels_C[255][3]);
#if defined(HAS_ARGBAFFINEROW_SSE2)
SIMD_ALIGNED(uint8_t interpolate_pixels_Opt[1280][4]);
ARGBAffineRow_SSE2(&orig_pixels_0[0][0], 0, &interpolate_pixels_Opt[0][0],
uv_step, 1280);
EXPECT_EQ(0, memcmp(interpolate_pixels_Opt, interpolate_pixels_C, 1280 * 4));
int has_sse2 = TestCpuFlag(kCpuHasSSE2);
if (has_sse2) {
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBAffineRow_SSE2(&orig_pixels_0[0][0], 0, &interpolate_pixels_Opt[0][0],
uv_step, 1280);
}
}
#endif
}
TEST_F(LibYUVPlanarTest, TestCopyPlane) {
int err = 0;
int yw = benchmark_width_;
int yh = benchmark_height_;
int b = 12;
int i, j;
int y_plane_size = (yw + b * 2) * (yh + b * 2);
align_buffer_page_end(orig_y, y_plane_size);
align_buffer_page_end(dst_c, y_plane_size);
align_buffer_page_end(dst_opt, y_plane_size);
memset(orig_y, 0, y_plane_size);
memset(dst_c, 0, y_plane_size);
memset(dst_opt, 0, y_plane_size);
// Fill image buffers with random data.
for (i = b; i < (yh + b); ++i) {
for (j = b; j < (yw + b); ++j) {
orig_y[i * (yw + b * 2) + j] = fastrand() & 0xff;
}
}
// Fill destination buffers with random data.
for (i = 0; i < y_plane_size; ++i) {
uint8_t random_number = fastrand() & 0x7f;
dst_c[i] = random_number;
dst_opt[i] = dst_c[i];
}
int y_off = b * (yw + b * 2) + b;
int y_st = yw + b * 2;
int stride = 8;
// Disable all optimizations.
MaskCpuFlags(disable_cpu_flags_);
for (j = 0; j < benchmark_iterations_; j++) {
CopyPlane(orig_y + y_off, y_st, dst_c + y_off, stride, yw, yh);
}
// Enable optimizations.
MaskCpuFlags(benchmark_cpu_info_);
for (j = 0; j < benchmark_iterations_; j++) {
CopyPlane(orig_y + y_off, y_st, dst_opt + y_off, stride, yw, yh);
}
for (i = 0; i < y_plane_size; ++i) {
if (dst_c[i] != dst_opt[i]) {
++err;
}
}
free_aligned_buffer_page_end(orig_y);
free_aligned_buffer_page_end(dst_c);
free_aligned_buffer_page_end(dst_opt);
EXPECT_EQ(0, err);
}
static int TestMultiply(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb_a, kStride * height + off);
align_buffer_page_end(src_argb_b, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
for (int i = 0; i < kStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
src_argb_b[i + off] = (fastrand() & 0xff);
}
memset(dst_argb_c, 0, kStride * height);
memset(dst_argb_opt, 0, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBMultiply(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_c,
kStride, width, invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBMultiply(src_argb_a + off, kStride, src_argb_b + off, kStride,
dst_argb_opt, kStride, width, invert * height);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(src_argb_b);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBMultiply_Any) {
int max_diff = TestMultiply(benchmark_width_ - 1, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBMultiply_Unaligned) {
int max_diff =
TestMultiply(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBMultiply_Invert) {
int max_diff =
TestMultiply(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBMultiply_Opt) {
int max_diff =
TestMultiply(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 1);
}
static int TestAdd(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb_a, kStride * height + off);
align_buffer_page_end(src_argb_b, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
for (int i = 0; i < kStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
src_argb_b[i + off] = (fastrand() & 0xff);
}
memset(dst_argb_c, 0, kStride * height);
memset(dst_argb_opt, 0, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBAdd(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_c,
kStride, width, invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBAdd(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_opt,
kStride, width, invert * height);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(src_argb_b);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBAdd_Any) {
int max_diff =
TestAdd(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBAdd_Unaligned) {
int max_diff =
TestAdd(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBAdd_Invert) {
int max_diff =
TestAdd(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBAdd_Opt) {
int max_diff =
TestAdd(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 1);
}
static int TestSubtract(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb_a, kStride * height + off);
align_buffer_page_end(src_argb_b, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
for (int i = 0; i < kStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
src_argb_b[i + off] = (fastrand() & 0xff);
}
memset(dst_argb_c, 0, kStride * height);
memset(dst_argb_opt, 0, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBSubtract(src_argb_a + off, kStride, src_argb_b + off, kStride, dst_argb_c,
kStride, width, invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBSubtract(src_argb_a + off, kStride, src_argb_b + off, kStride,
dst_argb_opt, kStride, width, invert * height);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(src_argb_b);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBSubtract_Any) {
int max_diff = TestSubtract(benchmark_width_ - 1, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBSubtract_Unaligned) {
int max_diff =
TestSubtract(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBSubtract_Invert) {
int max_diff =
TestSubtract(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBSubtract_Opt) {
int max_diff =
TestSubtract(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_LE(max_diff, 1);
}
static int TestSobel(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb_a, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
memset(src_argb_a, 0, kStride * height + off);
for (int i = 0; i < kStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
}
memset(dst_argb_c, 0, kStride * height);
memset(dst_argb_opt, 0, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBSobel(src_argb_a + off, kStride, dst_argb_c, kStride, width,
invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBSobel(src_argb_a + off, kStride, dst_argb_opt, kStride, width,
invert * height);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBSobel_Any) {
int max_diff =
TestSobel(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobel_Unaligned) {
int max_diff =
TestSobel(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobel_Invert) {
int max_diff =
TestSobel(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobel_Opt) {
int max_diff =
TestSobel(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_EQ(0, max_diff);
}
static int TestSobelToPlane(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kSrcBpp = 4;
const int kDstBpp = 1;
const int kSrcStride = (width * kSrcBpp + 15) & ~15;
const int kDstStride = (width * kDstBpp + 15) & ~15;
align_buffer_page_end(src_argb_a, kSrcStride * height + off);
align_buffer_page_end(dst_argb_c, kDstStride * height);
align_buffer_page_end(dst_argb_opt, kDstStride * height);
memset(src_argb_a, 0, kSrcStride * height + off);
for (int i = 0; i < kSrcStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
}
memset(dst_argb_c, 0, kDstStride * height);
memset(dst_argb_opt, 0, kDstStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBSobelToPlane(src_argb_a + off, kSrcStride, dst_argb_c, kDstStride, width,
invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBSobelToPlane(src_argb_a + off, kSrcStride, dst_argb_opt, kDstStride,
width, invert * height);
}
int max_diff = 0;
for (int i = 0; i < kDstStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBSobelToPlane_Any) {
int max_diff = TestSobelToPlane(benchmark_width_ - 1, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobelToPlane_Unaligned) {
int max_diff = TestSobelToPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 1);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobelToPlane_Invert) {
int max_diff = TestSobelToPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, -1, 0);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobelToPlane_Opt) {
