freeswitch/libs/libks/src/ks_hash.c

696 lines
16 KiB
C

/*
* Copyright (c) 2002, Christopher Clark
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of the original author; nor the names of any contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "ks.h"
#include "ks_hash.h"
struct entry
{
void *k, *v;
unsigned int h;
ks_hash_flag_t flags;
ks_hash_destructor_t destructor;
struct entry *next;
};
struct ks_hash_iterator {
unsigned int pos;
ks_locked_t locked;
struct entry *e;
struct ks_hash *h;
};
struct ks_hash {
unsigned int tablelength;
struct entry **table;
unsigned int entrycount;
unsigned int loadlimit;
unsigned int primeindex;
unsigned int (*hashfn) (void *k);
int (*eqfn) (void *k1, void *k2);
ks_hash_flag_t flags;
ks_hash_destructor_t destructor;
ks_rwl_t *rwl;
ks_mutex_t *mutex;
uint32_t readers;
ks_size_t keysize;
ks_hash_mode_t mode;
};
/*****************************************************************************/
/*****************************************************************************/
static inline unsigned int
hash(ks_hash_t *h, void *k)
{
unsigned int i;
switch (h->mode)
{
case KS_HASH_MODE_ARBITRARY:
i = ks_hash_default_arbitrary(k, h->keysize, 13);
break;
case KS_HASH_MODE_INT:
case KS_HASH_MODE_INT64:
case KS_HASH_MODE_PTR:
i = h->hashfn((void *)&k);
break;
default:
i = h->hashfn(k);
break;
}
/* Aim to protect against poor hash functions by adding logic here
* - logic taken from java 1.4 hash source */
i += ~(i << 9);
i ^= ((i >> 14) | (i << 18)); /* >>> */
i += (i << 4);
i ^= ((i >> 10) | (i << 22)); /* >>> */
return i;
}
/*****************************************************************************/
/* indexFor */
static __inline__ unsigned int
indexFor(unsigned int tablelength, unsigned int hashvalue) {
return (hashvalue % tablelength);
}
/* Only works if tablelength == 2^N */
/*static inline unsigned int
indexFor(unsigned int tablelength, unsigned int hashvalue)
{
return (hashvalue & (tablelength - 1u));
}
*/
/*****************************************************************************/
//#define freekey(X) free(X)
/*
Credit for primes table: Aaron Krowne
http://br.endernet.org/~akrowne/
http://planetmath.org/encyclopedia/GoodKs_HashPrimes.html
*/
static const unsigned int primes[] = {
53, 97, 193, 389,
769, 1543, 3079, 6151,
12289, 24593, 49157, 98317,
196613, 393241, 786433, 1572869,
3145739, 6291469, 12582917, 25165843,
50331653, 100663319, 201326611, 402653189,
805306457, 1610612741
};
const unsigned int prime_table_length = sizeof(primes)/sizeof(primes[0]);
const float max_load_factor = 0.65f;
/*****************************************************************************/
static void ks_hash_cleanup(void *ptr, void *arg, ks_pool_cleanup_action_t action, ks_pool_cleanup_type_t type)
{
//ks_hash_t *hash = (ks_hash_t *) ptr;
switch(action) {
case KS_MPCL_ANNOUNCE:
break;
case KS_MPCL_TEARDOWN:
break;
case KS_MPCL_DESTROY:
//ks_hash_destroy(&hash);
break;
}
}
KS_DECLARE(ks_status_t) ks_hash_create(ks_hash_t **hp, ks_hash_mode_t mode, ks_hash_flag_t flags, ks_pool_t *pool)
{
return ks_hash_create_ex(hp, 16, NULL, NULL, mode, flags, NULL, pool);
}
KS_DECLARE(void) ks_hash_set_flags(ks_hash_t *h, ks_hash_flag_t flags)
{
h->flags = flags;
}
KS_DECLARE(void) ks_hash_set_keysize(ks_hash_t *h, ks_size_t keysize)
{
h->keysize = keysize;
}
KS_DECLARE(void) ks_hash_set_destructor(ks_hash_t *h, ks_hash_destructor_t destructor)
{
h->destructor = destructor;
}
KS_DECLARE(ks_status_t)
ks_hash_create_ex(ks_hash_t **hp, unsigned int minsize,
