235 lines
12 KiB
C
235 lines
12 KiB
C
/***********************************************************************
|
|
Copyright (c) 2006-2010, Skype Limited. All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, (subject to the limitations in the disclaimer below)
|
|
are permitted provided that the following conditions are met:
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
- Neither the name of Skype Limited, nor the names of specific
|
|
contributors, may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED
|
|
BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
|
CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
|
|
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
***********************************************************************/
|
|
|
|
#include "SKP_Silk_main_FIX.h"
|
|
|
|
void SKP_Silk_fit_LTP(
|
|
SKP_int32 LTP_coefs_Q16[ LTP_ORDER ],
|
|
SKP_int16 LTP_coefs_Q14[ LTP_ORDER ]
|
|
);
|
|
|
|
void SKP_Silk_find_LTP_FIX(
|
|
SKP_int16 b_Q14[ NB_SUBFR * LTP_ORDER ], /* O LTP coefs */
|
|
SKP_int32 WLTP[ NB_SUBFR * LTP_ORDER * LTP_ORDER ], /* O Weight for LTP quantization */
|
|
SKP_int *LTPredCodGain_Q7, /* O LTP coding gain */
|
|
const SKP_int16 r_first[], /* I residual signal after LPC signal + state for first 10 ms */
|
|
const SKP_int16 r_last[], /* I residual signal after LPC signal + state for last 10 ms */
|
|
const SKP_int lag[ NB_SUBFR ], /* I LTP lags */
|
|
const SKP_int32 Wght_Q15[ NB_SUBFR ], /* I weights */
|
|
const SKP_int subfr_length, /* I subframe length */
|
|
const SKP_int mem_offset, /* I number of samples in LTP memory */
|
|
SKP_int corr_rshifts[ NB_SUBFR ] /* O right shifts applied to correlations */
|
|
)
|
|
{
|
|
SKP_int i, k, lshift;
|
|
const SKP_int16 *r_ptr, *lag_ptr;
|
|
SKP_int16 *b_Q14_ptr;
|
|
|
|
SKP_int32 regu;
|
|
SKP_int32 *WLTP_ptr;
|
|
SKP_int32 b_Q16[ LTP_ORDER ], delta_b_Q14[ LTP_ORDER ], d_Q14[ NB_SUBFR ], nrg[ NB_SUBFR ], g_Q26;
|
|
SKP_int32 w[ NB_SUBFR ], WLTP_max, max_abs_d_Q14, max_w_bits;
|
|
|
|
SKP_int32 temp32, denom32;
|
|
SKP_int extra_shifts;
|
|
SKP_int rr_shifts, maxRshifts, maxRshifts_wxtra, LZs;
|
|
SKP_int32 LPC_res_nrg, LPC_LTP_res_nrg, div_Q16;
|
|
SKP_int32 Rr[ LTP_ORDER ], rr[ NB_SUBFR ];
|
|
SKP_int32 wd, m_Q12;
|
|
|
|
b_Q14_ptr = b_Q14;
|
|
WLTP_ptr = WLTP;
|
|
r_ptr = &r_first[ mem_offset ];
|
|
for( k = 0; k < NB_SUBFR; k++ ) {
|
|
if( k == ( NB_SUBFR >> 1 ) ) { /* shift residual for last 10 ms */