int max_diff = TestSobelToPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0);
EXPECT_EQ(0, max_diff);
}
static int TestSobelXY(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb_a, kStride * height + off);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
memset(src_argb_a, 0, kStride * height + off);
for (int i = 0; i < kStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
}
memset(dst_argb_c, 0, kStride * height);
memset(dst_argb_opt, 0, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBSobelXY(src_argb_a + off, kStride, dst_argb_c, kStride, width,
invert * height);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBSobelXY(src_argb_a + off, kStride, dst_argb_opt, kStride, width,
invert * height);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBSobelXY_Any) {
int max_diff = TestSobelXY(benchmark_width_ - 1, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobelXY_Unaligned) {
int max_diff =
TestSobelXY(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobelXY_Invert) {
int max_diff =
TestSobelXY(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBSobelXY_Opt) {
int max_diff =
TestSobelXY(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0);
EXPECT_EQ(0, max_diff);
}
static int TestBlur(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off,
int radius) {
if (width < 1) {
width = 1;
}
const int kBpp = 4;
const int kStride = width * kBpp;
align_buffer_page_end(src_argb_a, kStride * height + off);
align_buffer_page_end(dst_cumsum, width * height * 16);
align_buffer_page_end(dst_argb_c, kStride * height);
align_buffer_page_end(dst_argb_opt, kStride * height);
for (int i = 0; i < kStride * height; ++i) {
src_argb_a[i + off] = (fastrand() & 0xff);
}
memset(dst_cumsum, 0, width * height * 16);
memset(dst_argb_c, 0, kStride * height);
memset(dst_argb_opt, 0, kStride * height);
MaskCpuFlags(disable_cpu_flags);
ARGBBlur(src_argb_a + off, kStride, dst_argb_c, kStride,
reinterpret_cast<int32_t*>(dst_cumsum), width * 4, width,
invert * height, radius);
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
ARGBBlur(src_argb_a + off, kStride, dst_argb_opt, kStride,
reinterpret_cast<int32_t*>(dst_cumsum), width * 4, width,
invert * height, radius);
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i]) -
static_cast<int>(dst_argb_opt[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(src_argb_a);
free_aligned_buffer_page_end(dst_cumsum);
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
static const int kBlurSize = 55;
TEST_F(LibYUVPlanarTest, ARGBBlur_Any) {
int max_diff =
TestBlur(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0, kBlurSize);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlur_Unaligned) {
int max_diff =
TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1, kBlurSize);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlur_Invert) {
int max_diff =
TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0, kBlurSize);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlur_Opt) {
int max_diff =
TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0, kBlurSize);
EXPECT_LE(max_diff, 1);
}
static const int kBlurSmallSize = 5;
TEST_F(LibYUVPlanarTest, ARGBBlurSmall_Any) {
int max_diff =
TestBlur(benchmark_width_ - 1, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0, kBlurSmallSize);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlurSmall_Unaligned) {
int max_diff =
TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1, kBlurSmallSize);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlurSmall_Invert) {
int max_diff =
TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0, kBlurSmallSize);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, ARGBBlurSmall_Opt) {
int max_diff =
TestBlur(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0, kBlurSmallSize);
EXPECT_LE(max_diff, 1);
}
TEST_F(LibYUVPlanarTest, TestARGBPolynomial) {
SIMD_ALIGNED(uint8_t orig_pixels[1280][4]);
SIMD_ALIGNED(uint8_t dst_pixels_opt[1280][4]);
SIMD_ALIGNED(uint8_t dst_pixels_c[1280][4]);
memset(orig_pixels, 0, sizeof(orig_pixels));
SIMD_ALIGNED(static const float kWarmifyPolynomial[16]) = {
0.94230f, -3.03300f, -2.92500f, 0.f, // C0
0.584500f, 1.112000f, 1.535000f, 1.f, // C1 x
0.001313f, -0.002503f, -0.004496f, 0.f, // C2 x * x
0.0f, 0.000006965f, 0.000008781f, 0.f, // C3 x * x * x
};
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test white
orig_pixels[3][0] = 255u;
orig_pixels[3][1] = 255u;
orig_pixels[3][2] = 255u;
orig_pixels[3][3] = 255u;
// Test color
orig_pixels[4][0] = 16u;
orig_pixels[4][1] = 64u;
orig_pixels[4][2] = 192u;
orig_pixels[4][3] = 224u;
// Do 16 to test asm version.
ARGBPolynomial(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
&kWarmifyPolynomial[0], 16, 1);
EXPECT_EQ(235u, dst_pixels_opt[0][0]);
EXPECT_EQ(0u, dst_pixels_opt[0][1]);
EXPECT_EQ(0u, dst_pixels_opt[0][2]);
EXPECT_EQ(128u, dst_pixels_opt[0][3]);
EXPECT_EQ(0u, dst_pixels_opt[1][0]);
EXPECT_EQ(233u, dst_pixels_opt[1][1]);
EXPECT_EQ(0u, dst_pixels_opt[1][2]);
EXPECT_EQ(0u, dst_pixels_opt[1][3]);
EXPECT_EQ(0u, dst_pixels_opt[2][0]);
EXPECT_EQ(0u, dst_pixels_opt[2][1]);
EXPECT_EQ(241u, dst_pixels_opt[2][2]);
EXPECT_EQ(255u, dst_pixels_opt[2][3]);
EXPECT_EQ(235u, dst_pixels_opt[3][0]);
EXPECT_EQ(233u, dst_pixels_opt[3][1]);
EXPECT_EQ(241u, dst_pixels_opt[3][2]);
EXPECT_EQ(255u, dst_pixels_opt[3][3]);
EXPECT_EQ(10u, dst_pixels_opt[4][0]);
EXPECT_EQ(59u, dst_pixels_opt[4][1]);
EXPECT_EQ(188u, dst_pixels_opt[4][2]);
EXPECT_EQ(224u, dst_pixels_opt[4][3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
MaskCpuFlags(disable_cpu_flags_);
ARGBPolynomial(&orig_pixels[0][0], 0, &dst_pixels_c[0][0], 0,
&kWarmifyPolynomial[0], 1280, 1);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBPolynomial(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
&kWarmifyPolynomial[0], 1280, 1);
}
for (int i = 0; i < 1280; ++i) {
EXPECT_EQ(dst_pixels_c[i][0], dst_pixels_opt[i][0]);
EXPECT_EQ(dst_pixels_c[i][1], dst_pixels_opt[i][1]);
EXPECT_EQ(dst_pixels_c[i][2], dst_pixels_opt[i][2]);
EXPECT_EQ(dst_pixels_c[i][3], dst_pixels_opt[i][3]);
}
}
int TestHalfFloatPlane(int benchmark_width,
int benchmark_height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
float scale,
int mask) {
int i, j;
const int y_plane_size = benchmark_width * benchmark_height * 2;
align_buffer_page_end(orig_y, y_plane_size * 3);
uint8_t* dst_opt = orig_y + y_plane_size;
uint8_t* dst_c = orig_y + y_plane_size * 2;
MemRandomize(orig_y, y_plane_size);
memset(dst_c, 0, y_plane_size);
memset(dst_opt, 1, y_plane_size);
for (i = 0; i < y_plane_size / 2; ++i) {
reinterpret_cast<uint16_t*>(orig_y)[i] &= mask;
}
// Disable all optimizations.
MaskCpuFlags(disable_cpu_flags);
for (j = 0; j < benchmark_iterations; j++) {
HalfFloatPlane(reinterpret_cast<uint16_t*>(orig_y), benchmark_width * 2,
reinterpret_cast<uint16_t*>(dst_c), benchmark_width * 2,
scale, benchmark_width, benchmark_height);
}
// Enable optimizations.
MaskCpuFlags(benchmark_cpu_info);
for (j = 0; j < benchmark_iterations; j++) {
HalfFloatPlane(reinterpret_cast<uint16_t*>(orig_y), benchmark_width * 2,
reinterpret_cast<uint16_t*>(dst_opt), benchmark_width * 2,
scale, benchmark_width, benchmark_height);
}
int max_diff = 0;
for (i = 0; i < y_plane_size / 2; ++i) {
int abs_diff =
abs(static_cast<int>(reinterpret_cast<uint16_t*>(dst_c)[i]) -
static_cast<int>(reinterpret_cast<uint16_t*>(dst_opt)[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(orig_y);
return max_diff;
}
#if defined(__arm__)
static void EnableFlushDenormalToZero(void) {
uint32_t cw;
__asm__ __volatile__(
"vmrs %0, fpscr \n"
"orr %0, %0, #0x1000000 \n"
"vmsr fpscr, %0 \n"
: "=r"(cw)::"memory");
}
#endif
// 5 bit exponent with bias of 15 will underflow to a denormal if scale causes
// exponent to be less than 0. 15 - log2(65536) = -1/ This shouldnt normally
// happen since scale is 1/(1<<bits) where bits is 9, 10 or 12.
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_16bit_denormal) {
// 32 bit arm rounding on denormal case is off by 1 compared to C.
