723 lines
40 KiB
C
723 lines
40 KiB
C
/***********************************************************************
|
|
Copyright (c) 2006-2010, Skype Limited. All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, (subject to the limitations in the disclaimer below)
|
|
are permitted provided that the following conditions are met:
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
- Neither the name of Skype Limited, nor the names of specific
|
|
contributors, may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED
|
|
BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
|
CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
|
|
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
***********************************************************************/
|
|
|
|
#include "SKP_Silk_main.h"
|
|
|
|
typedef struct {
|
|
SKP_int RandState[ DECISION_DELAY ];
|
|
SKP_int32 Q_Q10[ DECISION_DELAY ];
|
|
SKP_int32 Xq_Q10[ DECISION_DELAY ];
|
|
SKP_int32 Pred_Q16[ DECISION_DELAY ];
|
|
SKP_int32 Shape_Q10[ DECISION_DELAY ];
|
|
SKP_int32 Gain_Q16[ DECISION_DELAY ];
|
|
SKP_int32 sLPC_Q14[ MAX_FRAME_LENGTH / NB_SUBFR + NSQ_LPC_BUF_LENGTH ];
|
|
SKP_int32 LF_AR_Q12;
|
|
SKP_int32 Seed;
|
|
SKP_int32 SeedInit;
|
|
SKP_int32 RD_Q10;
|
|
} NSQ_del_dec_struct;
|
|
|
|
typedef struct {
|
|
SKP_int32 Q_Q10;
|
|
SKP_int32 RD_Q10;
|
|
SKP_int32 xq_Q14;
|
|
SKP_int32 LF_AR_Q12;
|
|
SKP_int32 sLTP_shp_Q10;
|
|
SKP_int32 LPC_exc_Q16;
|
|
} NSQ_sample_struct;
|
|
|
|
SKP_INLINE void SKP_Silk_copy_del_dec_state(
|
|
NSQ_del_dec_struct *DD_dst, /* I Dst del dec state */
|
|
NSQ_del_dec_struct *DD_src, /* I Src del dec state */
|
|
SKP_int LPC_state_idx /* I Index to LPC buffer */
|
|
);
|
|
|
|
SKP_INLINE void SKP_Silk_nsq_del_dec_scale_states(
|
|
SKP_Silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
|
|
const SKP_int16 x[], /* I Input in Q0 */
|
|
SKP_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */
|
|
SKP_int length, /* I Length of input */
|
|
SKP_int16 sLTP[], /* I Re-whitened LTP state in Q0 */
|
|
SKP_int32 sLTP_Q16[], /* O LTP state matching scaled input */
|
|
SKP_int subfr, /* I Subframe number */
|
|
SKP_int nStatesDelayedDecision, /* I Number of del dec states */
|
|
SKP_int smpl_buf_idx, /* I Index to newest samples in buffers */
|
|
const SKP_int LTP_scale_Q14, /* I LTP state scaling */
|
|
const SKP_int32 Gains_Q16[ NB_SUBFR ], /* I */
|
|
const SKP_int pitchL[ NB_SUBFR ] /* I Pitch lag */
|
|
);
|
|
|
|
/******************************************/
|
|
/* Noise shape quantizer for one subframe */
|
|
/******************************************/
|
|
SKP_INLINE void SKP_Silk_noise_shape_quantizer_del_dec(
|
|
SKP_Silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
|
|
SKP_int sigtype, /* I Signal type */
|
|
const SKP_int32 x_Q10[], /* I */
|
|
SKP_int q[], /* O */
|
|
SKP_int16 xq[], /* O */
|
|
SKP_int32 sLTP_Q16[], /* I/O LTP filter state */
|
|
const SKP_int16 a_Q12[], /* I Short term prediction coefs */
|
|
const SKP_int16 b_Q14[], /* I Long term prediction coefs */
|
|
const SKP_int16 AR_shp_Q13[], /* I Noise shaping coefs */
|
|
SKP_int lag, /* I Pitch lag */
|
|
SKP_int32 HarmShapeFIRPacked_Q14, /* I */
|
|
SKP_int Tilt_Q14, /* I Spectral tilt */
|
|
SKP_int32 LF_shp_Q14, /* I */
|
|
SKP_int32 Gain_Q16, /* I */
|
|
SKP_int Lambda_Q10, /* I */
|
|
SKP_int offset_Q10, /* I */
|
|
SKP_int length, /* I Input length */
|
|
SKP_int subfr, /* I Subframe number */
|
|
SKP_int shapingLPCOrder, /* I Shaping LPC filter order */
|
|
SKP_int predictLPCOrder, /* I Prediction LPC filter order */
|
|
SKP_int nStatesDelayedDecision, /* I Number of states in decision tree */
|
|
SKP_int *smpl_buf_idx, /* I Index to newest samples in buffers */
|
|
SKP_int decisionDelay /* I */
|
|
);
|
|
|
|
void SKP_Silk_NSQ_del_dec(
|
|
SKP_Silk_encoder_state *psEncC, /* I/O Encoder State */
|
|
SKP_Silk_encoder_control *psEncCtrlC, /* I Encoder Control */
