freeswitch/libs/libvpx/vp8/encoder/encodeframe.c

1292 lines
39 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_config.h"
#include "vp8_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "bitstream.h"
#include "encodemb.h"
#include "encodemv.h"
#if CONFIG_MULTITHREAD
#include "ethreading.h"
#endif
#include "vp8/common/common.h"
#include "onyx_int.h"
#include "vp8/common/extend.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/quant_common.h"
#include "segmentation.h"
#include "vp8/common/setupintrarecon.h"
#include "encodeintra.h"
#include "vp8/common/reconinter.h"
#include "rdopt.h"
#include "pickinter.h"
#include "vp8/common/findnearmv.h"
#include <stdio.h>
#include <limits.h>
#include "vp8/common/invtrans.h"
#include "vpx_ports/vpx_timer.h"
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
#include "bitstream.h"
#endif
#include "encodeframe.h"
extern void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t);
static void adjust_act_zbin(VP8_COMP *cpi, MACROBLOCK *x);
#ifdef MODE_STATS
unsigned int inter_y_modes[10] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
unsigned int inter_uv_modes[4] = { 0, 0, 0, 0 };
unsigned int inter_b_modes[15] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
unsigned int y_modes[5] = { 0, 0, 0, 0, 0 };
unsigned int uv_modes[4] = { 0, 0, 0, 0 };
unsigned int b_modes[14] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
#endif
/* activity_avg must be positive, or flat regions could get a zero weight
* (infinite lambda), which confounds analysis.
* This also avoids the need for divide by zero checks in
* vp8_activity_masking().
*/
#define VP8_ACTIVITY_AVG_MIN (64)
/* This is used as a reference when computing the source variance for the
* purposes of activity masking.
* Eventually this should be replaced by custom no-reference routines,
* which will be faster.
*/
static const unsigned char VP8_VAR_OFFS[16] = { 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128,
128, 128, 128, 128 };
/* Original activity measure from Tim T's code. */
static unsigned int tt_activity_measure(VP8_COMP *cpi, MACROBLOCK *x) {
unsigned int act;
unsigned int sse;
(void)cpi;
/* TODO: This could also be done over smaller areas (8x8), but that would
* require extensive changes elsewhere, as lambda is assumed to be fixed
* over an entire MB in most of the code.
* Another option is to compute four 8x8 variances, and pick a single
* lambda using a non-linear combination (e.g., the smallest, or second
* smallest, etc.).
*/
act = vpx_variance16x16(x->src.y_buffer, x->src.y_stride, VP8_VAR_OFFS, 0,
&sse);
act = act << 4;
/* If the region is flat, lower the activity some more. */
if (act < 8 << 12) act = act < 5 << 12 ? act : 5 << 12;
return act;
}
/* Stub for alternative experimental activity measures. */
static unsigned int alt_activity_measure(VP8_COMP *cpi, MACROBLOCK *x,
int use_dc_pred) {
return vp8_encode_intra(cpi, x, use_dc_pred);
}
/* Measure the activity of the current macroblock
* What we measure here is TBD so abstracted to this function
*/
#define ALT_ACT_MEASURE 1
static unsigned int mb_activity_measure(VP8_COMP *cpi, MACROBLOCK *x,
int mb_row, int mb_col) {
unsigned int mb_activity;
if (ALT_ACT_MEASURE) {
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
/* Or use and alternative. */
mb_activity = alt_activity_measure(cpi, x, use_dc_pred);
} else {
/* Original activity measure from Tim T's code. */
mb_activity = tt_activity_measure(cpi, x);
}
if (mb_activity < VP8_ACTIVITY_AVG_MIN) mb_activity = VP8_ACTIVITY_AVG_MIN;
return mb_activity;
}
/* Calculate an "average" mb activity value for the frame */
#define ACT_MEDIAN 0
static void calc_av_activity(VP8_COMP *cpi, int64_t activity_sum) {
#if ACT_MEDIAN
/* Find median: Simple n^2 algorithm for experimentation */
{
unsigned int median;
unsigned int i, j;
unsigned int *sortlist;
unsigned int tmp;
/* Create a list to sort to */
CHECK_MEM_ERROR(sortlist,
vpx_calloc(sizeof(unsigned int), cpi->common.MBs));
/* Copy map to sort list */
memcpy(sortlist, cpi->mb_activity_map,
sizeof(unsigned int) * cpi->common.MBs);
/* Ripple each value down to its correct position */
for (i = 1; i < cpi->common.MBs; ++i) {
for (j = i; j > 0; j--) {
if (sortlist[j] < sortlist[j - 1]) {
/* Swap values */
tmp = sortlist[j - 1];
sortlist[j - 1] = sortlist[j];
sortlist[j] = tmp;
} else
break;
}
}
/* Even number MBs so estimate median as mean of two either side. */
median = (1 + sortlist[cpi->common.MBs >> 1] +
sortlist[(cpi->common.MBs >> 1) + 1]) >>
1;
cpi->activity_avg = median;
vpx_free(sortlist);
}
#else
/* Simple mean for now */
cpi->activity_avg = (unsigned int)(activity_sum / cpi->common.MBs);
#endif
if (cpi->activity_avg < VP8_ACTIVITY_AVG_MIN) {