unsigned int (*hashf) (void*),
int (*eqf) (void*,void*), ks_hash_mode_t mode, ks_hash_flag_t flags, ks_hash_destructor_t destructor, ks_pool_t *pool)
{
ks_hash_t *h;
unsigned int pindex, size = primes[0];
ks_size_t keysize = 0;
switch(mode) {
case KS_HASH_MODE_CASE_INSENSITIVE:
ks_assert(hashf == NULL);
hashf = ks_hash_default_ci;
break;
case KS_HASH_MODE_INT:
ks_assert(hashf == NULL);
ks_assert(eqf == NULL);
hashf = ks_hash_default_int;
eqf = ks_hash_equalkeys_int;
keysize = 4;
break;
case KS_HASH_MODE_INT64:
ks_assert(hashf == NULL);
ks_assert(eqf == NULL);
hashf = ks_hash_default_int64;
eqf = ks_hash_equalkeys_int64;
keysize = 8;
break;
case KS_HASH_MODE_PTR:
ks_assert(hashf == NULL);
ks_assert(eqf == NULL);
hashf = ks_hash_default_ptr;
eqf = ks_hash_equalkeys_ptr;
keysize = sizeof(void *);
break;
case KS_HASH_MODE_ARBITRARY:
keysize = sizeof(void *);
break;
default:
break;
}
if ((flags & KS_HASH_FLAG_NOLOCK)) {
flags &= ~KS_HASH_FLAG_RWLOCK;
}
ks_assert(pool);
if (!hashf) hashf = ks_hash_default;
if (!eqf) eqf = ks_hash_equalkeys;
if (!minsize) minsize = 16;
/* Check requested ks_hash isn't too large */
if (minsize > (1u << 30)) {*hp = NULL; return KS_STATUS_FAIL;}
/* Enforce size as prime */
for (pindex=0; pindex < prime_table_length; pindex++) {
if (primes[pindex] > minsize) {
size = primes[pindex];
break;
}
}
h = (ks_hash_t *) ks_pool_alloc(pool, sizeof(ks_hash_t));
h->flags = flags;
h->destructor = destructor;
h->keysize = keysize;
h->mode = mode;
if ((flags & KS_HASH_FLAG_RWLOCK)) {
ks_rwl_create(&h->rwl, pool);
}
if (!(flags & KS_HASH_FLAG_NOLOCK)) {
ks_mutex_create(&h->mutex, KS_MUTEX_FLAG_DEFAULT, pool);
}
if (NULL == h) abort(); /*oom*/
h->table = (struct entry **)ks_pool_alloc(pool, sizeof(struct entry*) * size);
if (NULL == h->table) abort(); /*oom*/
//memset(h->table, 0, size * sizeof(struct entry *));
h->tablelength = size;
h->primeindex = pindex;
h->entrycount = 0;
h->hashfn = hashf;
h->eqfn = eqf;
h->loadlimit = (unsigned int) ceil(size * max_load_factor);
*hp = h;
ks_pool_set_cleanup(h, NULL, ks_hash_cleanup);
return KS_STATUS_SUCCESS;
}
/*****************************************************************************/
static int
ks_hash_expand(ks_hash_t *h)
{
/* Double the size of the table to accomodate more entries */
struct entry **newtable;
struct entry *e;
struct entry **pE;
unsigned int newsize, i, index;
/* Check we're not hitting max capacity */
if (h->primeindex == (prime_table_length - 1)) return 0;
newsize = primes[++(h->primeindex)];
newtable = (struct entry **)ks_pool_alloc(ks_pool_get(h), sizeof(struct entry*) * newsize);
if (NULL != newtable)
{
memset(newtable, 0, newsize * sizeof(struct entry *));
/* This algorithm is not 'stable'. ie. it reverses the list
* when it transfers entries between the tables */
for (i = 0; i < h->tablelength; i++) {
while (NULL != (e = h->table[i])) {
h->table[i] = e->next;
index = indexFor(newsize,e->h);
e->next = newtable[index];
newtable[index] = e;
}
}
ks_pool_free(&h->table);
h->table = newtable;
}
/* Plan B: realloc instead */
else
{
newtable = (struct entry **)
ks_pool_resize(h->table, newsize * sizeof(struct entry *));
if (NULL == newtable) { (h->primeindex)--; return 0; }
h->table = newtable;
memset(newtable[h->tablelength], 0, newsize - h->tablelength);
for (i = 0; i < h->tablelength; i++) {
for (pE = &(newtable[i]), e = *pE; e != NULL; e = *pE) {
index = indexFor(newsize,e->h);
if (index == i) {
pE = &(e->next);
} else {
*pE = e->next;
e->next = newtable[index];