|
|
SKP_Silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
const SKP_int16 x[], /* I Prefiltered input signal */
|
|
SKP_int q[], /* O Quantized pulse signal */
|
|
const SKP_int LSFInterpFactor_Q2, /* I LSF interpolation factor in Q2 */
|
|
const SKP_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Prediction coefs */
|
|
const SKP_int16 LTPCoef_Q14[ LTP_ORDER * NB_SUBFR ], /* I LT prediction coefs */
|
|
const SKP_int16 AR2_Q13[ NB_SUBFR * SHAPE_LPC_ORDER_MAX ], /* I */
|
|
const SKP_int HarmShapeGain_Q14[ NB_SUBFR ], /* I */
|
|
const SKP_int Tilt_Q14[ NB_SUBFR ], /* I Spectral tilt */
|
|
const SKP_int32 LF_shp_Q14[ NB_SUBFR ], /* I */
|
|
const SKP_int32 Gains_Q16[ NB_SUBFR ], /* I */
|
|
const SKP_int Lambda_Q10, /* I */
|
|
const SKP_int LTP_scale_Q14 /* I LTP state scaling */
|
|
)
|
|
{
|
|
SKP_int i, k, lag, start_idx, LSF_interpolation_flag, Winner_ind, subfr;
|
|
SKP_int last_smple_idx, smpl_buf_idx, decisionDelay, subfr_length;
|
|
const SKP_int16 *A_Q12, *B_Q14, *AR_shp_Q13;
|
|
SKP_int16 *pxq;
|
|
SKP_int32 sLTP_Q16[ 2 * MAX_FRAME_LENGTH ];
|
|
SKP_int16 sLTP[ 2 * MAX_FRAME_LENGTH ];
|
|
SKP_int32 HarmShapeFIRPacked_Q14;
|
|
SKP_int offset_Q10;
|
|
SKP_int32 FiltState[ MAX_LPC_ORDER ], RDmin_Q10;
|
|
SKP_int32 x_sc_Q10[ MAX_FRAME_LENGTH / NB_SUBFR ];
|
|
NSQ_del_dec_struct psDelDec[ DEL_DEC_STATES_MAX ];
|
|
NSQ_del_dec_struct *psDD;
|
|
|
|
subfr_length = psEncC->frame_length / NB_SUBFR;
|
|
|
|
/* Set unvoiced lag to the previous one, overwrite later for voiced */
|
|
lag = NSQ->lagPrev;
|
|
|
|
SKP_assert( NSQ->prev_inv_gain_Q16 != 0 );
|
|
|
|
/* Initialize delayed decision states */
|
|
SKP_memset( psDelDec, 0, psEncC->nStatesDelayedDecision * sizeof( NSQ_del_dec_struct ) );
|
|
for( k = 0; k < psEncC->nStatesDelayedDecision; k++ ) {
|
|
psDD = &psDelDec[ k ];
|
|
psDD->Seed = ( k + psEncCtrlC->Seed ) & 3;
|
|
psDD->SeedInit = psDD->Seed;
|
|
psDD->RD_Q10 = 0;
|
|
psDD->LF_AR_Q12 = NSQ->sLF_AR_shp_Q12;
|
|
psDD->Shape_Q10[ 0 ] = NSQ->sLTP_shp_Q10[ psEncC->frame_length - 1 ];
|
|
SKP_memcpy( psDD->sLPC_Q14, NSQ->sLPC_Q14, NSQ_LPC_BUF_LENGTH * sizeof( SKP_int32 ) );
|
|
}
|
|
|
|
offset_Q10 = SKP_Silk_Quantization_Offsets_Q10[ psEncCtrlC->sigtype ][ psEncCtrlC->QuantOffsetType ];
|
|
smpl_buf_idx = 0; /* index of oldest samples */
|
|
|
|
decisionDelay = SKP_min_int( DECISION_DELAY, subfr_length );
|
|
/* For voiced frames limit the decision delay to lower than the pitch lag */
|
|
if( psEncCtrlC->sigtype == SIG_TYPE_VOICED ) {
|
|
for( k = 0; k < NB_SUBFR; k++ ) {
|
|
decisionDelay = SKP_min_int( decisionDelay, psEncCtrlC->pitchL[ k ] - LTP_ORDER / 2 - 1 );
|
|
}
|
|
}
|
|
|
|
if( LSFInterpFactor_Q2 == ( 1 << 2 ) ) {
|
|
LSF_interpolation_flag = 0;
|
|
} else {
|
|
LSF_interpolation_flag = 1;
|
|
}
|
|
|
|
/* Setup pointers to start of sub frame */
|
|
pxq = &NSQ->xq[ psEncC->frame_length ];
|
|
NSQ->sLTP_shp_buf_idx = psEncC->frame_length;
|
|
NSQ->sLTP_buf_idx = psEncC->frame_length;
|
|
subfr = 0;
|
|
for( k = 0; k < NB_SUBFR; k++ ) {
|
|
A_Q12 = &PredCoef_Q12[ ( ( k >> 1 ) | ( 1 - LSF_interpolation_flag ) ) * MAX_LPC_ORDER ];
|
|
B_Q14 = <PCoef_Q14[ k * LTP_ORDER ];
|
|
AR_shp_Q13 = &AR2_Q13[ k * SHAPE_LPC_ORDER_MAX ];
|
|
|
|
NSQ->rewhite_flag = 0;
|
|
if( psEncCtrlC->sigtype == SIG_TYPE_VOICED ) {
|
|
/* Voiced */
|
|
lag = psEncCtrlC->pitchL[ k ];
|
|
|
|
/* Re-whitening */
|
|
if( ( k & ( 3 - SKP_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) {
|
|
if( k == 2 ) {
|
|
/* RESET DELAYED DECISIONS */
|
|
/* Find winner */
|
|
RDmin_Q10 = psDelDec[ 0 ].RD_Q10;
|
|
Winner_ind = 0;
|
|
for( i = 1; i < psEncC->nStatesDelayedDecision; i++ ) {
|
|
if( psDelDec[ i ].RD_Q10 < RDmin_Q10 ) {
|
|
RDmin_Q10 = psDelDec[ i ].RD_Q10;
|
|
Winner_ind = i;
|
|
}
|
|
}
|
|
for( i = 0; i < psEncC->nStatesDelayedDecision; i++ ) {
|
|
if( i != Winner_ind ) {
|
|
psDelDec[ i ].RD_Q10 += ( SKP_int32_MAX >> 4 );
|
|