|
|
r_ptr = &r_last[ mem_offset ];
|
|
}
|
|
lag_ptr = r_ptr - ( lag[ k ] + LTP_ORDER / 2 );
|
|
|
|
SKP_Silk_sum_sqr_shift( &rr[ k ], &rr_shifts, r_ptr, subfr_length ); /* rr[ k ] in Q( -rr_shifts ) */
|
|
/* Assure headroom */
|
|
LZs = SKP_Silk_CLZ32( rr[k] );
|
|
if( LZs < LTP_CORRS_HEAD_ROOM ) {
|
|
rr[ k ] = SKP_RSHIFT_ROUND( rr[ k ], LTP_CORRS_HEAD_ROOM - LZs );
|
|
rr_shifts += (LTP_CORRS_HEAD_ROOM - LZs);
|
|
}
|
|
corr_rshifts[ k ] = rr_shifts;
|
|
SKP_Silk_corrMatrix_FIX( lag_ptr, subfr_length, LTP_ORDER, WLTP_ptr, &corr_rshifts[ k ] ); /* WLTP_fix_ptr in Q( -corr_rshifts[ k ] ) */
|
|
/* The correlation vector always have lower max abs value than rr and/or RR so head room is assured */
|
|
SKP_Silk_corrVector_FIX( lag_ptr, r_ptr, subfr_length, LTP_ORDER, Rr, corr_rshifts[ k ] ); /* Rr_fix_ptr in Q( -corr_rshifts[ k ] ) */
|
|
if( corr_rshifts[ k ] > rr_shifts ) {
|
|
rr[ k ] = SKP_RSHIFT( rr[ k ], corr_rshifts[ k ] - rr_shifts ); /* rr[ k ] in Q( -corr_rshifts[ k ] ) */
|
|
}
|
|
SKP_assert( rr[ k ] >= 0 );
|
|
|
|
regu = SKP_SMULWB( rr[ k ] + 1, LTP_DAMPING_Q16 );
|
|
SKP_Silk_regularize_correlations_FIX( WLTP_ptr, &rr[k], regu, LTP_ORDER );
|
|
|
|
SKP_Silk_solve_LDL_FIX( WLTP_ptr, LTP_ORDER, Rr, b_Q16 ); /* WLTP_fix_ptr and Rr_fix_ptr both in Q(-corr_rshifts[k]) */
|
|
|
|
/* Limit and store in Q14 */
|
|
SKP_Silk_fit_LTP( b_Q16, b_Q14_ptr );
|
|
|
|
/* Calculate residual energy */
|
|
nrg[ k ] = SKP_Silk_residual_energy16_covar_FIX( b_Q14_ptr, WLTP_ptr, Rr, rr[ k ], LTP_ORDER, 14 ); /* nrg_fix in Q( -corr_rshifts[ k ] ) */
|
|
|
|
/* temp = Wght[ k ] / ( nrg[ k ] * Wght[ k ] + 0.01f * subfr_length ); */
|
|
extra_shifts = SKP_min_int( corr_rshifts[ k ], LTP_CORRS_HEAD_ROOM );
|
|
denom32 = SKP_LSHIFT_SAT32( SKP_SMULWB( nrg[ k ], Wght_Q15[ k ] ), 1 + extra_shifts ) + /* Q( -corr_rshifts[ k ] + extra_shifts ) */
|
|
SKP_RSHIFT( SKP_SMULWB( subfr_length, 655 ), corr_rshifts[ k ] - extra_shifts ); /* Q( -corr_rshifts[ k ] + extra_shifts ) */
|
|
denom32 = SKP_max( denom32, 1 );
|
|
SKP_assert( ((SKP_int64)Wght_Q15[ k ] << 16 ) < SKP_int32_MAX ); /* Wght always < 0.5 in Q0 */
|
|
temp32 = SKP_DIV32( SKP_LSHIFT( ( SKP_int32 )Wght_Q15[ k ], 16 ), denom32 ); /* Q( 15 + 16 + corr_rshifts[k] - extra_shifts ) */
|
|
temp32 = SKP_RSHIFT( temp32, 31 + corr_rshifts[ k ] - extra_shifts - 26 ); /* Q26 */
|
|
|
|
/* Limit temp such that the below scaling never wraps around */
|
|
WLTP_max = 0;