cpi->activity_avg = VP8_ACTIVITY_AVG_MIN;
}
/* Experimental code: return fixed value normalized for several clips */
if (ALT_ACT_MEASURE) cpi->activity_avg = 100000;
}
#define USE_ACT_INDEX 0
#define OUTPUT_NORM_ACT_STATS 0
#if USE_ACT_INDEX
/* Calculate and activity index for each mb */
static void calc_activity_index(VP8_COMP *cpi, MACROBLOCK *x) {
VP8_COMMON *const cm = &cpi->common;
int mb_row, mb_col;
int64_t act;
int64_t a;
int64_t b;
#if OUTPUT_NORM_ACT_STATS
FILE *f = fopen("norm_act.stt", "a");
fprintf(f, "\n%12d\n", cpi->activity_avg);
#endif
/* Reset pointers to start of activity map */
x->mb_activity_ptr = cpi->mb_activity_map;
/* Calculate normalized mb activity number. */
for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
/* for each macroblock col in image */
for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
/* Read activity from the map */
act = *(x->mb_activity_ptr);
/* Calculate a normalized activity number */
a = act + 4 * cpi->activity_avg;
b = 4 * act + cpi->activity_avg;
if (b >= a)
*(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1;
else
*(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b);
#if OUTPUT_NORM_ACT_STATS
fprintf(f, " %6d", *(x->mb_activity_ptr));
#endif
/* Increment activity map pointers */
x->mb_activity_ptr++;
}
#if OUTPUT_NORM_ACT_STATS
fprintf(f, "\n");
#endif
}
#if OUTPUT_NORM_ACT_STATS
fclose(f);
#endif
}
#endif
/* Loop through all MBs. Note activity of each, average activity and
* calculate a normalized activity for each
*/
static void build_activity_map(VP8_COMP *cpi) {
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *xd = &x->e_mbd;
VP8_COMMON *const cm = &cpi->common;
#if ALT_ACT_MEASURE
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
int recon_yoffset;
int recon_y_stride = new_yv12->y_stride;
#endif
int mb_row, mb_col;
unsigned int mb_activity;
int64_t activity_sum = 0;
/* for each macroblock row in image */
for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
#if ALT_ACT_MEASURE
/* reset above block coeffs */
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
#endif
/* for each macroblock col in image */
for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
#if ALT_ACT_MEASURE
xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
xd->left_available = (mb_col != 0);
recon_yoffset += 16;
#endif
/* Copy current mb to a buffer */
vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
/* measure activity */
mb_activity = mb_activity_measure(cpi, x, mb_row, mb_col);
/* Keep frame sum */
activity_sum += mb_activity;
/* Store MB level activity details. */
*x->mb_activity_ptr = mb_activity;
/* Increment activity map pointer */
x->mb_activity_ptr++;
/* adjust to the next column of source macroblocks */
x->src.y_buffer += 16;
}
/* adjust to the next row of mbs */
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
#if ALT_ACT_MEASURE
/* extend the recon for intra prediction */
vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8,
xd->dst.v_buffer + 8);
#endif
}
/* Calculate an "average" MB activity */
calc_av_activity(cpi, activity_sum);
#if USE_ACT_INDEX
/* Calculate an activity index number of each mb */
calc_activity_index(cpi, x);
#endif
}
/* Macroblock activity masking */
void vp8_activity_masking(VP8_COMP *cpi, MACROBLOCK *x) {
#if USE_ACT_INDEX
x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2);
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
x->errorperbit += (x->errorperbit == 0);
#else
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
/* Apply the masking to the RD multiplier. */
a = act + (2 * cpi->activity_avg);
b = (2 * act) + cpi->activity_avg;
x->rdmult = (unsigned int)(((int64_t)x->rdmult * b + (a >> 1)) / a);
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
x->errorperbit += (x->errorperbit == 0);
#endif
/* Activity based Zbin adjustment */
adjust_act_zbin(cpi, x);
}
static void encode_mb_row(VP8_COMP *cpi, VP8_COMMON *cm, int mb_row,
MACROBLOCK *x, MACROBLOCKD *xd, TOKENEXTRA **tp,
int *segment_counts, int *totalrate) {
int recon_yoffset, recon_uvoffset;
int mb_col;
int ref_fb_idx = cm->lst_fb_idx;
int dst_fb_idx = cm->new_fb_idx;
int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride;
int map_index = (mb_row * cpi->common.mb_cols);
#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
const int num_part = (1 << cm->multi_token_partition);
TOKENEXTRA *tp_start = cpi->tok;
vp8_writer *w;
#endif
#if CONFIG_MULTITHREAD
const int nsync = cpi->mt_sync_range;
vpx_atomic_int rightmost_col = VPX_ATOMIC_INIT(cm->mb_cols + nsync);
const vpx_atomic_int *last_row_current_mb_col;
vpx_atomic_int *current_mb_col = &cpi->mt_current_mb_col[mb_row];
if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) != 0 && mb_row != 0) {