#if defined(__arm__)
EnableFlushDenormalToZero();
#endif
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f / 65536.0f, 65535);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_16bit_One) {
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f, 65535);
EXPECT_LE(diff, 1);
}
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_16bit_Opt) {
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f / 4096.0f, 65535);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_10bit_Opt) {
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f / 1024.0f, 1023);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_9bit_Opt) {
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f / 512.0f, 511);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_Opt) {
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f / 4096.0f, 4095);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_Offby1) {
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f / 4095.0f, 4095);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_One) {
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f, 2047);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestHalfFloatPlane_12bit_One) {
int diff = TestHalfFloatPlane(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f, 4095);
EXPECT_LE(diff, 1);
}
float TestByteToFloat(int benchmark_width,
int benchmark_height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
float scale) {
int i, j;
const int y_plane_size = benchmark_width * benchmark_height;
align_buffer_page_end(orig_y, y_plane_size * (1 + 4 + 4));
float* dst_opt = reinterpret_cast<float*>(orig_y + y_plane_size);
float* dst_c = reinterpret_cast<float*>(orig_y + y_plane_size * 5);
MemRandomize(orig_y, y_plane_size);
memset(dst_c, 0, y_plane_size * 4);
memset(dst_opt, 1, y_plane_size * 4);
// Disable all optimizations.
MaskCpuFlags(disable_cpu_flags);
ByteToFloat(orig_y, dst_c, scale, y_plane_size);
// Enable optimizations.
MaskCpuFlags(benchmark_cpu_info);
for (j = 0; j < benchmark_iterations; j++) {
ByteToFloat(orig_y, dst_opt, scale, y_plane_size);
}
float max_diff = 0;
for (i = 0; i < y_plane_size; ++i) {
float abs_diff = fabs(dst_c[i] - dst_opt[i]);
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(orig_y);
return max_diff;
}
TEST_F(LibYUVPlanarTest, TestByteToFloat) {
float diff = TestByteToFloat(benchmark_width_, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, 1.0f);
EXPECT_EQ(0.f, diff);
}
TEST_F(LibYUVPlanarTest, TestARGBLumaColorTable) {
SIMD_ALIGNED(uint8_t orig_pixels[1280][4]);
SIMD_ALIGNED(uint8_t dst_pixels_opt[1280][4]);
SIMD_ALIGNED(uint8_t dst_pixels_c[1280][4]);
memset(orig_pixels, 0, sizeof(orig_pixels));
align_buffer_page_end(lumacolortable, 32768);
int v = 0;
for (int i = 0; i < 32768; ++i) {
lumacolortable[i] = v;
v += 3;
}
// Test blue
orig_pixels[0][0] = 255u;
orig_pixels[0][1] = 0u;
orig_pixels[0][2] = 0u;
orig_pixels[0][3] = 128u;
// Test green
orig_pixels[1][0] = 0u;
orig_pixels[1][1] = 255u;
orig_pixels[1][2] = 0u;
orig_pixels[1][3] = 0u;
// Test red
orig_pixels[2][0] = 0u;
orig_pixels[2][1] = 0u;
orig_pixels[2][2] = 255u;
orig_pixels[2][3] = 255u;
// Test color
orig_pixels[3][0] = 16u;
orig_pixels[3][1] = 64u;
orig_pixels[3][2] = 192u;
orig_pixels[3][3] = 224u;
// Do 16 to test asm version.
ARGBLumaColorTable(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
&lumacolortable[0], 16, 1);
EXPECT_EQ(253u, dst_pixels_opt[0][0]);
EXPECT_EQ(0u, dst_pixels_opt[0][1]);
EXPECT_EQ(0u, dst_pixels_opt[0][2]);
EXPECT_EQ(128u, dst_pixels_opt[0][3]);
EXPECT_EQ(0u, dst_pixels_opt[1][0]);
EXPECT_EQ(253u, dst_pixels_opt[1][1]);
EXPECT_EQ(0u, dst_pixels_opt[1][2]);
EXPECT_EQ(0u, dst_pixels_opt[1][3]);
EXPECT_EQ(0u, dst_pixels_opt[2][0]);
EXPECT_EQ(0u, dst_pixels_opt[2][1]);
EXPECT_EQ(253u, dst_pixels_opt[2][2]);
EXPECT_EQ(255u, dst_pixels_opt[2][3]);
EXPECT_EQ(48u, dst_pixels_opt[3][0]);
EXPECT_EQ(192u, dst_pixels_opt[3][1]);
EXPECT_EQ(64u, dst_pixels_opt[3][2]);
EXPECT_EQ(224u, dst_pixels_opt[3][3]);
for (int i = 0; i < 1280; ++i) {
orig_pixels[i][0] = i;
orig_pixels[i][1] = i / 2;
orig_pixels[i][2] = i / 3;
orig_pixels[i][3] = i;
}
MaskCpuFlags(disable_cpu_flags_);
ARGBLumaColorTable(&orig_pixels[0][0], 0, &dst_pixels_c[0][0], 0,
lumacolortable, 1280, 1);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
ARGBLumaColorTable(&orig_pixels[0][0], 0, &dst_pixels_opt[0][0], 0,
lumacolortable, 1280, 1);
}
for (int i = 0; i < 1280; ++i) {
EXPECT_EQ(dst_pixels_c[i][0], dst_pixels_opt[i][0]);
EXPECT_EQ(dst_pixels_c[i][1], dst_pixels_opt[i][1]);
EXPECT_EQ(dst_pixels_c[i][2], dst_pixels_opt[i][2]);
EXPECT_EQ(dst_pixels_c[i][3], dst_pixels_opt[i][3]);
}
free_aligned_buffer_page_end(lumacolortable);
}
TEST_F(LibYUVPlanarTest, TestARGBCopyAlpha) {
const int kSize = benchmark_width_ * benchmark_height_ * 4;
align_buffer_page_end(orig_pixels, kSize);
align_buffer_page_end(dst_pixels_opt, kSize);
align_buffer_page_end(dst_pixels_c, kSize);
MemRandomize(orig_pixels, kSize);
MemRandomize(dst_pixels_opt, kSize);
memcpy(dst_pixels_c, dst_pixels_opt, kSize);
MaskCpuFlags(disable_cpu_flags_);
ARGBCopyAlpha(orig_pixels, benchmark_width_ * 4, dst_pixels_c,
benchmark_width_ * 4, benchmark_width_, benchmark_height_);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_iterations_; ++i) {
ARGBCopyAlpha(orig_pixels, benchmark_width_ * 4, dst_pixels_opt,
benchmark_width_ * 4, benchmark_width_, benchmark_height_);
}
for (int i = 0; i < kSize; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
free_aligned_buffer_page_end(dst_pixels_c);
free_aligned_buffer_page_end(dst_pixels_opt);
free_aligned_buffer_page_end(orig_pixels);
}
TEST_F(LibYUVPlanarTest, TestARGBExtractAlpha) {
// Round count up to multiple of 16
const int kPixels = (benchmark_width_ * benchmark_height_ + 15) & ~15;
align_buffer_page_end(src_pixels, kPixels * 4);
align_buffer_page_end(dst_pixels_opt, kPixels);
align_buffer_page_end(dst_pixels_c, kPixels);
MemRandomize(src_pixels, kPixels * 4);
MemRandomize(dst_pixels_opt, kPixels);
memcpy(dst_pixels_c, dst_pixels_opt, kPixels);
MaskCpuFlags(disable_cpu_flags_);
ARGBExtractAlpha(src_pixels, benchmark_width_ * 4, dst_pixels_c,
benchmark_width_, benchmark_width_, benchmark_height_);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_iterations_; ++i) {
ARGBExtractAlpha(src_pixels, benchmark_width_ * 4, dst_pixels_opt,
benchmark_width_, benchmark_width_, benchmark_height_);
}
for (int i = 0; i < kPixels; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
free_aligned_buffer_page_end(dst_pixels_c);
free_aligned_buffer_page_end(dst_pixels_opt);
free_aligned_buffer_page_end(src_pixels);