|
|
for( i = 0; i < LTP_ORDER * LTP_ORDER; i++ ) {
|
|
WLTP_max = SKP_max( WLTP_ptr[ i ], WLTP_max );
|
|
}
|
|
lshift = SKP_Silk_CLZ32( WLTP_max ) - 1 - 3; /* keep 3 bits free for vq_nearest_neighbor_fix */
|
|
SKP_assert( 26 - 18 + lshift >= 0 );
|
|
if( 26 - 18 + lshift < 31 ) {
|
|
temp32 = SKP_min_32( temp32, SKP_LSHIFT( ( SKP_int32 )1, 26 - 18 + lshift ) );
|
|
}
|
|
|
|
SKP_Silk_scale_vector32_Q26_lshift_18( WLTP_ptr, temp32, LTP_ORDER * LTP_ORDER ); /* WLTP_ptr in Q( 18 - corr_rshifts[ k ] ) */
|
|
|
|
w[ k ] = matrix_ptr( WLTP_ptr, ( LTP_ORDER >> 1 ), ( LTP_ORDER >> 1 ), LTP_ORDER ); /* w in Q( 18 - corr_rshifts[ k ] ) */
|
|
SKP_assert( w[k] >= 0 );
|
|
|
|
r_ptr += subfr_length;
|
|
b_Q14_ptr += LTP_ORDER;
|
|
WLTP_ptr += LTP_ORDER * LTP_ORDER;
|
|
}
|
|
|
|
maxRshifts = 0;
|
|
for( k = 0; k < NB_SUBFR; k++ ) {
|
|
maxRshifts = SKP_max_int( corr_rshifts[ k ], maxRshifts );
|
|
}
|
|
|
|
/* compute LTP coding gain */
|
|
if( LTPredCodGain_Q7 != NULL ) {
|
|
LPC_LTP_res_nrg = 0;
|
|
LPC_res_nrg = 0;
|
|
SKP_assert( LTP_CORRS_HEAD_ROOM >= 2 ); /* Check that no overflow will happen when adding */
|
|
for( k = 0; k < NB_SUBFR; k++ ) {
|
|
LPC_res_nrg = SKP_ADD32( LPC_res_nrg, SKP_RSHIFT( SKP_ADD32( SKP_SMULWB( rr[ k ], Wght_Q15[ k ] ), 1 ), 1 + ( maxRshifts - corr_rshifts[ k ] ) ) ); /* Q( -maxRshifts ) */
|
|
LPC_LTP_res_nrg = SKP_ADD32( LPC_LTP_res_nrg, SKP_RSHIFT( SKP_ADD32( SKP_SMULWB( nrg[ k ], Wght_Q15[ k ] ), 1 ), 1 + ( maxRshifts - corr_rshifts[ k ] ) ) ); /* Q( -maxRshifts ) */
|
|
}
|
|
LPC_LTP_res_nrg = SKP_max( LPC_LTP_res_nrg, 1 ); /* avoid division by zero */
|
|
|
|
div_Q16 = SKP_DIV32_varQ( LPC_res_nrg, LPC_LTP_res_nrg, 16 );
|
|
*LTPredCodGain_Q7 = ( SKP_int )SKP_SMULBB( 3, SKP_Silk_lin2log( div_Q16 ) - ( 16 << 7 ) );
|
|
|
|
SKP_assert( *LTPredCodGain_Q7 == ( SKP_int )SKP_SAT16( SKP_MUL( 3, SKP_Silk_lin2log( div_Q16 ) - ( 16 << 7 ) ) ) );
|
|
}
|
|
|
|
/* smoothing */
|
|
/* d = sum( B, 1 ); */
|
|
b_Q14_ptr = b_Q14;
|
|
for( k = 0; k < NB_SUBFR; k++ ) {
|
|
d_Q14[ k ] = 0;
|
|
for( i = 0; i < LTP_ORDER; i++ ) {
|
|
d_Q14[ k ] += b_Q14_ptr[ i ];
|
|
}
|
|
b_Q14_ptr += LTP_ORDER;
|
|
}
|
|
|
|
/* m = ( w * d' ) / ( sum( w ) + 1e-3 ); */
|
|
|
|
/* Find maximum absolute value of d_Q14 and the bits used by w in Q0 */
|
|
max_abs_d_Q14 = 0;
|
|
max_w_bits = 0;
|
|
for( k = 0; k < NB_SUBFR; k++ ) {
|
|
max_abs_d_Q14 = SKP_max_32( max_abs_d_Q14, SKP_abs( d_Q14[ k ] ) );