SKP_assert( psDelDec[ i ].RD_Q10 >= 0 );
|
|
}
|
|
}
|
|
|
|
/* Copy final part of signals from winner state to output and long-term filter states */
|
|
psDD = &psDelDec[ Winner_ind ];
|
|
last_smple_idx = smpl_buf_idx + decisionDelay;
|
|
for( i = 0; i < decisionDelay; i++ ) {
|
|
last_smple_idx = ( last_smple_idx - 1 ) & DECISION_DELAY_MASK;
|
|
q[ i - decisionDelay ] = ( SKP_int )SKP_RSHIFT( psDD->Q_Q10[ last_smple_idx ], 10 );
|
|
pxq[ i - decisionDelay ] = ( SKP_int16 )SKP_SAT16( SKP_RSHIFT_ROUND(
|
|
SKP_SMULWW( psDD->Xq_Q10[ last_smple_idx ],
|
|
psDD->Gain_Q16[ last_smple_idx ] ), 10 ) );
|
|
NSQ->sLTP_shp_Q10[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDD->Shape_Q10[ last_smple_idx ];
|
|
}
|
|
|
|
subfr = 0;
|
|
}
|
|
|
|
/* Rewhiten with new A coefs */
|
|
start_idx = psEncC->frame_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2;
|
|
start_idx = SKP_LIMIT( start_idx, 0, psEncC->frame_length - psEncC->predictLPCOrder );
|
|
|
|
SKP_memset( FiltState, 0, psEncC->predictLPCOrder * sizeof( SKP_int32 ) );
|
|
SKP_Silk_MA_Prediction( &NSQ->xq[ start_idx + k * psEncC->subfr_length ],
|
|
A_Q12, FiltState, sLTP + start_idx, psEncC->frame_length - start_idx, psEncC->predictLPCOrder );
|
|
|
|
NSQ->sLTP_buf_idx = psEncC->frame_length;
|
|
NSQ->rewhite_flag = 1;
|
|
}
|
|
}
|
|
|
|
/* Noise shape parameters */
|
|
SKP_assert( HarmShapeGain_Q14[ k ] >= 0 );
|
|
HarmShapeFIRPacked_Q14 = SKP_RSHIFT( HarmShapeGain_Q14[ k ], 2 );
|
|
HarmShapeFIRPacked_Q14 |= SKP_LSHIFT( ( SKP_int32 )SKP_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 );
|
|
|
|
SKP_Silk_nsq_del_dec_scale_states( NSQ, psDelDec, x, x_sc_Q10,
|
|
subfr_length, sLTP, sLTP_Q16, k, psEncC->nStatesDelayedDecision, smpl_buf_idx,
|
|
LTP_scale_Q14, Gains_Q16, psEncCtrlC->pitchL );
|
|
|
|
SKP_Silk_noise_shape_quantizer_del_dec( NSQ, psDelDec, psEncCtrlC->sigtype, x_sc_Q10, q, pxq, sLTP_Q16,
|
|
A_Q12, B_Q14, AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ], Gains_Q16[ k ],
|
|
Lambda_Q10, offset_Q10, psEncC->subfr_length, subfr++, psEncC->shapingLPCOrder, psEncC->predictLPCOrder,
|
|
psEncC->nStatesDelayedDecision, &smpl_buf_idx, decisionDelay
|
|
);
|
|
|
|
x += psEncC->subfr_length;
|
|
q += psEncC->subfr_length;
|
|
pxq += psEncC->subfr_length;
|
|
}
|
|
|
|
/* Find winner */
|
|
RDmin_Q10 = psDelDec[ 0 ].RD_Q10;
|
|
Winner_ind = 0;
|
|
for( k = 1; k < psEncC->nStatesDelayedDecision; k++ ) {
|
|
if( psDelDec[ k ].RD_Q10 < RDmin_Q10 ) {
|
|
RDmin_Q10 = psDelDec[ k ].RD_Q10;
|
|
Winner_ind = k;
|
|
}
|
|
}
|
|
|
|
/* Copy final part of signals from winner state to output and long-term filter states */
|
|
psDD = &psDelDec[ Winner_ind ];
|
|
psEncCtrlC->Seed = psDD->SeedInit;
|
|
last_smple_idx = smpl_buf_idx + decisionDelay;
|
|
for( i = 0; i < decisionDelay; i++ ) {
|
|
last_smple_idx = ( last_smple_idx - 1 ) & DECISION_DELAY_MASK;
|
|
q[ i - decisionDelay ] = ( SKP_int )SKP_RSHIFT( psDD->Q_Q10[ last_smple_idx ], 10 );
|
|
pxq[ i - decisionDelay ] = ( SKP_int16 )SKP_SAT16( SKP_RSHIFT_ROUND(
|
|
SKP_SMULWW( psDD->Xq_Q10[ last_smple_idx ], psDD->Gain_Q16[ last_smple_idx ] ), 10 ) );
|
|
NSQ->sLTP_shp_Q10[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDD->Shape_Q10[ last_smple_idx ];
|
|
sLTP_Q16[ NSQ->sLTP_buf_idx - decisionDelay + i ] = psDD->Pred_Q16[ last_smple_idx ];
|
|
|
|
}
|
|
SKP_memcpy( NSQ->sLPC_Q14, &psDD->sLPC_Q14[ psEncC->subfr_length ], NSQ_LPC_BUF_LENGTH * sizeof( SKP_int32 ) );
|
|
|
|
/* Update states */
|
|
NSQ->sLF_AR_shp_Q12 = psDD->LF_AR_Q12;
|
|
NSQ->prev_inv_gain_Q16 = NSQ->prev_inv_gain_Q16;
|
|
NSQ->lagPrev = psEncCtrlC->pitchL[ NB_SUBFR - 1 ];
|
|
|
|
/* Save quantized speech and noise shaping signals */
|
|
SKP_memcpy( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->frame_length * sizeof( SKP_int16 ) );
|
|
SKP_memcpy( NSQ->sLTP_shp_Q10, &NSQ->sLTP_shp_Q10[ psEncC->frame_length ], psEncC->frame_length * sizeof( SKP_int32 ) );