}
TEST_F(LibYUVPlanarTest, TestARGBCopyYToAlpha) {
// Round count up to multiple of 16
const int kPixels = (benchmark_width_ * benchmark_height_ + 15) & ~15;
align_buffer_page_end(orig_pixels, kPixels);
align_buffer_page_end(dst_pixels_opt, kPixels * 4);
align_buffer_page_end(dst_pixels_c, kPixels * 4);
MemRandomize(orig_pixels, kPixels);
MemRandomize(dst_pixels_opt, kPixels * 4);
memcpy(dst_pixels_c, dst_pixels_opt, kPixels * 4);
MaskCpuFlags(disable_cpu_flags_);
ARGBCopyYToAlpha(orig_pixels, benchmark_width_, dst_pixels_c,
benchmark_width_ * 4, benchmark_width_, benchmark_height_);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_iterations_; ++i) {
ARGBCopyYToAlpha(orig_pixels, benchmark_width_, dst_pixels_opt,
benchmark_width_ * 4, benchmark_width_, benchmark_height_);
}
for (int i = 0; i < kPixels * 4; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
free_aligned_buffer_page_end(dst_pixels_c);
free_aligned_buffer_page_end(dst_pixels_opt);
free_aligned_buffer_page_end(orig_pixels);
}
static int TestARGBRect(int width,
int height,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info,
int invert,
int off,
int bpp) {
if (width < 1) {
width = 1;
}
const int kStride = width * bpp;
const int kSize = kStride * height;
const uint32_t v32 = fastrand() & (bpp == 4 ? 0xffffffff : 0xff);
align_buffer_page_end(dst_argb_c, kSize + off);
align_buffer_page_end(dst_argb_opt, kSize + off);
MemRandomize(dst_argb_c + off, kSize);
memcpy(dst_argb_opt + off, dst_argb_c + off, kSize);
MaskCpuFlags(disable_cpu_flags);
if (bpp == 4) {
ARGBRect(dst_argb_c + off, kStride, 0, 0, width, invert * height, v32);
} else {
SetPlane(dst_argb_c + off, kStride, width, invert * height, v32);
}
MaskCpuFlags(benchmark_cpu_info);
for (int i = 0; i < benchmark_iterations; ++i) {
if (bpp == 4) {
ARGBRect(dst_argb_opt + off, kStride, 0, 0, width, invert * height, v32);
} else {
SetPlane(dst_argb_opt + off, kStride, width, invert * height, v32);
}
}
int max_diff = 0;
for (int i = 0; i < kStride * height; ++i) {
int abs_diff = abs(static_cast<int>(dst_argb_c[i + off]) -
static_cast<int>(dst_argb_opt[i + off]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
return max_diff;
}
TEST_F(LibYUVPlanarTest, ARGBRect_Any) {
int max_diff = TestARGBRect(benchmark_width_ - 1, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0, 4);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBRect_Unaligned) {
int max_diff =
TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1, 4);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBRect_Invert) {
int max_diff =
TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0, 4);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, ARGBRect_Opt) {
int max_diff =
TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0, 4);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, SetPlane_Any) {
int max_diff = TestARGBRect(benchmark_width_ - 1, benchmark_height_,
benchmark_iterations_, disable_cpu_flags_,
benchmark_cpu_info_, +1, 0, 1);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, SetPlane_Unaligned) {
int max_diff =
TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 1, 1);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, SetPlane_Invert) {
int max_diff =
TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, -1, 0, 1);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, SetPlane_Opt) {
int max_diff =
TestARGBRect(benchmark_width_, benchmark_height_, benchmark_iterations_,
disable_cpu_flags_, benchmark_cpu_info_, +1, 0, 1);
EXPECT_EQ(0, max_diff);
}
TEST_F(LibYUVPlanarTest, MergeUVPlane_Opt) {
// Round count up to multiple of 16
const int kPixels = (benchmark_width_ * benchmark_height_ + 15) & ~15;
align_buffer_page_end(src_pixels, kPixels * 2);
align_buffer_page_end(tmp_pixels_u, kPixels);
align_buffer_page_end(tmp_pixels_v, kPixels);
align_buffer_page_end(dst_pixels_opt, kPixels * 2);
align_buffer_page_end(dst_pixels_c, kPixels * 2);
MemRandomize(src_pixels, kPixels * 2);
MemRandomize(tmp_pixels_u, kPixels);
MemRandomize(tmp_pixels_v, kPixels);
MemRandomize(dst_pixels_opt, kPixels * 2);
MemRandomize(dst_pixels_c, kPixels * 2);
MaskCpuFlags(disable_cpu_flags_);
SplitUVPlane(src_pixels, benchmark_width_ * 2, tmp_pixels_u, benchmark_width_,
tmp_pixels_v, benchmark_width_, benchmark_width_,
benchmark_height_);
MergeUVPlane(tmp_pixels_u, benchmark_width_, tmp_pixels_v, benchmark_width_,
dst_pixels_c, benchmark_width_ * 2, benchmark_width_,
benchmark_height_);
MaskCpuFlags(benchmark_cpu_info_);
SplitUVPlane(src_pixels, benchmark_width_ * 2, tmp_pixels_u, benchmark_width_,
tmp_pixels_v, benchmark_width_, benchmark_width_,
benchmark_height_);
for (int i = 0; i < benchmark_iterations_; ++i) {
MergeUVPlane(tmp_pixels_u, benchmark_width_, tmp_pixels_v, benchmark_width_,
dst_pixels_opt, benchmark_width_ * 2, benchmark_width_,
benchmark_height_);
}
for (int i = 0; i < kPixels * 2; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
free_aligned_buffer_page_end(src_pixels);
free_aligned_buffer_page_end(tmp_pixels_u);
free_aligned_buffer_page_end(tmp_pixels_v);
free_aligned_buffer_page_end(dst_pixels_opt);
free_aligned_buffer_page_end(dst_pixels_c);
}
TEST_F(LibYUVPlanarTest, SplitUVPlane_Opt) {
// Round count up to multiple of 16
const int kPixels = (benchmark_width_ * benchmark_height_ + 15) & ~15;
align_buffer_page_end(src_pixels, kPixels * 2);
align_buffer_page_end(tmp_pixels_u, kPixels);
align_buffer_page_end(tmp_pixels_v, kPixels);
align_buffer_page_end(dst_pixels_opt, kPixels * 2);
align_buffer_page_end(dst_pixels_c, kPixels * 2);
MemRandomize(src_pixels, kPixels * 2);
MemRandomize(tmp_pixels_u, kPixels);
MemRandomize(tmp_pixels_v, kPixels);
MemRandomize(dst_pixels_opt, kPixels * 2);
MemRandomize(dst_pixels_c, kPixels * 2);
MaskCpuFlags(disable_cpu_flags_);
SplitUVPlane(src_pixels, benchmark_width_ * 2, tmp_pixels_u, benchmark_width_,
tmp_pixels_v, benchmark_width_, benchmark_width_,
benchmark_height_);
MergeUVPlane(tmp_pixels_u, benchmark_width_, tmp_pixels_v, benchmark_width_,
dst_pixels_c, benchmark_width_ * 2, benchmark_width_,
benchmark_height_);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_iterations_; ++i) {
SplitUVPlane(src_pixels, benchmark_width_ * 2, tmp_pixels_u,
benchmark_width_, tmp_pixels_v, benchmark_width_,
benchmark_width_, benchmark_height_);
}
MergeUVPlane(tmp_pixels_u, benchmark_width_, tmp_pixels_v, benchmark_width_,
dst_pixels_opt, benchmark_width_ * 2, benchmark_width_,
benchmark_height_);
for (int i = 0; i < kPixels * 2; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