newtable[index] = e;
}
}
}
}
h->tablelength = newsize;
h->loadlimit = (unsigned int) ceil(newsize * max_load_factor);
return -1;
}
/*****************************************************************************/
KS_DECLARE(unsigned int)
ks_hash_count(ks_hash_t *h)
{
return h->entrycount;
}
static int key_equals(ks_hash_t *h, void *k1, void *k2)
{
switch (h->mode)
{
case KS_HASH_MODE_ARBITRARY:
return !memcmp(k1, k2, h->keysize);
case KS_HASH_MODE_INT:
case KS_HASH_MODE_INT64:
case KS_HASH_MODE_PTR:
return h->eqfn(&k1, &k2);
default: break;
}
return h->eqfn(k1, k2);
}
static void * _ks_hash_remove(ks_hash_t *h, void *k, unsigned int hashvalue, unsigned int index) {
/* TODO: consider compacting the table when the load factor drops enough,
* or provide a 'compact' method. */
struct entry *e;
struct entry **pE;
void *v;
pE = &(h->table[index]);
e = *pE;
while (NULL != e) {
/* Check hash value to short circuit heavier comparison */
if ((hashvalue == e->h) && (key_equals(h, k, e->k))) {
*pE = e->next;
h->entrycount--;
v = e->v;
if (e->flags & KS_HASH_FLAG_FREE_KEY) {
ks_pool_free(&e->k);
}
if (e->flags & KS_HASH_FLAG_FREE_VALUE) {
ks_pool_free(&e->v);
v = NULL;
} else if (e->destructor) {
e->destructor(e->v);
v = e->v = NULL;
} else if (h->destructor) {
h->destructor(e->v);
v = e->v = NULL;
}
ks_pool_free(&e);
return v;
}
pE = &(e->next);
e = e->next;
}
return NULL;
}
/*****************************************************************************/
KS_DECLARE(ks_status_t)
ks_hash_insert_ex(ks_hash_t *h, void *k, void *v, ks_hash_flag_t flags, ks_hash_destructor_t destructor)
{
struct entry *e;
unsigned int hashvalue = hash(h, k);
unsigned int index = indexFor(h->tablelength, hashvalue);
ks_hash_write_lock(h);
if (!flags) {
flags = h->flags;
}
if (flags & KS_HASH_FLAG_DUP_CHECK) {
_ks_hash_remove(h, k, hashvalue, index);
}
if (++(h->entrycount) > h->loadlimit)
{
/* Ignore the return value. If expand fails, we should
* still try cramming just this value into the existing table
* -- we may not have memory for a larger table, but one more
* element may be ok. Next time we insert, we'll try expanding again.*/
ks_hash_expand(h);
index = indexFor(h->tablelength, hashvalue);
}
e = (struct entry *)ks_pool_alloc(ks_pool_get(h), sizeof(struct entry));
e->h = hashvalue;
e->k = k;
e->v = v;
e->flags = flags;
e->destructor = destructor;
e->next = h->table[index];
h->table[index] = e;
ks_hash_write_unlock(h);
return KS_STATUS_SUCCESS;
}
KS_DECLARE(void) ks_hash_write_lock(ks_hash_t *h)
{
if ((h->flags & KS_HASH_FLAG_NOLOCK)) {
return;
} else if ((h->flags & KS_HASH_FLAG_RWLOCK)) {
ks_rwl_write_lock(h->rwl);
} else {
ks_mutex_lock(h->mutex);
}
}
KS_DECLARE(void) ks_hash_write_unlock(ks_hash_t *h)
{
if ((h->flags & KS_HASH_FLAG_NOLOCK)) {
return;
} else if ((h->flags & KS_HASH_FLAG_RWLOCK)) {
ks_rwl_write_unlock(h->rwl);
} else {
ks_mutex_unlock(h->mutex);
}
}
KS_DECLARE(ks_status_t) ks_hash_read_lock(ks_hash_t *h)
{
if (!(h->flags & KS_HASH_FLAG_RWLOCK)) {
return KS_STATUS_INACTIVE;
}
ks_rwl_read_lock(h->rwl);
ks_mutex_lock(h->mutex);
h->readers++;
ks_mutex_unlock(h->mutex);
return KS_STATUS_SUCCESS;
}
KS_DECLARE(ks_status_t) ks_hash_read_unlock(ks_hash_t *h)
{
if (!(h->flags & KS_HASH_FLAG_RWLOCK)) {
return KS_STATUS_INACTIVE;
}
ks_mutex_lock(h->mutex);
h->readers--;
ks_mutex_unlock(h->mutex);
ks_rwl_read_unlock(h->rwl);
return KS_STATUS_SUCCESS;
}
/*****************************************************************************/