last_row_current_mb_col = &cpi->mt_current_mb_col[mb_row - 1];
} else {
last_row_current_mb_col = &rightmost_col;
}
#endif
#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
if (num_part > 1)
w = &cpi->bc[1 + (mb_row % num_part)];
else
w = &cpi->bc[1];
#endif
/* reset above block coeffs */
xd->above_context = cm->above_context;
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8);
cpi->tplist[mb_row].start = *tp;
/* printf("Main mb_row = %d\n", mb_row); */
/* Distance of Mb to the top & bottom edges, specified in 1/8th pel
* units as they are always compared to values that are in 1/8th pel
*/
xd->mb_to_top_edge = -((mb_row * 16) << 3);
xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3;
/* Set up limit values for vertical motion vector components
* to prevent them extending beyond the UMV borders
*/
x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16);
/* Set the mb activity pointer to the start of the row. */
x->mb_activity_ptr = &cpi->mb_activity_map[map_index];
/* for each macroblock col in image */
for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
*tp = cpi->tok;
#endif
/* Distance of Mb to the left & right edges, specified in
* 1/8th pel units as they are always compared to values
* that are in 1/8th pel units
*/
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3;
/* Set up limit values for horizontal motion vector components
* to prevent them extending beyond the UMV borders
*/
x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
x->mv_col_max =
((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16);
xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
xd->left_available = (mb_col != 0);
x->rddiv = cpi->RDDIV;
x->rdmult = cpi->RDMULT;
/* Copy current mb to a buffer */
vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
#if CONFIG_MULTITHREAD
if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) != 0) {
if (((mb_col - 1) % nsync) == 0) {
vpx_atomic_store_release(current_mb_col, mb_col - 1);
}
if (mb_row && !(mb_col & (nsync - 1))) {
vp8_atomic_spin_wait(mb_col, last_row_current_mb_col, nsync);
}
}
#endif
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) vp8_activity_masking(cpi, x);
/* Is segmentation enabled */
/* MB level adjustment to quantizer */
if (xd->segmentation_enabled) {
/* Code to set segment id in xd->mbmi.segment_id for current MB
* (with range checking)
*/
if (cpi->segmentation_map[map_index + mb_col] <= 3) {
xd->mode_info_context->mbmi.segment_id =
cpi->segmentation_map[map_index + mb_col];
} else {
xd->mode_info_context->mbmi.segment_id = 0;
}
vp8cx_mb_init_quantizer(cpi, x, 1);
} else {
/* Set to Segment 0 by default */
xd->mode_info_context->mbmi.segment_id = 0;
}
x->active_ptr = cpi->active_map + map_index + mb_col;
if (cm->frame_type == KEY_FRAME) {
*totalrate += vp8cx_encode_intra_macroblock(cpi, x, tp);
#ifdef MODE_STATS
y_modes[xd->mbmi.mode]++;
#endif
} else {
*totalrate += vp8cx_encode_inter_macroblock(
cpi, x, tp, recon_yoffset, recon_uvoffset, mb_row, mb_col);
#ifdef MODE_STATS
inter_y_modes[xd->mbmi.mode]++;
if (xd->mbmi.mode == SPLITMV) {
int b;
for (b = 0; b < xd->mbmi.partition_count; ++b) {
inter_b_modes[x->partition->bmi[b].mode]++;
}
}
#endif
// Keep track of how many (consecutive) times a block is coded
// as ZEROMV_LASTREF, for base layer frames.
// Reset to 0 if its coded as anything else.
if (cpi->current_layer == 0) {
if (xd->mode_info_context->mbmi.mode == ZEROMV &&
xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) {
// Increment, check for wrap-around.
if (cpi->consec_zero_last[map_index + mb_col] < 255) {
cpi->consec_zero_last[map_index + mb_col] += 1;
}
if (cpi->consec_zero_last_mvbias[map_index + mb_col] < 255) {
cpi->consec_zero_last_mvbias[map_index + mb_col] += 1;
}
} else {
cpi->consec_zero_last[map_index + mb_col] = 0;
cpi->consec_zero_last_mvbias[map_index + mb_col] = 0;
}
if (x->zero_last_dot_suppress) {
cpi->consec_zero_last_mvbias[map_index + mb_col] = 0;
}
}
/* Special case code for cyclic refresh
* If cyclic update enabled then copy xd->mbmi.segment_id; (which
* may have been updated based on mode during
* vp8cx_encode_inter_macroblock()) back into the global
* segmentation map
*/
if ((cpi->current_layer == 0) &&
(cpi->cyclic_refresh_mode_enabled && xd->segmentation_enabled)) {
cpi->segmentation_map[map_index + mb_col] =
xd->mode_info_context->mbmi.segment_id;
/* If the block has been refreshed mark it as clean (the
* magnitude of the -ve influences how long it will be before
* we consider another refresh):
* Else if it was coded (last frame 0,0) and has not already
* been refreshed then mark it as a candidate for cleanup
* next time (marked 0) else mark it as dirty (1).