free_aligned_buffer_page_end(src_pixels);
free_aligned_buffer_page_end(tmp_pixels_u);
free_aligned_buffer_page_end(tmp_pixels_v);
free_aligned_buffer_page_end(dst_pixels_opt);
free_aligned_buffer_page_end(dst_pixels_c);
}
TEST_F(LibYUVPlanarTest, SwapUVPlane_Opt) {
// Round count up to multiple of 16
const int kPixels = (benchmark_width_ * benchmark_height_ + 15) & ~15;
align_buffer_page_end(src_pixels, kPixels * 2);
align_buffer_page_end(dst_pixels_opt, kPixels * 2);
align_buffer_page_end(dst_pixels_c, kPixels * 2);
MemRandomize(src_pixels, kPixels * 2);
MemRandomize(dst_pixels_opt, kPixels * 2);
MemRandomize(dst_pixels_c, kPixels * 2);
MaskCpuFlags(disable_cpu_flags_);
SwapUVPlane(src_pixels, benchmark_width_ * 2, dst_pixels_c,
benchmark_width_ * 2, benchmark_width_, benchmark_height_);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_iterations_; ++i) {
SwapUVPlane(src_pixels, benchmark_width_ * 2, dst_pixels_opt,
benchmark_width_ * 2, benchmark_width_, benchmark_height_);
}
for (int i = 0; i < kPixels * 2; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
free_aligned_buffer_page_end(src_pixels);
free_aligned_buffer_page_end(dst_pixels_opt);
free_aligned_buffer_page_end(dst_pixels_c);
}
TEST_F(LibYUVPlanarTest, MergeRGBPlane_Opt) {
// Round count up to multiple of 16
const int kPixels = (benchmark_width_ * benchmark_height_ + 15) & ~15;
align_buffer_page_end(src_pixels, kPixels * 3);
align_buffer_page_end(tmp_pixels_r, kPixels);
align_buffer_page_end(tmp_pixels_g, kPixels);
align_buffer_page_end(tmp_pixels_b, kPixels);
align_buffer_page_end(dst_pixels_opt, kPixels * 3);
align_buffer_page_end(dst_pixels_c, kPixels * 3);
MemRandomize(src_pixels, kPixels * 3);
MemRandomize(tmp_pixels_r, kPixels);
MemRandomize(tmp_pixels_g, kPixels);
MemRandomize(tmp_pixels_b, kPixels);
MemRandomize(dst_pixels_opt, kPixels * 3);
MemRandomize(dst_pixels_c, kPixels * 3);
MaskCpuFlags(disable_cpu_flags_);
SplitRGBPlane(src_pixels, benchmark_width_ * 3, tmp_pixels_r,
benchmark_width_, tmp_pixels_g, benchmark_width_, tmp_pixels_b,
benchmark_width_, benchmark_width_, benchmark_height_);
MergeRGBPlane(tmp_pixels_r, benchmark_width_, tmp_pixels_g, benchmark_width_,
tmp_pixels_b, benchmark_width_, dst_pixels_c,
benchmark_width_ * 3, benchmark_width_, benchmark_height_);
MaskCpuFlags(benchmark_cpu_info_);
SplitRGBPlane(src_pixels, benchmark_width_ * 3, tmp_pixels_r,
benchmark_width_, tmp_pixels_g, benchmark_width_, tmp_pixels_b,
benchmark_width_, benchmark_width_, benchmark_height_);
for (int i = 0; i < benchmark_iterations_; ++i) {
MergeRGBPlane(tmp_pixels_r, benchmark_width_, tmp_pixels_g,
benchmark_width_, tmp_pixels_b, benchmark_width_,
dst_pixels_opt, benchmark_width_ * 3, benchmark_width_,
benchmark_height_);
}
for (int i = 0; i < kPixels * 3; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
free_aligned_buffer_page_end(src_pixels);
free_aligned_buffer_page_end(tmp_pixels_r);
free_aligned_buffer_page_end(tmp_pixels_g);
free_aligned_buffer_page_end(tmp_pixels_b);
free_aligned_buffer_page_end(dst_pixels_opt);
free_aligned_buffer_page_end(dst_pixels_c);
}
TEST_F(LibYUVPlanarTest, SplitRGBPlane_Opt) {
// Round count up to multiple of 16
const int kPixels = (benchmark_width_ * benchmark_height_ + 15) & ~15;
align_buffer_page_end(src_pixels, kPixels * 3);
align_buffer_page_end(tmp_pixels_r, kPixels);
align_buffer_page_end(tmp_pixels_g, kPixels);
align_buffer_page_end(tmp_pixels_b, kPixels);
align_buffer_page_end(dst_pixels_opt, kPixels * 3);
align_buffer_page_end(dst_pixels_c, kPixels * 3);
MemRandomize(src_pixels, kPixels * 3);
MemRandomize(tmp_pixels_r, kPixels);
MemRandomize(tmp_pixels_g, kPixels);
MemRandomize(tmp_pixels_b, kPixels);
MemRandomize(dst_pixels_opt, kPixels * 3);
MemRandomize(dst_pixels_c, kPixels * 3);
MaskCpuFlags(disable_cpu_flags_);
SplitRGBPlane(src_pixels, benchmark_width_ * 3, tmp_pixels_r,
benchmark_width_, tmp_pixels_g, benchmark_width_, tmp_pixels_b,
benchmark_width_, benchmark_width_, benchmark_height_);
MergeRGBPlane(tmp_pixels_r, benchmark_width_, tmp_pixels_g, benchmark_width_,
tmp_pixels_b, benchmark_width_, dst_pixels_c,
benchmark_width_ * 3, benchmark_width_, benchmark_height_);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_iterations_; ++i) {
SplitRGBPlane(src_pixels, benchmark_width_ * 3, tmp_pixels_r,
benchmark_width_, tmp_pixels_g, benchmark_width_,
tmp_pixels_b, benchmark_width_, benchmark_width_,
benchmark_height_);
}
MergeRGBPlane(tmp_pixels_r, benchmark_width_, tmp_pixels_g, benchmark_width_,
tmp_pixels_b, benchmark_width_, dst_pixels_opt,
benchmark_width_ * 3, benchmark_width_, benchmark_height_);
for (int i = 0; i < kPixels * 3; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
free_aligned_buffer_page_end(src_pixels);
free_aligned_buffer_page_end(tmp_pixels_r);
free_aligned_buffer_page_end(tmp_pixels_g);
free_aligned_buffer_page_end(tmp_pixels_b);
free_aligned_buffer_page_end(dst_pixels_opt);
free_aligned_buffer_page_end(dst_pixels_c);
}
// TODO(fbarchard): improve test for platforms and cpu detect
#ifdef HAS_MERGEUVROW_16_AVX2
TEST_F(LibYUVPlanarTest, MergeUVRow_16_Opt) {
// Round count up to multiple of 16
const int kPixels = (benchmark_width_ * benchmark_height_ + 15) & ~15;
align_buffer_page_end(src_pixels_u, kPixels * 2);
align_buffer_page_end(src_pixels_v, kPixels * 2);
align_buffer_page_end(dst_pixels_uv_opt, kPixels * 2 * 2);
align_buffer_page_end(dst_pixels_uv_c, kPixels * 2 * 2);
MemRandomize(src_pixels_u, kPixels * 2);
MemRandomize(src_pixels_v, kPixels * 2);
memset(dst_pixels_uv_opt, 0, kPixels * 2 * 2);
memset(dst_pixels_uv_c, 1, kPixels * 2 * 2);
MergeUVRow_16_C(reinterpret_cast<const uint16_t*>(src_pixels_u),
reinterpret_cast<const uint16_t*>(src_pixels_v),
reinterpret_cast<uint16_t*>(dst_pixels_uv_c), 64, kPixels);
int has_avx2 = TestCpuFlag(kCpuHasAVX2);
for (int i = 0; i < benchmark_iterations_; ++i) {
if (has_avx2) {
MergeUVRow_16_AVX2(reinterpret_cast<const uint16_t*>(src_pixels_u),
reinterpret_cast<const uint16_t*>(src_pixels_v),
reinterpret_cast<uint16_t*>(dst_pixels_uv_opt), 64,
kPixels);
} else {
MergeUVRow_16_C(reinterpret_cast<const uint16_t*>(src_pixels_u),
reinterpret_cast<const uint16_t*>(src_pixels_v),
reinterpret_cast<uint16_t*>(dst_pixels_uv_opt), 64,
kPixels);
}
}
for (int i = 0; i < kPixels * 2 * 2; ++i) {
EXPECT_EQ(dst_pixels_uv_opt[i], dst_pixels_uv_c[i]);
}
free_aligned_buffer_page_end(src_pixels_u);
free_aligned_buffer_page_end(src_pixels_v);
free_aligned_buffer_page_end(dst_pixels_uv_opt);
free_aligned_buffer_page_end(dst_pixels_uv_c);
}
#endif
// TODO(fbarchard): Improve test for more platforms.