|
|
|
|
}
|
|
|
|
/******************************************/
|
|
/* Noise shape quantizer for one subframe */
|
|
/******************************************/
|
|
SKP_INLINE void SKP_Silk_noise_shape_quantizer_del_dec(
|
|
SKP_Silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
|
|
SKP_int sigtype, /* I Signal type */
|
|
const SKP_int32 x_Q10[], /* I */
|
|
SKP_int q[], /* O */
|
|
SKP_int16 xq[], /* O */
|
|
SKP_int32 sLTP_Q16[], /* I/O LTP filter state */
|
|
const SKP_int16 a_Q12[], /* I Short term prediction coefs */
|
|
const SKP_int16 b_Q14[], /* I Long term prediction coefs */
|
|
const SKP_int16 AR_shp_Q13[], /* I Noise shaping coefs */
|
|
SKP_int lag, /* I Pitch lag */
|
|
SKP_int32 HarmShapeFIRPacked_Q14, /* I */
|
|
SKP_int Tilt_Q14, /* I Spectral tilt */
|
|
SKP_int32 LF_shp_Q14, /* I */
|
|
SKP_int32 Gain_Q16, /* I */
|
|
SKP_int Lambda_Q10, /* I */
|
|
SKP_int offset_Q10, /* I */
|
|
SKP_int length, /* I Input length */
|
|
SKP_int subfr, /* I Subframe number */
|
|
SKP_int shapingLPCOrder, /* I Shaping LPC filter order */
|
|
SKP_int predictLPCOrder, /* I Prediction LPC filter order */
|
|
SKP_int nStatesDelayedDecision, /* I Number of states in decision tree */
|
|
SKP_int *smpl_buf_idx, /* I Index to newest samples in buffers */
|
|
SKP_int decisionDelay /* I */
|
|
)
|
|
{
|
|
SKP_int i, j, k, Winner_ind, RDmin_ind, RDmax_ind, last_smple_idx;
|
|
SKP_int32 Winner_rand_state;
|
|
SKP_int32 LTP_pred_Q14, LPC_pred_Q10, n_AR_Q10, n_LTP_Q14;
|
|
SKP_int32 n_LF_Q10;
|
|
SKP_int32 r_Q10, rr_Q20, rd1_Q10, rd2_Q10, RDmin_Q10, RDmax_Q10;
|
|
SKP_int32 q1_Q10, q2_Q10;
|
|
SKP_int32 Atmp, dither;
|
|
SKP_int32 exc_Q10, LPC_exc_Q10, xq_Q10;
|
|
SKP_int32 tmp, sLF_AR_shp_Q10;
|
|
SKP_int32 *pred_lag_ptr, *shp_lag_ptr;
|
|
SKP_int32 *psLPC_Q14;
|
|
SKP_int32 a_Q12_tmp[ MAX_LPC_ORDER / 2 ], AR_shp_Q13_tmp[ MAX_LPC_ORDER / 2 ];
|
|
NSQ_sample_struct psSampleState[ DEL_DEC_STATES_MAX ][ 2 ];
|
|
NSQ_del_dec_struct *psDD;
|
|
NSQ_sample_struct *psSS;
|
|
|
|
shp_lag_ptr = &NSQ->sLTP_shp_Q10[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ];
|
|
pred_lag_ptr = &sLTP_Q16[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ];
|
|
|
|
/* Preload LPC coeficients to array on stack. Gives small performance gain */
|
|
SKP_memcpy( a_Q12_tmp, a_Q12, predictLPCOrder * sizeof( SKP_int16 ) );
|
|
SKP_memcpy( AR_shp_Q13_tmp, AR_shp_Q13, shapingLPCOrder * sizeof( SKP_int16 ) );
|
|
|
|
for( i = 0; i < length; i++ ) {
|
|
/* Perform common calculations used in all states */
|
|
|
|
/* Long-term prediction */
|
|
if( sigtype == SIG_TYPE_VOICED ) {
|
|
/* Unrolled loop */
|
|
LTP_pred_Q14 = SKP_SMULWB( pred_lag_ptr[ 0 ], b_Q14[ 0 ] );
|
|
LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -1 ], b_Q14[ 1 ] );
|
|
LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -2 ], b_Q14[ 2 ] );
|
|
LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -3 ], b_Q14[ 3 ] );
|
|
LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -4 ], b_Q14[ 4 ] );
|
|
pred_lag_ptr++;
|
|
} else {
|
|
LTP_pred_Q14 = 0;
|
|
}
|
|
|
|
/* Long-term shaping */
|
|
if( lag > 0 ) {
|
|
/* Symmetric, packed FIR coefficients */
|
|
n_LTP_Q14 = SKP_SMULWB( SKP_ADD32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 );
|
|
n_LTP_Q14 = SKP_SMLAWT( n_LTP_Q14, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 );
|
|
n_LTP_Q14 = SKP_LSHIFT( n_LTP_Q14, 6 );
|
|
shp_lag_ptr++;
|
|
} else {
|
|
n_LTP_Q14 = 0;
|
|
}
|
|
|
|
for( k = 0; k < nStatesDelayedDecision; k++ ) {
|
|
/* Delayed decision state */
|
|
psDD = &psDelDec[ k ];
|
|
|
|
/* Sample state */
|
|
psSS = psSampleState[ k ];
|
|
|
|
/* Generate dither */
|
|
psDD->Seed = SKP_RAND( psDD->Seed );
|
|
|
|
/* dither = rand_seed < 0 ? 0xFFFFFFFF : 0; */
|
|
dither = SKP_RSHIFT( psDD->Seed, 31 );
|
|
|
|
/* Pointer used in short term prediction and shaping */
|
|
psLPC_Q14 = &psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 + i ];