*/
if (xd->mode_info_context->mbmi.segment_id) {
cpi->cyclic_refresh_map[map_index + mb_col] = -1;
} else if ((xd->mode_info_context->mbmi.mode == ZEROMV) &&
(xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)) {
if (cpi->cyclic_refresh_map[map_index + mb_col] == 1) {
cpi->cyclic_refresh_map[map_index + mb_col] = 0;
}
} else {
cpi->cyclic_refresh_map[map_index + mb_col] = 1;
}
}
}
cpi->tplist[mb_row].stop = *tp;
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
/* pack tokens for this MB */
{
int tok_count = *tp - tp_start;
vp8_pack_tokens(w, tp_start, tok_count);
}
#endif
/* Increment pointer into gf usage flags structure. */
x->gf_active_ptr++;
/* Increment the activity mask pointers. */
x->mb_activity_ptr++;
/* adjust to the next column of macroblocks */
x->src.y_buffer += 16;
x->src.u_buffer += 8;
x->src.v_buffer += 8;
recon_yoffset += 16;
recon_uvoffset += 8;
/* Keep track of segment usage */
segment_counts[xd->mode_info_context->mbmi.segment_id]++;
/* skip to next mb */
xd->mode_info_context++;
x->partition_info++;
xd->above_context++;
}
/* extend the recon for intra prediction */
vp8_extend_mb_row(&cm->yv12_fb[dst_fb_idx], xd->dst.y_buffer + 16,
xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);
#if CONFIG_MULTITHREAD
if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) != 0) {
vpx_atomic_store_release(current_mb_col,
vpx_atomic_load_acquire(&rightmost_col));
}
#endif
/* this is to account for the border */
xd->mode_info_context++;
x->partition_info++;
}
static void init_encode_frame_mb_context(VP8_COMP *cpi) {
MACROBLOCK *const x = &cpi->mb;
VP8_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
/* GF active flags data structure */
x->gf_active_ptr = (signed char *)cpi->gf_active_flags;
/* Activity map pointer */
x->mb_activity_ptr = cpi->mb_activity_map;
x->act_zbin_adj = 0;
x->partition_info = x->pi;
xd->mode_info_context = cm->mi;
xd->mode_info_stride = cm->mode_info_stride;
xd->frame_type = cm->frame_type;
/* reset intra mode contexts */
if (cm->frame_type == KEY_FRAME) vp8_init_mbmode_probs(cm);
/* Copy data over into macro block data structures. */
x->src = *cpi->Source;
xd->pre = cm->yv12_fb[cm->lst_fb_idx];
xd->dst = cm->yv12_fb[cm->new_fb_idx];
/* set up frame for intra coded blocks */
vp8_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]);
vp8_build_block_offsets(x);
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_context->mbmi.uv_mode = DC_PRED;
xd->left_context = &cm->left_context;
x->mvc = cm->fc.mvc;
memset(cm->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols);
/* Special case treatment when GF and ARF are not sensible options
* for reference
*/
if (cpi->ref_frame_flags == VP8_LAST_FRAME) {
vp8_calc_ref_frame_costs(x->ref_frame_cost, cpi->prob_intra_coded, 255,
128);
} else if ((cpi->oxcf.number_of_layers > 1) &&
(cpi->ref_frame_flags == VP8_GOLD_FRAME)) {
vp8_calc_ref_frame_costs(x->ref_frame_cost, cpi->prob_intra_coded, 1, 255);
} else if ((cpi->oxcf.number_of_layers > 1) &&
(cpi->ref_frame_flags == VP8_ALTR_FRAME)) {
vp8_calc_ref_frame_costs(x->ref_frame_cost, cpi->prob_intra_coded, 1, 1);
} else {
vp8_calc_ref_frame_costs(x->ref_frame_cost, cpi->prob_intra_coded,
cpi->prob_last_coded, cpi->prob_gf_coded);
}
xd->fullpixel_mask = 0xffffffff;
if (cm->full_pixel) xd->fullpixel_mask = 0xfffffff8;
vp8_zero(x->coef_counts);
vp8_zero(x->ymode_count);
vp8_zero(x->uv_mode_count) x->prediction_error = 0;
x->intra_error = 0;
vp8_zero(x->count_mb_ref_frame_usage);
}
#if CONFIG_MULTITHREAD
static void sum_coef_counts(MACROBLOCK *x, MACROBLOCK *x_thread) {
int i = 0;
do {
int j = 0;
do {
int k = 0;
do {
/* at every context */
/* calc probs and branch cts for this frame only */
int t = 0; /* token/prob index */
do {