#ifdef HAS_MULTIPLYROW_16_AVX2
TEST_F(LibYUVPlanarTest, MultiplyRow_16_Opt) {
// Round count up to multiple of 16
const int kPixels = (benchmark_width_ * benchmark_height_ + 15) & ~15;
align_buffer_page_end(src_pixels_y, kPixels * 2);
align_buffer_page_end(dst_pixels_y_opt, kPixels * 2);
align_buffer_page_end(dst_pixels_y_c, kPixels * 2);
MemRandomize(src_pixels_y, kPixels * 2);
memset(dst_pixels_y_opt, 0, kPixels * 2);
memset(dst_pixels_y_c, 1, kPixels * 2);
MultiplyRow_16_C(reinterpret_cast<const uint16_t*>(src_pixels_y),
reinterpret_cast<uint16_t*>(dst_pixels_y_c), 64, kPixels);
int has_avx2 = TestCpuFlag(kCpuHasAVX2);
for (int i = 0; i < benchmark_iterations_; ++i) {
if (has_avx2) {
MultiplyRow_16_AVX2(reinterpret_cast<const uint16_t*>(src_pixels_y),
reinterpret_cast<uint16_t*>(dst_pixels_y_opt), 64,
kPixels);
} else {
MultiplyRow_16_C(reinterpret_cast<const uint16_t*>(src_pixels_y),
reinterpret_cast<uint16_t*>(dst_pixels_y_opt), 64,
kPixels);
}
}
for (int i = 0; i < kPixels * 2; ++i) {
EXPECT_EQ(dst_pixels_y_opt[i], dst_pixels_y_c[i]);
}
free_aligned_buffer_page_end(src_pixels_y);
free_aligned_buffer_page_end(dst_pixels_y_opt);
free_aligned_buffer_page_end(dst_pixels_y_c);
}
#endif // HAS_MULTIPLYROW_16_AVX2
TEST_F(LibYUVPlanarTest, Convert16To8Plane) {
// Round count up to multiple of 16
const int kPixels = (benchmark_width_ * benchmark_height_ + 15) & ~15;
align_buffer_page_end(src_pixels_y, kPixels * 2);
align_buffer_page_end(dst_pixels_y_opt, kPixels);
align_buffer_page_end(dst_pixels_y_c, kPixels);
MemRandomize(src_pixels_y, kPixels * 2);
memset(dst_pixels_y_opt, 0, kPixels);
memset(dst_pixels_y_c, 1, kPixels);
MaskCpuFlags(disable_cpu_flags_);
Convert16To8Plane(reinterpret_cast<const uint16_t*>(src_pixels_y),
benchmark_width_, dst_pixels_y_c, benchmark_width_, 16384,
benchmark_width_, benchmark_height_);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_iterations_; ++i) {
Convert16To8Plane(reinterpret_cast<const uint16_t*>(src_pixels_y),
benchmark_width_, dst_pixels_y_opt, benchmark_width_,
16384, benchmark_width_, benchmark_height_);
}
for (int i = 0; i < kPixels; ++i) {
EXPECT_EQ(dst_pixels_y_opt[i], dst_pixels_y_c[i]);
}
free_aligned_buffer_page_end(src_pixels_y);
free_aligned_buffer_page_end(dst_pixels_y_opt);
free_aligned_buffer_page_end(dst_pixels_y_c);
}
#ifdef ENABLE_ROW_TESTS
// TODO(fbarchard): Improve test for more platforms.
#ifdef HAS_CONVERT16TO8ROW_AVX2
TEST_F(LibYUVPlanarTest, Convert16To8Row_Opt) {
// AVX2 does multiple of 32, so round count up
const int kPixels = (benchmark_width_ * benchmark_height_ + 31) & ~31;
align_buffer_page_end(src_pixels_y, kPixels * 2);
align_buffer_page_end(dst_pixels_y_opt, kPixels);
align_buffer_page_end(dst_pixels_y_c, kPixels);
MemRandomize(src_pixels_y, kPixels * 2);
// clamp source range to 10 bits.
for (int i = 0; i < kPixels; ++i) {
reinterpret_cast<uint16_t*>(src_pixels_y)[i] &= 1023;
}
memset(dst_pixels_y_opt, 0, kPixels);
memset(dst_pixels_y_c, 1, kPixels);
Convert16To8Row_C(reinterpret_cast<const uint16_t*>(src_pixels_y),
dst_pixels_y_c, 16384, kPixels);
int has_avx2 = TestCpuFlag(kCpuHasAVX2);
int has_ssse3 = TestCpuFlag(kCpuHasSSSE3);
for (int i = 0; i < benchmark_iterations_; ++i) {
if (has_avx2) {
Convert16To8Row_AVX2(reinterpret_cast<const uint16_t*>(src_pixels_y),
dst_pixels_y_opt, 16384, kPixels);
} else if (has_ssse3) {
Convert16To8Row_SSSE3(reinterpret_cast<const uint16_t*>(src_pixels_y),
dst_pixels_y_opt, 16384, kPixels);
} else {
Convert16To8Row_C(reinterpret_cast<const uint16_t*>(src_pixels_y),
dst_pixels_y_opt, 16384, kPixels);
}
}
for (int i = 0; i < kPixels; ++i) {
EXPECT_EQ(dst_pixels_y_opt[i], dst_pixels_y_c[i]);
}
free_aligned_buffer_page_end(src_pixels_y);
free_aligned_buffer_page_end(dst_pixels_y_opt);
free_aligned_buffer_page_end(dst_pixels_y_c);
}
#endif // HAS_CONVERT16TO8ROW_AVX2
#endif // ENABLE_ROW_TESTS
TEST_F(LibYUVPlanarTest, Convert8To16Plane) {
// Round count up to multiple of 16
const int kPixels = (benchmark_width_ * benchmark_height_ + 15) & ~15;
align_buffer_page_end(src_pixels_y, kPixels);
align_buffer_page_end(dst_pixels_y_opt, kPixels * 2);
align_buffer_page_end(dst_pixels_y_c, kPixels * 2);
MemRandomize(src_pixels_y, kPixels);
memset(dst_pixels_y_opt, 0, kPixels * 2);
memset(dst_pixels_y_c, 1, kPixels * 2);
MaskCpuFlags(disable_cpu_flags_);
Convert8To16Plane(src_pixels_y, benchmark_width_,
reinterpret_cast<uint16_t*>(dst_pixels_y_c),
benchmark_width_, 1024, benchmark_width_,
benchmark_height_);
MaskCpuFlags(benchmark_cpu_info_);
for (int i = 0; i < benchmark_iterations_; ++i) {
Convert8To16Plane(src_pixels_y, benchmark_width_,
reinterpret_cast<uint16_t*>(dst_pixels_y_opt),
benchmark_width_, 1024, benchmark_width_,
benchmark_height_);
}
for (int i = 0; i < kPixels * 2; ++i) {
EXPECT_EQ(dst_pixels_y_opt[i], dst_pixels_y_c[i]);
}
free_aligned_buffer_page_end(src_pixels_y);
free_aligned_buffer_page_end(dst_pixels_y_opt);
free_aligned_buffer_page_end(dst_pixels_y_c);
}
#ifdef ENABLE_ROW_TESTS
// TODO(fbarchard): Improve test for more platforms.