|
|
/* Short-term prediction */
|
|
SKP_assert( ( predictLPCOrder & 1 ) == 0 ); /* check that order is even */
|
|
SKP_assert( ( (SKP_int64)a_Q12 & 3 ) == 0 ); /* check that array starts at 4-byte aligned address */
|
|
SKP_assert( predictLPCOrder >= 10 ); /* check that unrolling works */
|
|
|
|
/* Partially unrolled */
|
|
Atmp = a_Q12_tmp[ 0 ]; /* read two coefficients at once */
|
|
LPC_pred_Q10 = SKP_SMULWB( psLPC_Q14[ 0 ], Atmp );
|
|
LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psLPC_Q14[ -1 ], Atmp );
|
|
Atmp = a_Q12_tmp[ 1 ];
|
|
LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -2 ], Atmp );
|
|
LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psLPC_Q14[ -3 ], Atmp );
|
|
Atmp = a_Q12_tmp[ 2 ];
|
|
LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -4 ], Atmp );
|
|
LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psLPC_Q14[ -5 ], Atmp );
|
|
Atmp = a_Q12_tmp[ 3 ];
|
|
LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -6 ], Atmp );
|
|
LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psLPC_Q14[ -7 ], Atmp );
|
|
Atmp = a_Q12_tmp[ 4 ];
|
|
LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -8 ], Atmp );
|
|
LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psLPC_Q14[ -9 ], Atmp );
|
|
for( j = 10; j < predictLPCOrder; j += 2 ) {
|
|
Atmp = a_Q12_tmp[ j >> 1 ]; /* read two coefficients at once */
|
|
LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -j ], Atmp );
|
|
LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psLPC_Q14[ -j - 1 ], Atmp );
|
|
}
|
|
|
|
/* Noise shape feedback */
|
|
SKP_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */
|
|
SKP_assert( ( (SKP_int64)AR_shp_Q13 & 3 ) == 0 ); /* check that array starts at 4-byte aligned address */
|
|
SKP_assert( shapingLPCOrder >= 12 ); /* check that unrolling works */
|
|
/* NOTE: the code below loads two int16 values in an int32, and multiplies each using the */
|
|
/* SMLAWB and SMLAWT instructions. On a big-endian CPU the two int16 variables would be */
|
|
/* loaded in reverse order and the code will give the wrong result. In that case swapping */
|
|
/* the SMLAWB and SMLAWT instructions should solve the problem. */
|
|
|
|
/* Partially unrolled */
|
|
Atmp = AR_shp_Q13_tmp[ 0 ]; /* read two coefficients at once */
|
|
n_AR_Q10 = SKP_SMULWB( psLPC_Q14[ 0 ], Atmp );
|
|
n_AR_Q10 = SKP_SMLAWT( n_AR_Q10, psLPC_Q14[ -1 ], Atmp );
|
|
Atmp = AR_shp_Q13_tmp[ 1 ];
|
|
n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, psLPC_Q14[ -2 ], Atmp );
|
|
n_AR_Q10 = SKP_SMLAWT( n_AR_Q10, psLPC_Q14[ -3 ], Atmp );
|
|
Atmp = AR_shp_Q13_tmp[ 2 ];
|
|
n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, psLPC_Q14[ -4 ], Atmp );
|
|
n_AR_Q10 = SKP_SMLAWT( n_AR_Q10, psLPC_Q14[ -5 ], Atmp );
|
|
Atmp = AR_shp_Q13_tmp[ 3 ];
|
|
n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, psLPC_Q14[ -6 ], Atmp );
|
|
n_AR_Q10 = SKP_SMLAWT( n_AR_Q10, psLPC_Q14[ -7 ], Atmp );
|
|
Atmp = AR_shp_Q13_tmp[ 4 ];
|
|
n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, psLPC_Q14[ -8 ], Atmp );
|
|
n_AR_Q10 = SKP_SMLAWT( n_AR_Q10, psLPC_Q14[ -9 ], Atmp );
|
|
Atmp = AR_shp_Q13_tmp[ 5 ];
|
|
n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, psLPC_Q14[ -10 ], Atmp );
|
|
n_AR_Q10 = SKP_SMLAWT( n_AR_Q10, psLPC_Q14[ -11 ], Atmp );
|
|
for( j = 12; j < shapingLPCOrder; j += 2 ) {
|
|
Atmp = AR_shp_Q13_tmp[ j >> 1 ]; /* read two coefficients at once */
|
|
n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, psLPC_Q14[ -j ], Atmp );
|
|
n_AR_Q10 = SKP_SMLAWT( n_AR_Q10, psLPC_Q14[ -j - 1 ], Atmp );
|
|
}
|
|
n_AR_Q10 = SKP_RSHIFT( n_AR_Q10, 1 ); /* Q11 -> Q10 */
|
|
n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, psDD->LF_AR_Q12, Tilt_Q14 );
|
|
|
|
n_LF_Q10 = SKP_LSHIFT( SKP_SMULWB( psDD->Shape_Q10[ *smpl_buf_idx ], LF_shp_Q14 ), 2 );
|
|
n_LF_Q10 = SKP_SMLAWT( n_LF_Q10, psDD->LF_AR_Q12, LF_shp_Q14 );
|
|
|