x->coef_counts[i][j][k][t] += x_thread->coef_counts[i][j][k][t];
} while (++t < ENTROPY_NODES);
} while (++k < PREV_COEF_CONTEXTS);
} while (++j < COEF_BANDS);
} while (++i < BLOCK_TYPES);
}
#endif // CONFIG_MULTITHREAD
void vp8_encode_frame(VP8_COMP *cpi) {
int mb_row;
MACROBLOCK *const x = &cpi->mb;
VP8_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
TOKENEXTRA *tp = cpi->tok;
int segment_counts[MAX_MB_SEGMENTS];
int totalrate;
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
BOOL_CODER *bc = &cpi->bc[1]; /* bc[0] is for control partition */
const int num_part = (1 << cm->multi_token_partition);
#endif
memset(segment_counts, 0, sizeof(segment_counts));
totalrate = 0;
if (cpi->compressor_speed == 2) {
if (cpi->oxcf.cpu_used < 0) {
cpi->Speed = -(cpi->oxcf.cpu_used);
} else {
vp8_auto_select_speed(cpi);
}
}
/* Functions setup for all frame types so we can use MC in AltRef */
if (!cm->use_bilinear_mc_filter) {
xd->subpixel_predict = vp8_sixtap_predict4x4;
xd->subpixel_predict8x4 = vp8_sixtap_predict8x4;
xd->subpixel_predict8x8 = vp8_sixtap_predict8x8;
xd->subpixel_predict16x16 = vp8_sixtap_predict16x16;
} else {
xd->subpixel_predict = vp8_bilinear_predict4x4;
xd->subpixel_predict8x4 = vp8_bilinear_predict8x4;
xd->subpixel_predict8x8 = vp8_bilinear_predict8x8;
xd->subpixel_predict16x16 = vp8_bilinear_predict16x16;
}
cpi->mb.skip_true_count = 0;
cpi->tok_count = 0;
#if 0
/* Experimental code */
cpi->frame_distortion = 0;
cpi->last_mb_distortion = 0;
#endif
xd->mode_info_context = cm->mi;
vp8_zero(cpi->mb.MVcount);
vp8cx_frame_init_quantizer(cpi);
vp8_initialize_rd_consts(cpi, x,
vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q));
vp8cx_initialize_me_consts(cpi, cm->base_qindex);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
/* Initialize encode frame context. */
init_encode_frame_mb_context(cpi);
/* Build a frame level activity map */
build_activity_map(cpi);
}
/* re-init encode frame context. */
init_encode_frame_mb_context(cpi);
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
{
int i;
for (i = 0; i < num_part; ++i) {
vp8_start_encode(&bc[i], cpi->partition_d[i + 1],
cpi->partition_d_end[i + 1]);
bc[i].error = &cm->error;
}
}
#endif
{
struct vpx_usec_timer emr_timer;
vpx_usec_timer_start(&emr_timer);
#if CONFIG_MULTITHREAD
if (vpx_atomic_load_acquire(&cpi->b_multi_threaded)) {
int i;
vp8cx_init_mbrthread_data(cpi, x, cpi->mb_row_ei,
cpi->encoding_thread_count);
for (i = 0; i < cm->mb_rows; ++i)
vpx_atomic_store_release(&cpi->mt_current_mb_col[i], -1);
for (i = 0; i < cpi->encoding_thread_count; ++i) {
sem_post(&cpi->h_event_start_encoding[i]);
}
for (mb_row = 0; mb_row < cm->mb_rows;
mb_row += (cpi->encoding_thread_count + 1)) {
vp8_zero(cm->left_context)
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
tp = cpi->tok;
#else
tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24);
#endif
encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate);
/* adjust to the next row of mbs */
x->src.y_buffer +=
16 * x->src.y_stride * (cpi->encoding_thread_count + 1) -
16 * cm->mb_cols;
x->src.u_buffer +=
8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) -
8 * cm->mb_cols;
x->src.v_buffer +=
8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) -
8 * cm->mb_cols;
xd->mode_info_context +=
xd->mode_info_stride * cpi->encoding_thread_count;
x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count;
x->gf_active_ptr += cm->mb_cols * cpi->encoding_thread_count;
}
/* Wait for all the threads to finish. */
for (i = 0; i < cpi->encoding_thread_count; ++i) {
sem_wait(&cpi->h_event_end_encoding[i]);
}
for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
cpi->tok_count += (unsigned int)(cpi->tplist[mb_row].stop -
cpi->tplist[mb_row].start);
}
if (xd->segmentation_enabled) {
int j;