KS_DECLARE(void *) /* returns value associated with key */
ks_hash_search(ks_hash_t *h, void *k, ks_locked_t locked)
{
struct entry *e;
unsigned int hashvalue, index;
void *v = NULL;
ks_assert(locked != KS_READLOCKED || (h->flags & KS_HASH_FLAG_RWLOCK));
hashvalue = hash(h,k);
index = indexFor(h->tablelength,hashvalue);
if (locked == KS_READLOCKED) {
ks_rwl_read_lock(h->rwl);
ks_mutex_lock(h->mutex);
h->readers++;
ks_mutex_unlock(h->mutex);
}
e = h->table[index];
while (NULL != e) {
/* Check hash value to short circuit heavier comparison */
if ((hashvalue == e->h) && (key_equals(h, k, e->k))) {
v = e->v;
break;
}
e = e->next;
}
return v;
}
/*****************************************************************************/
KS_DECLARE(void *) /* returns value associated with key */
ks_hash_remove(ks_hash_t *h, void *k)
{
void *v;
unsigned int hashvalue = hash(h,k);
ks_hash_write_lock(h);
v = _ks_hash_remove(h, k, hashvalue, indexFor(h->tablelength,hashvalue));
ks_hash_write_unlock(h);
return v;
}
/*****************************************************************************/
/* destroy */
KS_DECLARE(void)
ks_hash_destroy(ks_hash_t **h)
{
unsigned int i;
struct entry *e, *f;
struct entry **table = (*h)->table;
ks_hash_write_lock(*h);
for (i = 0; i < (*h)->tablelength; i++) {
e = table[i];
while (NULL != e) {
f = e; e = e->next;
if (f->flags & KS_HASH_FLAG_FREE_KEY) {
ks_pool_free(&f->k);
}
if (f->flags & KS_HASH_FLAG_FREE_VALUE) {
ks_pool_free(&f->v);
} else if (f->destructor) {
f->destructor(f->v);
f->v = NULL;
} else if ((*h)->destructor) {
(*h)->destructor(f->v);
f->v = NULL;
}
ks_pool_free(&f);
}
}
ks_pool_free(&(*h)->table);
ks_hash_write_unlock(*h);
if ((*h)->rwl) ks_pool_free(&(*h)->rwl);
if ((*h)->mutex) {
ks_pool_free(&(*h)->mutex);
}
ks_pool_free(&(*h));
*h = NULL;
}
KS_DECLARE(void) ks_hash_last(ks_hash_iterator_t **iP)
{
ks_hash_iterator_t *i = *iP;
if (i->locked == KS_READLOCKED) {
ks_mutex_lock(i->h->mutex);
i->h->readers--;
ks_mutex_unlock(i->h->mutex);
ks_rwl_read_unlock(i->h->rwl);
}
ks_pool_free(&i);
*iP = NULL;
}
KS_DECLARE(ks_hash_iterator_t *) ks_hash_next(ks_hash_iterator_t **iP)
{
ks_hash_iterator_t *i = *iP;
if (i->e) {
if ((i->e = i->e->next) != 0) {
return i;
} else {
i->pos++;
}
}
while(i->pos < i->h->tablelength && !i->h->table[i->pos]) {
i->pos++;
}
if (i->pos >= i->h->tablelength) {
goto end;
}
if ((i->e = i->h->table[i->pos]) != 0) {
return i;
}
end:
ks_hash_last(iP);
return NULL;
}
KS_DECLARE(ks_hash_iterator_t *) ks_hash_first(ks_hash_t *h, ks_locked_t locked)
{
ks_hash_iterator_t *iterator;
ks_assert(locked != KS_READLOCKED || (h->flags & KS_HASH_FLAG_RWLOCK));
iterator = ks_pool_alloc(ks_pool_get(h), sizeof(*iterator));
ks_assert(iterator);
iterator->pos = 0;
iterator->e = NULL;
iterator->h = h;
if (locked == KS_READLOCKED) {
ks_rwl_read_lock(h->rwl);
iterator->locked = locked;
ks_mutex_lock(h->mutex);
h->readers++;
ks_mutex_unlock(h->mutex);
}
return ks_hash_next(&iterator);
}
KS_DECLARE(void) ks_hash_this_val(ks_hash_iterator_t *i, void *val)
{
if (i->e) {
i->e->v = val;
}
}
KS_DECLARE(void) ks_hash_this(ks_hash_iterator_t *i, const void **key, ks_ssize_t *klen, void **val)
{
if (i->e) {
if (key) {
*key = i->e->k;
}
if (klen) {
*klen = (int)strlen(i->e->k);
}
if (val) {
*val = i->e->v;
}
} else {
if (key) {
*key = NULL;
}
if (klen) {
*klen = 0;
}
if (val) {
*val = NULL;
}
}
}
/* For Emacs:
* Local Variables:
* mode:c
* indent-tabs-mode:t
* tab-width:4
* c-basic-offset:4
* End:
* For VIM:
* vim:set softtabstop=4 shiftwidth=4 tabstop=4 noet:
*/