|
/* Input minus prediction plus noise feedback */
|
|
/* r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP */
|
|
tmp = SKP_SUB32( LTP_pred_Q14, n_LTP_Q14 ); /* Add Q14 stuff */
|
|
tmp = SKP_RSHIFT_ROUND( tmp, 4 ); /* round to Q10 */
|
|
tmp = SKP_ADD32( tmp, LPC_pred_Q10 ); /* add Q10 stuff */
|
|
tmp = SKP_SUB32( tmp, n_AR_Q10 ); /* subtract Q10 stuff */
|
|
tmp = SKP_SUB32( tmp, n_LF_Q10 ); /* subtract Q10 stuff */
|
|
r_Q10 = SKP_SUB32( x_Q10[ i ], tmp ); /* residual error Q10 */
|
|
|
|
|
|
/* Flip sign depending on dither */
|
|
r_Q10 = ( r_Q10 ^ dither ) - dither;
|
|
r_Q10 = SKP_SUB32( r_Q10, offset_Q10 );
|
|
r_Q10 = SKP_LIMIT( r_Q10, -64 << 10, 64 << 10 );
|
|
|
|
/* Find two quantization level candidates and measure their rate-distortion */
|
|
if( r_Q10 < -1536 ) {
|
|
q1_Q10 = SKP_LSHIFT( SKP_RSHIFT_ROUND( r_Q10, 10 ), 10 );
|
|
r_Q10 = SKP_SUB32( r_Q10, q1_Q10 );
|
|
rd1_Q10 = SKP_RSHIFT( SKP_SMLABB( SKP_MUL( -SKP_ADD32( q1_Q10, offset_Q10 ), Lambda_Q10 ), r_Q10, r_Q10 ), 10 );
|
|
rd2_Q10 = SKP_ADD32( rd1_Q10, 1024 );
|
|
rd2_Q10 = SKP_SUB32( rd2_Q10, SKP_ADD_LSHIFT32( Lambda_Q10, r_Q10, 1 ) );
|
|
q2_Q10 = SKP_ADD32( q1_Q10, 1024 );
|
|
} else if( r_Q10 > 512 ) {
|
|
q1_Q10 = SKP_LSHIFT( SKP_RSHIFT_ROUND( r_Q10, 10 ), 10 );
|
|
r_Q10 = SKP_SUB32( r_Q10, q1_Q10 );
|
|
rd1_Q10 = SKP_RSHIFT( SKP_SMLABB( SKP_MUL( SKP_ADD32( q1_Q10, offset_Q10 ), Lambda_Q10 ), r_Q10, r_Q10 ), 10 );
|
|
rd2_Q10 = SKP_ADD32( rd1_Q10, 1024 );
|
|
rd2_Q10 = SKP_SUB32( rd2_Q10, SKP_SUB_LSHIFT32( Lambda_Q10, r_Q10, 1 ) );
|
|
q2_Q10 = SKP_SUB32( q1_Q10, 1024 );
|
|
} else { /* r_Q10 >= -1536 && q1_Q10 <= 512 */
|
|
rr_Q20 = SKP_SMULBB( offset_Q10, Lambda_Q10 );
|
|
rd2_Q10 = SKP_RSHIFT( SKP_SMLABB( rr_Q20, r_Q10, r_Q10 ), 10 );
|
|
rd1_Q10 = SKP_ADD32( rd2_Q10, 1024 );
|
|
rd1_Q10 = SKP_ADD32( rd1_Q10, SKP_SUB_RSHIFT32( SKP_ADD_LSHIFT32( Lambda_Q10, r_Q10, 1 ), rr_Q20, 9 ) );
|
|
q1_Q10 = -1024;
|
|
q2_Q10 = 0;
|
|
}
|
|
|
|
if( rd1_Q10 < rd2_Q10 ) {
|
|
psSS[ 0 ].RD_Q10 = SKP_ADD32( psDD->RD_Q10, rd1_Q10 );
|
|
psSS[ 1 ].RD_Q10 = SKP_ADD32( psDD->RD_Q10, rd2_Q10 );
|
|
psSS[ 0 ].Q_Q10 = q1_Q10;
|
|
psSS[ 1 ].Q_Q10 = q2_Q10;
|
|
} else {
|
|
psSS[ 0 ].RD_Q10 = SKP_ADD32( psDD->RD_Q10, rd2_Q10 );
|
|
psSS[ 1 ].RD_Q10 = SKP_ADD32( psDD->RD_Q10, rd1_Q10 );
|
|
psSS[ 0 ].Q_Q10 = q2_Q10;
|
|
psSS[ 1 ].Q_Q10 = q1_Q10;
|
|
}
|
|
|
|
/* Update states for best quantization */
|
|
|
|
/* Quantized excitation */
|
|
exc_Q10 = SKP_ADD32( offset_Q10, psSS[ 0 ].Q_Q10 );
|
|
exc_Q10 = ( exc_Q10 ^ dither ) - dither;
|
|
|
|
/* Add predictions */
|
|
LPC_exc_Q10 = exc_Q10 + SKP_RSHIFT_ROUND( LTP_pred_Q14, 4 );
|
|
xq_Q10 = SKP_ADD32( LPC_exc_Q10, LPC_pred_Q10 );
|
|
|
|
/* Update states */
|
|
sLF_AR_shp_Q10 = SKP_SUB32( xq_Q10, n_AR_Q10 );
|
|
psSS[ 0 ].sLTP_shp_Q10 = SKP_SUB32( sLF_AR_shp_Q10, n_LF_Q10 );
|
|
psSS[ 0 ].LF_AR_Q12 = SKP_LSHIFT( sLF_AR_shp_Q10, 2 );
|
|
psSS[ 0 ].xq_Q14 = SKP_LSHIFT( xq_Q10, 4 );
|
|
psSS[ 0 ].LPC_exc_Q16 = SKP_LSHIFT( LPC_exc_Q10, 6 );
|
|
|
|
/* Update states for second best quantization */
|
|
|
|
/* Quantized excitation */
|
|
exc_Q10 = SKP_ADD32( offset_Q10, psSS[ 1 ].Q_Q10 );
|
|
exc_Q10 = ( exc_Q10 ^ dither ) - dither;
|
|
|
|
/* Add predictions */
|
|
LPC_exc_Q10 = exc_Q10 + SKP_RSHIFT_ROUND( LTP_pred_Q14, 4 );
|
|
xq_Q10 = SKP_ADD32( LPC_exc_Q10, LPC_pred_Q10 );
|
|
|
|
/* Update states */
|
|
sLF_AR_shp_Q10 = SKP_SUB32( xq_Q10, n_AR_Q10 );
|
|
psSS[ 1 ].sLTP_shp_Q10 = SKP_SUB32( sLF_AR_shp_Q10, n_LF_Q10 );
|
|
psSS[ 1 ].LF_AR_Q12 = SKP_LSHIFT( sLF_AR_shp_Q10, 2 );
|
|
psSS[ 1 ].xq_Q14 = SKP_LSHIFT( xq_Q10, 4 );
|
|
psSS[ 1 ].LPC_exc_Q16 = SKP_LSHIFT( LPC_exc_Q10, 6 );
|
|
}
|
|
|
|
*smpl_buf_idx = ( *smpl_buf_idx - 1 ) & DECISION_DELAY_MASK; /* Index to newest samples */
|
|
last_smple_idx = ( *smpl_buf_idx + decisionDelay ) & DECISION_DELAY_MASK; /* Index to decisionDelay old samples */
|
|
|
|
/* Find winner */
|
|