if (xd->segmentation_enabled) {
for (i = 0; i < cpi->encoding_thread_count; ++i) {
for (j = 0; j < 4; ++j) {
segment_counts[j] += cpi->mb_row_ei[i].segment_counts[j];
}
}
}
}
for (i = 0; i < cpi->encoding_thread_count; ++i) {
int mode_count;
int c_idx;
totalrate += cpi->mb_row_ei[i].totalrate;
cpi->mb.skip_true_count += cpi->mb_row_ei[i].mb.skip_true_count;
for (mode_count = 0; mode_count < VP8_YMODES; ++mode_count) {
cpi->mb.ymode_count[mode_count] +=
cpi->mb_row_ei[i].mb.ymode_count[mode_count];
}
for (mode_count = 0; mode_count < VP8_UV_MODES; ++mode_count) {
cpi->mb.uv_mode_count[mode_count] +=
cpi->mb_row_ei[i].mb.uv_mode_count[mode_count];
}
for (c_idx = 0; c_idx < MVvals; ++c_idx) {
cpi->mb.MVcount[0][c_idx] += cpi->mb_row_ei[i].mb.MVcount[0][c_idx];
cpi->mb.MVcount[1][c_idx] += cpi->mb_row_ei[i].mb.MVcount[1][c_idx];
}
cpi->mb.prediction_error += cpi->mb_row_ei[i].mb.prediction_error;
cpi->mb.intra_error += cpi->mb_row_ei[i].mb.intra_error;
for (c_idx = 0; c_idx < MAX_REF_FRAMES; ++c_idx) {
cpi->mb.count_mb_ref_frame_usage[c_idx] +=
cpi->mb_row_ei[i].mb.count_mb_ref_frame_usage[c_idx];
}
for (c_idx = 0; c_idx < MAX_ERROR_BINS; ++c_idx) {
cpi->mb.error_bins[c_idx] += cpi->mb_row_ei[i].mb.error_bins[c_idx];
}
/* add up counts for each thread */
sum_coef_counts(x, &cpi->mb_row_ei[i].mb);
}
} else
#endif // CONFIG_MULTITHREAD
{
/* for each macroblock row in image */
for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
vp8_zero(cm->left_context)
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
tp = cpi->tok;
#endif
encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate);
/* adjust to the next row of mbs */
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols;
}
cpi->tok_count = (unsigned int)(tp - cpi->tok);
}
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
{
int i;
for (i = 0; i < num_part; ++i) {
vp8_stop_encode(&bc[i]);
cpi->partition_sz[i + 1] = bc[i].pos;
}
}
#endif
vpx_usec_timer_mark(&emr_timer);
cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer);
}
// Work out the segment probabilities if segmentation is enabled
// and needs to be updated
if (xd->segmentation_enabled && xd->update_mb_segmentation_map) {
int tot_count;
int i;
/* Set to defaults */
memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs));
tot_count = segment_counts[0] + segment_counts[1] + segment_counts[2] +
segment_counts[3];
if (tot_count) {
xd->mb_segment_tree_probs[0] =
((segment_counts[0] + segment_counts[1]) * 255) / tot_count;
tot_count = segment_counts[0] + segment_counts[1];
if (tot_count > 0) {
xd->mb_segment_tree_probs[1] = (segment_counts[0] * 255) / tot_count;
}
tot_count = segment_counts[2] + segment_counts[3];
if (tot_count > 0) {
xd->mb_segment_tree_probs[2] = (segment_counts[2] * 255) / tot_count;
}
/* Zero probabilities not allowed */
for (i = 0; i < MB_FEATURE_TREE_PROBS; ++i) {
if (xd->mb_segment_tree_probs[i] == 0) xd->mb_segment_tree_probs[i] = 1;
}
}
}
/* projected_frame_size in units of BYTES */
cpi->projected_frame_size = totalrate >> 8;
/* Make a note of the percentage MBs coded Intra. */
if (cm->frame_type == KEY_FRAME) {
cpi->this_frame_percent_intra = 100;
} else {
int tot_modes;
tot_modes = cpi->mb.count_mb_ref_frame_usage[INTRA_FRAME] +
cpi->mb.count_mb_ref_frame_usage[LAST_FRAME] +
cpi->mb.count_mb_ref_frame_usage[GOLDEN_FRAME] +
cpi->mb.count_mb_ref_frame_usage[ALTREF_FRAME];
if (tot_modes) {
cpi->this_frame_percent_intra =
cpi->mb.count_mb_ref_frame_usage[INTRA_FRAME] * 100 / tot_modes;
}
}
#if !CONFIG_REALTIME_ONLY
/* Adjust the projected reference frame usage probability numbers to
* reflect what we have just seen. This may be useful when we make
* multiple iterations of the recode loop rather than continuing to use
* values from the previous frame.