#ifdef HAS_CONVERT8TO16ROW_AVX2
TEST_F(LibYUVPlanarTest, Convert8To16Row_Opt) {
const int kPixels = (benchmark_width_ * benchmark_height_ + 31) & ~31;
align_buffer_page_end(src_pixels_y, kPixels);
align_buffer_page_end(dst_pixels_y_opt, kPixels * 2);
align_buffer_page_end(dst_pixels_y_c, kPixels * 2);
MemRandomize(src_pixels_y, kPixels);
memset(dst_pixels_y_opt, 0, kPixels * 2);
memset(dst_pixels_y_c, 1, kPixels * 2);
Convert8To16Row_C(src_pixels_y, reinterpret_cast<uint16_t*>(dst_pixels_y_c),
1024, kPixels);
int has_avx2 = TestCpuFlag(kCpuHasAVX2);
int has_sse2 = TestCpuFlag(kCpuHasSSE2);
for (int i = 0; i < benchmark_iterations_; ++i) {
if (has_avx2) {
Convert8To16Row_AVX2(src_pixels_y,
reinterpret_cast<uint16_t*>(dst_pixels_y_opt), 1024,
kPixels);
} else if (has_sse2) {
Convert8To16Row_SSE2(src_pixels_y,
reinterpret_cast<uint16_t*>(dst_pixels_y_opt), 1024,
kPixels);
} else {
Convert8To16Row_C(src_pixels_y,
reinterpret_cast<uint16_t*>(dst_pixels_y_opt), 1024,
kPixels);
}
}
for (int i = 0; i < kPixels * 2; ++i) {
EXPECT_EQ(dst_pixels_y_opt[i], dst_pixels_y_c[i]);
}
free_aligned_buffer_page_end(src_pixels_y);
free_aligned_buffer_page_end(dst_pixels_y_opt);
free_aligned_buffer_page_end(dst_pixels_y_c);
}
#endif // HAS_CONVERT8TO16ROW_AVX2
float TestScaleMaxSamples(int benchmark_width,
int benchmark_height,
int benchmark_iterations,
float scale,
bool opt) {
int i, j;
float max_c, max_opt = 0.f;
// NEON does multiple of 8, so round count up
const int kPixels = (benchmark_width * benchmark_height + 7) & ~7;
align_buffer_page_end(orig_y, kPixels * 4 * 3 + 48);
uint8_t* dst_c = orig_y + kPixels * 4 + 16;
uint8_t* dst_opt = orig_y + kPixels * 4 * 2 + 32;
// Randomize works but may contain some denormals affecting performance.
// MemRandomize(orig_y, kPixels * 4);
// large values are problematic. audio is really -1 to 1.
for (i = 0; i < kPixels; ++i) {
(reinterpret_cast<float*>(orig_y))[i] = sinf(static_cast<float>(i) * 0.1f);
}
memset(dst_c, 0, kPixels * 4);
memset(dst_opt, 1, kPixels * 4);
max_c = ScaleMaxSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_c), scale, kPixels);
for (j = 0; j < benchmark_iterations; j++) {
if (opt) {
#ifdef HAS_SCALESUMSAMPLES_NEON
max_opt = ScaleMaxSamples_NEON(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale,
kPixels);
#else
max_opt =
ScaleMaxSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale, kPixels);
#endif
} else {
max_opt =
ScaleMaxSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale, kPixels);
}
}
float max_diff = FAbs(max_opt - max_c);
for (i = 0; i < kPixels; ++i) {
float abs_diff = FAbs((reinterpret_cast<float*>(dst_c)[i]) -
(reinterpret_cast<float*>(dst_opt)[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(orig_y);
return max_diff;
}
TEST_F(LibYUVPlanarTest, TestScaleMaxSamples_C) {
float diff = TestScaleMaxSamples(benchmark_width_, benchmark_height_,
benchmark_iterations_, 1.2f, false);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestScaleMaxSamples_Opt) {
float diff = TestScaleMaxSamples(benchmark_width_, benchmark_height_,
benchmark_iterations_, 1.2f, true);
EXPECT_EQ(0, diff);
}
float TestScaleSumSamples(int benchmark_width,
int benchmark_height,
int benchmark_iterations,
float scale,
bool opt) {
int i, j;
float sum_c, sum_opt = 0.f;
// NEON does multiple of 8, so round count up
const int kPixels = (benchmark_width * benchmark_height + 7) & ~7;
align_buffer_page_end(orig_y, kPixels * 4 * 3);
uint8_t* dst_c = orig_y + kPixels * 4;
uint8_t* dst_opt = orig_y + kPixels * 4 * 2;
// Randomize works but may contain some denormals affecting performance.
// MemRandomize(orig_y, kPixels * 4);
// large values are problematic. audio is really -1 to 1.
for (i = 0; i < kPixels; ++i) {
(reinterpret_cast<float*>(orig_y))[i] = sinf(static_cast<float>(i) * 0.1f);
}
memset(dst_c, 0, kPixels * 4);
memset(dst_opt, 1, kPixels * 4);
sum_c = ScaleSumSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_c), scale, kPixels);
for (j = 0; j < benchmark_iterations; j++) {
if (opt) {
#ifdef HAS_SCALESUMSAMPLES_NEON
sum_opt = ScaleSumSamples_NEON(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale,
kPixels);
#else
sum_opt =
ScaleSumSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale, kPixels);
#endif
} else {
sum_opt =
ScaleSumSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale, kPixels);
}
}
float mse_opt = sum_opt / kPixels * 4;
float mse_c = sum_c / kPixels * 4;
float mse_error = FAbs(mse_opt - mse_c) / mse_c;
// If the sum of a float is more than 4 million, small adds are round down on
// float and produce different results with vectorized sum vs scalar sum.
// Ignore the difference if the sum is large.
float max_diff = 0.f;
if (mse_error > 0.0001 && sum_c < 4000000) { // allow .01% difference of mse
max_diff = mse_error;
}
for (i = 0; i < kPixels; ++i) {
float abs_diff = FAbs((reinterpret_cast<float*>(dst_c)[i]) -
(reinterpret_cast<float*>(dst_opt)[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(orig_y);
return max_diff;
}
TEST_F(LibYUVPlanarTest, TestScaleSumSamples_C) {
float diff = TestScaleSumSamples(benchmark_width_, benchmark_height_,
benchmark_iterations_, 1.2f, false);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestScaleSumSamples_Opt) {
float diff = TestScaleSumSamples(benchmark_width_, benchmark_height_,
benchmark_iterations_, 1.2f, true);
EXPECT_EQ(0, diff);
}
float TestScaleSamples(int benchmark_width,
int benchmark_height,
int benchmark_iterations,
float scale,
bool opt) {
int i, j;
// NEON does multiple of 8, so round count up
const int kPixels = (benchmark_width * benchmark_height + 7) & ~7;
align_buffer_page_end(orig_y, kPixels * 4 * 3);
uint8_t* dst_c = orig_y + kPixels * 4;
uint8_t* dst_opt = orig_y + kPixels * 4 * 2;
// Randomize works but may contain some denormals affecting performance.
// MemRandomize(orig_y, kPixels * 4);
// large values are problematic. audio is really -1 to 1.
for (i = 0; i < kPixels; ++i) {
(reinterpret_cast<float*>(orig_y))[i] = sinf(static_cast<float>(i) * 0.1f);
}
memset(dst_c, 0, kPixels * 4);
memset(dst_opt, 1, kPixels * 4);
ScaleSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_c), scale, kPixels);
for (j = 0; j < benchmark_iterations; j++) {
if (opt) {
#ifdef HAS_SCALESUMSAMPLES_NEON
ScaleSamples_NEON(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale, kPixels);
#else
ScaleSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale, kPixels);
#endif
} else {
ScaleSamples_C(reinterpret_cast<float*>(orig_y),
reinterpret_cast<float*>(dst_opt), scale, kPixels);
}
}
float max_diff = 0.f;
for (i = 0; i < kPixels; ++i) {
float abs_diff = FAbs((reinterpret_cast<float*>(dst_c)[i]) -
(reinterpret_cast<float*>(dst_opt)[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(orig_y);
return max_diff;
}
TEST_F(LibYUVPlanarTest, TestScaleSamples_C) {
float diff = TestScaleSamples(benchmark_width_, benchmark_height_,
benchmark_iterations_, 1.2f, false);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestScaleSamples_Opt) {
float diff = TestScaleSamples(benchmark_width_, benchmark_height_,
benchmark_iterations_, 1.2f, true);
EXPECT_EQ(0, diff);
}
float TestCopySamples(int benchmark_width,
int benchmark_height,
int benchmark_iterations,
bool opt) {
int i, j;
// NEON does multiple of 16 floats, so round count up
const int kPixels = (benchmark_width * benchmark_height + 15) & ~15;
align_buffer_page_end(orig_y, kPixels * 4 * 3);
uint8_t* dst_c = orig_y + kPixels * 4;
uint8_t* dst_opt = orig_y + kPixels * 4 * 2;
// Randomize works but may contain some denormals affecting performance.