RDmin_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10;
|
|
Winner_ind = 0;
|
|
for( k = 1; k < nStatesDelayedDecision; k++ ) {
|
|
if( psSampleState[ k ][ 0 ].RD_Q10 < RDmin_Q10 ) {
|
|
RDmin_Q10 = psSampleState[ k ][ 0 ].RD_Q10;
|
|
Winner_ind = k;
|
|
}
|
|
}
|
|
|
|
/* Increase RD values of expired states */
|
|
Winner_rand_state = psDelDec[ Winner_ind ].RandState[ last_smple_idx ];
|
|
for( k = 0; k < nStatesDelayedDecision; k++ ) {
|
|
if( psDelDec[ k ].RandState[ last_smple_idx ] != Winner_rand_state ) {
|
|
psSampleState[ k ][ 0 ].RD_Q10 = SKP_ADD32( psSampleState[ k ][ 0 ].RD_Q10, ( SKP_int32_MAX >> 4 ) );
|
|
psSampleState[ k ][ 1 ].RD_Q10 = SKP_ADD32( psSampleState[ k ][ 1 ].RD_Q10, ( SKP_int32_MAX >> 4 ) );
|
|
SKP_assert( psSampleState[ k ][ 0 ].RD_Q10 >= 0 );
|
|
}
|
|
}
|
|
|
|
/* Find worst in first set and best in second set */
|
|
RDmax_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10;
|
|
RDmin_Q10 = psSampleState[ 0 ][ 1 ].RD_Q10;
|
|
RDmax_ind = 0;
|
|
RDmin_ind = 0;
|
|
for( k = 1; k < nStatesDelayedDecision; k++ ) {
|
|
/* find worst in first set */
|
|
if( psSampleState[ k ][ 0 ].RD_Q10 > RDmax_Q10 ) {
|
|
RDmax_Q10 = psSampleState[ k ][ 0 ].RD_Q10;
|
|
RDmax_ind = k;
|
|
}
|
|
/* find best in second set */
|
|
if( psSampleState[ k ][ 1 ].RD_Q10 < RDmin_Q10 ) {
|
|
RDmin_Q10 = psSampleState[ k ][ 1 ].RD_Q10;
|
|
RDmin_ind = k;
|
|
}
|
|
}
|
|
|
|
/* Replace a state if best from second set outperforms worst in first set */
|
|
if( RDmin_Q10 < RDmax_Q10 ) {
|
|
SKP_Silk_copy_del_dec_state( &psDelDec[ RDmax_ind ], &psDelDec[ RDmin_ind ], i );
|
|
SKP_memcpy( &psSampleState[ RDmax_ind ][ 0 ], &psSampleState[ RDmin_ind ][ 1 ], sizeof( NSQ_sample_struct ) );
|
|
}
|
|
|
|
/* Write samples from winner to output and long-term filter states */
|
|
psDD = &psDelDec[ Winner_ind ];
|
|
if( subfr > 0 || i >= decisionDelay ) {
|
|
q[ i - decisionDelay ] = ( SKP_int )SKP_RSHIFT( psDD->Q_Q10[ last_smple_idx ], 10 );
|
|
xq[ i - decisionDelay ] = ( SKP_int16 )SKP_SAT16( SKP_RSHIFT_ROUND(
|
|
SKP_SMULWW( psDD->Xq_Q10[ last_smple_idx ], psDD->Gain_Q16[ last_smple_idx ] ), 10 ) );
|
|
NSQ->sLTP_shp_Q10[ NSQ->sLTP_shp_buf_idx - decisionDelay ] = psDD->Shape_Q10[ last_smple_idx ];
|
|
sLTP_Q16[ NSQ->sLTP_buf_idx - decisionDelay ] = psDD->Pred_Q16[ last_smple_idx ];
|
|
}
|
|
NSQ->sLTP_shp_buf_idx++;
|
|
NSQ->sLTP_buf_idx++;
|
|
|
|
/* Update states */
|
|
for( k = 0; k < nStatesDelayedDecision; k++ ) {
|
|
psDD = &psDelDec[ k ];
|
|
psSS = &psSampleState[ k ][ 0 ];
|
|
psDD->LF_AR_Q12 = psSS->LF_AR_Q12;
|
|
psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH + i ] = psSS->xq_Q14;
|
|
psDD->Xq_Q10[ *smpl_buf_idx ] = SKP_RSHIFT( psSS->xq_Q14, 4 );
|
|
psDD->Q_Q10[ *smpl_buf_idx ] = psSS->Q_Q10;
|
|
psDD->Pred_Q16[ *smpl_buf_idx ] = psSS->LPC_exc_Q16;
|
|
psDD->Shape_Q10[ *smpl_buf_idx ] = psSS->sLTP_shp_Q10;
|
|
psDD->Seed = SKP_ADD_RSHIFT32( psDD->Seed, psSS->Q_Q10, 10 );
|
|
psDD->RandState[ *smpl_buf_idx ] = psDD->Seed;
|
|
psDD->RD_Q10 = psSS->RD_Q10;
|
|
psDD->Gain_Q16[ *smpl_buf_idx ] = Gain_Q16;
|
|
}
|
|
}
|
|
/* Update LPC states */
|
|
for( k = 0; k < nStatesDelayedDecision; k++ ) {
|
|
psDD = &psDelDec[ k ];
|
|
SKP_memcpy( psDD->sLPC_Q14, &psDD->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( SKP_int32 ) );
|
|
}
|
|
}
|
|
|
|
SKP_INLINE void SKP_Silk_nsq_del_dec_scale_states(
|
|
SKP_Silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
|
|
const SKP_int16 x[], /* I Input in Q0 */
|
|
SKP_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */
|
|
SKP_int length, /* I Length of input */
|
|
SKP_int16 sLTP[], /* I Re-whitened LTP state in Q0 */
|
|
SKP_int32 sLTP_Q16[], /* O LTP state matching scaled input */
|
|
SKP_int subfr, /* I Subframe number */
|
|
SKP_int nStatesDelayedDecision, /* I Number of del dec states */
|
|
SKP_int smpl_buf_idx, /* I Index to newest samples in buffers */
|
|