*/
if ((cm->frame_type != KEY_FRAME) &&
((cpi->oxcf.number_of_layers > 1) ||
(!cm->refresh_alt_ref_frame && !cm->refresh_golden_frame))) {
vp8_convert_rfct_to_prob(cpi);
}
#endif
}
void vp8_setup_block_ptrs(MACROBLOCK *x) {
int r, c;
int i;
for (r = 0; r < 4; ++r) {
for (c = 0; c < 4; ++c) {
x->block[r * 4 + c].src_diff = x->src_diff + r * 4 * 16 + c * 4;
}
}
for (r = 0; r < 2; ++r) {
for (c = 0; c < 2; ++c) {
x->block[16 + r * 2 + c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4;
}
}
for (r = 0; r < 2; ++r) {
for (c = 0; c < 2; ++c) {
x->block[20 + r * 2 + c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4;
}
}
x->block[24].src_diff = x->src_diff + 384;
for (i = 0; i < 25; ++i) {
x->block[i].coeff = x->coeff + i * 16;
}
}
void vp8_build_block_offsets(MACROBLOCK *x) {
int block = 0;
int br, bc;
vp8_build_block_doffsets(&x->e_mbd);
/* y blocks */
x->thismb_ptr = &x->thismb[0];
for (br = 0; br < 4; ++br) {
for (bc = 0; bc < 4; ++bc) {
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->thismb_ptr;
this_block->src_stride = 16;
this_block->src = 4 * br * 16 + 4 * bc;
++block;
}
}
/* u blocks */
for (br = 0; br < 2; ++br) {
for (bc = 0; bc < 2; ++bc) {
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.u_buffer;
this_block->src_stride = x->src.uv_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
}
/* v blocks */
for (br = 0; br < 2; ++br) {
for (bc = 0; bc < 2; ++bc) {
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.v_buffer;
this_block->src_stride = x->src.uv_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
}
}
static void sum_intra_stats(VP8_COMP *cpi, MACROBLOCK *x) {
const MACROBLOCKD *xd = &x->e_mbd;
const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode;
const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode;
#ifdef MODE_STATS
const int is_key = cpi->common.frame_type == KEY_FRAME;
++(is_key ? uv_modes : inter_uv_modes)[uvm];
if (m == B_PRED) {
unsigned int *const bct = is_key ? b_modes : inter_b_modes;
int b = 0;
do {
++bct[xd->block[b].bmi.mode];
} while (++b < 16);
}
#else
(void)cpi;
#endif
++x->ymode_count[m];
++x->uv_mode_count[uvm];
}
/* Experimental stub function to create a per MB zbin adjustment based on
* some previously calculated measure of MB activity.
*/
static void adjust_act_zbin(VP8_COMP *cpi, MACROBLOCK *x) {
#if USE_ACT_INDEX
x->act_zbin_adj = *(x->mb_activity_ptr);
#else
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
/* Apply the masking to the RD multiplier. */
a = act + 4 * cpi->activity_avg;
b = 4 * act + cpi->activity_avg;
if (act > cpi->activity_avg) {
x->act_zbin_adj = (int)(((int64_t)b + (a >> 1)) / a) - 1;
} else {
x->act_zbin_adj = 1 - (int)(((int64_t)a + (b >> 1)) / b);
}
#endif
}
int vp8cx_encode_intra_macroblock(VP8_COMP *cpi, MACROBLOCK *x,
TOKENEXTRA **t) {
MACROBLOCKD *xd = &x->e_mbd;
int rate;
if (cpi->sf.RD && cpi->compressor_speed != 2) {
vp8_rd_pick_intra_mode(x, &rate);
} else {
vp8_pick_intra_mode(x, &rate);
}
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
adjust_act_zbin(cpi, x);
vp8_update_zbin_extra(cpi, x);
}
if (x->e_mbd.mode_info_context->mbmi.mode == B_PRED) {
vp8_encode_intra4x4mby(x);
} else {
vp8_encode_intra16x16mby(x);
}
vp8_encode_intra16x16mbuv(x);
sum_intra_stats(cpi, x);
vp8_tokenize_mb(cpi, x, t);
if (xd->mode_info_context->mbmi.mode != B_PRED) vp8_inverse_transform_mby(xd);
vp8_dequant_idct_add_uv_block(xd->qcoeff + 16 * 16, xd->dequant_uv,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs + 16);
return rate;
}
#ifdef SPEEDSTATS
extern int cnt_pm;
#endif
extern void vp8_fix_contexts(MACROBLOCKD *x);
int vp8cx_encode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t,
int recon_yoffset, int recon_uvoffset,
int mb_row, int mb_col) {
MACROBLOCKD *const xd = &x->e_mbd;
int intra_error = 0;
int rate;
int distortion;
x->skip = 0;
if (xd->segmentation_enabled) {
x->encode_breakout =
cpi->segment_encode_breakout[xd->mode_info_context->mbmi.segment_id];
} else {
x->encode_breakout = cpi->oxcf.encode_breakout;
}
#if CONFIG_TEMPORAL_DENOISING
/* Reset the best sse mode/mv for each macroblock. */