// MemRandomize(orig_y, kPixels * 4);
// large values are problematic. audio is really -1 to 1.
for (i = 0; i < kPixels; ++i) {
(reinterpret_cast<float*>(orig_y))[i] = sinf(static_cast<float>(i) * 0.1f);
}
memset(dst_c, 0, kPixels * 4);
memset(dst_opt, 1, kPixels * 4);
memcpy(reinterpret_cast<void*>(dst_c), reinterpret_cast<void*>(orig_y),
kPixels * 4);
for (j = 0; j < benchmark_iterations; j++) {
if (opt) {
#ifdef HAS_COPYROW_NEON
CopyRow_NEON(orig_y, dst_opt, kPixels * 4);
#else
CopyRow_C(orig_y, dst_opt, kPixels * 4);
#endif
} else {
CopyRow_C(orig_y, dst_opt, kPixels * 4);
}
}
float max_diff = 0.f;
for (i = 0; i < kPixels; ++i) {
float abs_diff = FAbs((reinterpret_cast<float*>(dst_c)[i]) -
(reinterpret_cast<float*>(dst_opt)[i]));
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(orig_y);
return max_diff;
}
TEST_F(LibYUVPlanarTest, TestCopySamples_C) {
float diff = TestCopySamples(benchmark_width_, benchmark_height_,
benchmark_iterations_, false);
EXPECT_EQ(0, diff);
}
TEST_F(LibYUVPlanarTest, TestCopySamples_Opt) {
float diff = TestCopySamples(benchmark_width_, benchmark_height_,
benchmark_iterations_, true);
EXPECT_EQ(0, diff);
}
extern "C" void GaussRow_NEON(const uint32_t* src, uint16_t* dst, int width);
extern "C" void GaussRow_C(const uint32_t* src, uint16_t* dst, int width);
TEST_F(LibYUVPlanarTest, TestGaussRow_Opt) {
SIMD_ALIGNED(uint32_t orig_pixels[640 + 4]);
SIMD_ALIGNED(uint16_t dst_pixels_c[640]);
SIMD_ALIGNED(uint16_t dst_pixels_opt[640]);
memset(orig_pixels, 0, sizeof(orig_pixels));
memset(dst_pixels_c, 1, sizeof(dst_pixels_c));
memset(dst_pixels_opt, 2, sizeof(dst_pixels_opt));
for (int i = 0; i < 640 + 4; ++i) {
orig_pixels[i] = i * 256;
}
GaussRow_C(&orig_pixels[0], &dst_pixels_c[0], 640);
for (int i = 0; i < benchmark_pixels_div1280_ * 2; ++i) {
#if !defined(LIBYUV_DISABLE_NEON) && \
(defined(__aarch64__) || defined(__ARM_NEON__) || defined(LIBYUV_NEON))
int has_neon = TestCpuFlag(kCpuHasNEON);
if (has_neon) {
GaussRow_NEON(&orig_pixels[0], &dst_pixels_opt[0], 640);
} else {
GaussRow_C(&orig_pixels[0], &dst_pixels_opt[0], 640);
}
#else
GaussRow_C(&orig_pixels[0], &dst_pixels_opt[0], 640);
#endif
}
for (int i = 0; i < 640; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
EXPECT_EQ(dst_pixels_c[0],
static_cast<uint16_t>(0 * 1 + 1 * 4 + 2 * 6 + 3 * 4 + 4 * 1));
EXPECT_EQ(dst_pixels_c[639], static_cast<uint16_t>(10256));
}
extern "C" void GaussCol_NEON(const uint16_t* src0,
const uint16_t* src1,
const uint16_t* src2,
const uint16_t* src3,
const uint16_t* src4,
uint32_t* dst,
int width);
extern "C" void GaussCol_C(const uint16_t* src0,
const uint16_t* src1,
const uint16_t* src2,
const uint16_t* src3,
const uint16_t* src4,
uint32_t* dst,
int width);
TEST_F(LibYUVPlanarTest, TestGaussCol_Opt) {
SIMD_ALIGNED(uint16_t orig_pixels[640 * 5]);
SIMD_ALIGNED(uint32_t dst_pixels_c[640]);
SIMD_ALIGNED(uint32_t dst_pixels_opt[640]);
memset(orig_pixels, 0, sizeof(orig_pixels));
memset(dst_pixels_c, 1, sizeof(dst_pixels_c));
memset(dst_pixels_opt, 2, sizeof(dst_pixels_opt));
for (int i = 0; i < 640 * 5; ++i) {
orig_pixels[i] = i;
}
GaussCol_C(&orig_pixels[0], &orig_pixels[640], &orig_pixels[640 * 2],
&orig_pixels[640 * 3], &orig_pixels[640 * 4], &dst_pixels_c[0],
640);
for (int i = 0; i < benchmark_pixels_div1280_ * 2; ++i) {
#if !defined(LIBYUV_DISABLE_NEON) && \
(defined(__aarch64__) || defined(__ARM_NEON__) || defined(LIBYUV_NEON))
int has_neon = TestCpuFlag(kCpuHasNEON);
if (has_neon) {
GaussCol_NEON(&orig_pixels[0], &orig_pixels[640], &orig_pixels[640 * 2],
&orig_pixels[640 * 3], &orig_pixels[640 * 4],
&dst_pixels_opt[0], 640);
} else {
GaussCol_C(&orig_pixels[0], &orig_pixels[640], &orig_pixels[640 * 2],
&orig_pixels[640 * 3], &orig_pixels[640 * 4],
&dst_pixels_opt[0], 640);
}
#else
GaussCol_C(&orig_pixels[0], &orig_pixels[640], &orig_pixels[640 * 2],
&orig_pixels[640 * 3], &orig_pixels[640 * 4], &dst_pixels_opt[0],
640);
#endif
}
for (int i = 0; i < 640; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
EXPECT_EQ(dst_pixels_c[0],
static_cast<uint32_t>(0 * 1 + 640 * 4 + 640 * 2 * 6 + 640 * 3 * 4 +
640 * 4 * 1));
EXPECT_EQ(dst_pixels_c[639], static_cast<uint32_t>(30704));
}
TEST_F(LibYUVPlanarTest, SwapUVRow) {
const int kPixels = benchmark_width_ * benchmark_height_;
void (*SwapUVRow)(const uint8_t* src_uv, uint8_t* dst_vu, int width) =
SwapUVRow_C;
align_buffer_page_end(src_pixels_vu, kPixels * 2);
align_buffer_page_end(dst_pixels_uv, kPixels * 2);
MemRandomize(src_pixels_vu, kPixels * 2);
memset(dst_pixels_uv, 1, kPixels * 2);
#if defined(HAS_SWAPUVROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
SwapUVRow = SwapUVRow_Any_NEON;
if (IS_ALIGNED(kPixels, 16)) {
SwapUVRow = SwapUVRow_NEON;
}
}
#endif
for (int j = 0; j < benchmark_iterations_; j++) {
SwapUVRow(src_pixels_vu, dst_pixels_uv, kPixels);
}
for (int i = 0; i < kPixels; ++i) {
EXPECT_EQ(dst_pixels_uv[i * 2 + 0], src_pixels_vu[i * 2 + 1]);
EXPECT_EQ(dst_pixels_uv[i * 2 + 1], src_pixels_vu[i * 2 + 0]);
}
free_aligned_buffer_page_end(src_pixels_vu);
free_aligned_buffer_page_end(dst_pixels_uv);
}
#endif
} // namespace libyuv