const SKP_int LTP_scale_Q14, /* I LTP state scaling */
|
|
const SKP_int32 Gains_Q16[ NB_SUBFR ], /* I */
|
|
const SKP_int pitchL[ NB_SUBFR ] /* I Pitch lag */
|
|
)
|
|
{
|
|
SKP_int i, k, scale_length, lag;
|
|
SKP_int32 inv_gain_Q16, gain_adj_Q16, inv_gain_Q32;
|
|
NSQ_del_dec_struct *psDD;
|
|
|
|
inv_gain_Q16 = SKP_DIV32( SKP_int32_MAX, SKP_RSHIFT( Gains_Q16[ subfr ], 1 ) );
|
|
inv_gain_Q16 = SKP_min( inv_gain_Q16, SKP_int16_MAX );
|
|
lag = pitchL[ subfr ];
|
|
/* After rewhitening the LTP state is un-scaled. So scale with inv_gain_Q16 */
|
|
if( NSQ->rewhite_flag ) {
|
|
inv_gain_Q32 = SKP_LSHIFT( inv_gain_Q16, 16 );
|
|
if( subfr == 0 ) {
|
|
/* Do LTP downscaling */
|
|
inv_gain_Q32 = SKP_LSHIFT( SKP_SMULWB( inv_gain_Q32, LTP_scale_Q14 ), 2 );
|
|
}
|
|
for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) {
|
|
SKP_assert( i < MAX_FRAME_LENGTH );
|
|
sLTP_Q16[ i ] = SKP_SMULWB( inv_gain_Q32, sLTP[ i ] );
|
|
}
|
|
}
|
|
|
|
/* Adjust for changing gain */
|
|
if( inv_gain_Q16 != NSQ->prev_inv_gain_Q16 ) {
|
|
gain_adj_Q16 = SKP_DIV32_varQ( inv_gain_Q16, NSQ->prev_inv_gain_Q16, 16 );
|
|
|
|
for( k = 0; k < nStatesDelayedDecision; k++ ) {
|
|
psDD = &psDelDec[ k ];
|
|
|
|
/* Scale scalar states */
|
|
psDD->LF_AR_Q12 = SKP_SMULWW( gain_adj_Q16, psDD->LF_AR_Q12 );
|
|
|
|
/* scale short term state */
|
|
for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) {
|
|
psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - i - 1 ] = SKP_SMULWW( gain_adj_Q16, psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - i - 1 ] );
|
|
}
|
|
for( i = 0; i < DECISION_DELAY; i++ ) {
|
|
psDD->Pred_Q16[ i ] = SKP_SMULWW( gain_adj_Q16, psDD->Pred_Q16[ i ] );
|
|
psDD->Shape_Q10[ i ] = SKP_SMULWW( gain_adj_Q16, psDD->Shape_Q10[ i ] );
|
|
}
|
|
}
|
|
|
|
/* Scale long term shaping state */
|
|
|
|
/* Calculate length to be scaled, Worst case: Next frame is voiced with max lag */
|
|
scale_length = length * NB_SUBFR; /* aprox max lag */
|
|
scale_length = scale_length - SKP_SMULBB( NB_SUBFR - ( subfr + 1 ), length ); /* subtract samples that will be too old in next frame */
|
|
scale_length = SKP_max_int( scale_length, lag + LTP_ORDER ); /* make sure to scale whole pitch period if voiced */
|
|
|
|
for( i = NSQ->sLTP_shp_buf_idx - scale_length; i < NSQ->sLTP_shp_buf_idx; i++ ) {
|
|
NSQ->sLTP_shp_Q10[ i ] = SKP_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q10[ i ] );
|
|
}
|
|
|
|
/* Scale LTP predict state */
|
|
if( NSQ->rewhite_flag == 0 ) {
|
|
for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) {
|
|
sLTP_Q16[ i ] = SKP_SMULWW( gain_adj_Q16, sLTP_Q16[ i ] );
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Scale input */
|
|
for( i = 0; i < length; i++ ) {
|
|
x_sc_Q10[ i ] = SKP_RSHIFT( SKP_SMULBB( x[ i ], ( SKP_int16 )inv_gain_Q16 ), 6 );
|
|
}
|
|
|
|
/* save inv_gain */
|
|
SKP_assert( inv_gain_Q16 != 0 );
|
|
NSQ->prev_inv_gain_Q16 = inv_gain_Q16;
|
|
}
|
|
|
|
SKP_INLINE void SKP_Silk_copy_del_dec_state(
|
|
NSQ_del_dec_struct *DD_dst, /* I Dst del dec state */
|
|
NSQ_del_dec_struct *DD_src, /* I Src del dec state */
|
|
SKP_int LPC_state_idx /* I Index to LPC buffer */
|
|
)
|
|
{
|
|
SKP_memcpy( DD_dst->RandState, DD_src->RandState, DECISION_DELAY * sizeof( SKP_int ) );
|
|
SKP_memcpy( DD_dst->Q_Q10, DD_src->Q_Q10, DECISION_DELAY * sizeof( SKP_int32 ) );
|
|
SKP_memcpy( DD_dst->Pred_Q16, DD_src->Pred_Q16, DECISION_DELAY * sizeof( SKP_int32 ) );
|
|
SKP_memcpy( DD_dst->Shape_Q10, DD_src->Shape_Q10, DECISION_DELAY * sizeof( SKP_int32 ) );
|
|
SKP_memcpy( DD_dst->Xq_Q10, DD_src->Xq_Q10, DECISION_DELAY * sizeof( SKP_int32 ) );
|
|
|
|
SKP_memcpy( &DD_dst->sLPC_Q14[ LPC_state_idx ], &DD_src->sLPC_Q14[ LPC_state_idx ], NSQ_LPC_BUF_LENGTH * sizeof( SKP_int32 ) );
|
|
DD_dst->LF_AR_Q12 = DD_src->LF_AR_Q12;
|
|
DD_dst->Seed = DD_src->Seed;
|
|
DD_dst->SeedInit = DD_src->SeedInit;
|
|
DD_dst->RD_Q10 = DD_src->RD_Q10;
|
|
}
|