x->best_reference_frame = INTRA_FRAME;
x->best_zeromv_reference_frame = INTRA_FRAME;
x->best_sse_inter_mode = 0;
x->best_sse_mv.as_int = 0;
x->need_to_clamp_best_mvs = 0;
#endif
if (cpi->sf.RD) {
int zbin_mode_boost_enabled = x->zbin_mode_boost_enabled;
/* Are we using the fast quantizer for the mode selection? */
if (cpi->sf.use_fastquant_for_pick) {
x->quantize_b = vp8_fast_quantize_b;
/* the fast quantizer does not use zbin_extra, so
* do not recalculate */
x->zbin_mode_boost_enabled = 0;
}
vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate,
&distortion, &intra_error, mb_row, mb_col);
/* switch back to the regular quantizer for the encode */
if (cpi->sf.improved_quant) {
x->quantize_b = vp8_regular_quantize_b;
}
/* restore cpi->zbin_mode_boost_enabled */
x->zbin_mode_boost_enabled = zbin_mode_boost_enabled;
} else {
vp8_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate,
&distortion, &intra_error, mb_row, mb_col);
}
x->prediction_error += distortion;
x->intra_error += intra_error;
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
/* Adjust the zbin based on this MB rate. */
adjust_act_zbin(cpi, x);
}
#if 0
/* Experimental RD code */
cpi->frame_distortion += distortion;
cpi->last_mb_distortion = distortion;
#endif
/* MB level adjutment to quantizer setup */
if (xd->segmentation_enabled) {
/* If cyclic update enabled */
if (cpi->current_layer == 0 && cpi->cyclic_refresh_mode_enabled) {
/* Clear segment_id back to 0 if not coded (last frame 0,0) */
if ((xd->mode_info_context->mbmi.segment_id == 1) &&
((xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) ||
(xd->mode_info_context->mbmi.mode != ZEROMV))) {
xd->mode_info_context->mbmi.segment_id = 0;
/* segment_id changed, so update */
vp8cx_mb_init_quantizer(cpi, x, 1);
}
}
}
{
/* Experimental code.
* Special case for gf and arf zeromv modes, for 1 temporal layer.
* Increase zbin size to supress noise.
*/
x->zbin_mode_boost = 0;
if (x->zbin_mode_boost_enabled) {
if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME) {
if (xd->mode_info_context->mbmi.mode == ZEROMV) {
if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME &&
cpi->oxcf.number_of_layers == 1) {
x->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
} else {
x->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
}
} else if (xd->mode_info_context->mbmi.mode == SPLITMV) {
x->zbin_mode_boost = 0;
} else {
x->zbin_mode_boost = MV_ZBIN_BOOST;
}
}
}
/* The fast quantizer doesn't use zbin_extra, only do so with
* the regular quantizer. */
if (cpi->sf.improved_quant) vp8_update_zbin_extra(cpi, x);
}
x->count_mb_ref_frame_usage[xd->mode_info_context->mbmi.ref_frame]++;
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
vp8_encode_intra16x16mbuv(x);
if (xd->mode_info_context->mbmi.mode == B_PRED) {
vp8_encode_intra4x4mby(x);
} else {
vp8_encode_intra16x16mby(x);
}
sum_intra_stats(cpi, x);
} else {
int ref_fb_idx;
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) {
ref_fb_idx = cpi->common.lst_fb_idx;
} else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) {
ref_fb_idx = cpi->common.gld_fb_idx;
} else {
ref_fb_idx = cpi->common.alt_fb_idx;
}
xd->pre.y_buffer = cpi->common.yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer =
cpi->common.yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer =
cpi->common.yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
if (!x->skip) {
vp8_encode_inter16x16(x);
} else {
vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer,
xd->dst.v_buffer, xd->dst.y_stride,
xd->dst.uv_stride);
}
}
if (!x->skip) {
vp8_tokenize_mb(cpi, x, t);
if (xd->mode_info_context->mbmi.mode != B_PRED) {
vp8_inverse_transform_mby(xd);
}
vp8_dequant_idct_add_uv_block(xd->qcoeff + 16 * 16, xd->dequant_uv,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs + 16);
} else {
/* always set mb_skip_coeff as it is needed by the loopfilter */
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
if (cpi->common.mb_no_coeff_skip) {
x->skip_true_count++;
vp8_fix_contexts(xd);
} else {
vp8_stuff_mb(cpi, x, t);
}
}
return rate;
}