|
|
/* w[ k ] is in Q( 18 - corr_rshifts[ k ] ) */
|
|
/* Find bits needed in Q( 18 - maxRshifts ) */
|
|
max_w_bits = SKP_max_32( max_w_bits, 32 - SKP_Silk_CLZ32( w[ k ] ) + corr_rshifts[ k ] - maxRshifts );
|
|
}
|
|
|
|
/* max_abs_d_Q14 = (5 << 15); worst case, i.e. LTP_ORDER * -SKP_int16_MIN */
|
|
SKP_assert( max_abs_d_Q14 <= ( 5 << 15 ) );
|
|
|
|
/* How many bits is needed for w*d' in Q( 18 - maxRshifts ) in the worst case, of all d_Q14's being equal to max_abs_d_Q14 */
|
|
extra_shifts = max_w_bits + 32 - SKP_Silk_CLZ32( max_abs_d_Q14 ) - 14;
|
|
|
|
/* Subtract what we got available; bits in output var plus maxRshifts */
|
|
extra_shifts -= ( 32 - 1 - 2 + maxRshifts ); /* Keep sign bit free as well as 2 bits for accumulation */
|
|
extra_shifts = SKP_max_int( extra_shifts, 0 );
|
|
|
|
maxRshifts_wxtra = maxRshifts + extra_shifts;
|
|
|
|
temp32 = SKP_RSHIFT( 262, maxRshifts + extra_shifts ) + 1; /* 1e-3f in Q( 18 - (maxRshifts + extra_shifts) ) */
|
|
wd = 0;
|
|
for( k = 0; k < NB_SUBFR; k++ ) {
|
|
/* w has at least 2 bits of headroom so no overflow should happen */
|
|
temp32 = SKP_ADD32( temp32, SKP_RSHIFT( w[ k ], maxRshifts_wxtra - corr_rshifts[ k ] ) ); /* Q( 18 - maxRshifts_wxtra ) */
|
|
wd = SKP_ADD32( wd, SKP_LSHIFT( SKP_SMULWW( SKP_RSHIFT( w[ k ], maxRshifts_wxtra - corr_rshifts[ k ] ), d_Q14[ k ] ), 2 ) ); /* Q( 18 - maxRshifts_wxtra ) */
|
|
}
|
|
m_Q12 = SKP_DIV32_varQ( wd, temp32, 12 );
|
|
|
|
b_Q14_ptr = b_Q14;
|
|
for( k = 0; k < NB_SUBFR; k++ ) {
|
|
/* w_fix[ k ] from Q( 18 - corr_rshifts[ k ] ) to Q( 16 ) */
|
|
if( 2 - corr_rshifts[k] > 0 ) {
|
|
temp32 = SKP_RSHIFT( w[ k ], 2 - corr_rshifts[ k ] );
|
|
} else {
|
|
temp32 = SKP_LSHIFT_SAT32( w[ k ], corr_rshifts[ k ] - 2 );
|
|
}
|
|
|
|
g_Q26 = SKP_MUL(
|
|
SKP_DIV32(
|
|
LTP_SMOOTHING_Q26,
|
|
SKP_RSHIFT( LTP_SMOOTHING_Q26, 10 ) + temp32 ), /* Q10 */
|
|
SKP_LSHIFT_SAT32( SKP_SUB_SAT32( ( SKP_int32 )m_Q12, SKP_RSHIFT( d_Q14[ k ], 2 ) ), 4 ) ); /* Q16 */
|
|
|
|
temp32 = 0;
|
|
for( i = 0; i < LTP_ORDER; i++ ) {
|
|
delta_b_Q14[ i ] = SKP_max_16( b_Q14_ptr[ i ], 1638 ); /* 1638_Q14 = 0.1_Q0 */
|
|
temp32 += delta_b_Q14[ i ]; /* Q14 */
|
|
}
|
|
temp32 = SKP_DIV32( g_Q26, temp32 ); /* Q14->Q12 */
|
|
for( i = 0; i < LTP_ORDER; i++ ) {
|
|
b_Q14_ptr[ i ] = SKP_LIMIT( ( SKP_int32 )b_Q14_ptr[ i ] + SKP_SMULWB( SKP_LSHIFT_SAT32( temp32, 4 ), delta_b_Q14[ i ] ), -16000, 28000 );
|
|
}
|
|
b_Q14_ptr += LTP_ORDER;
|
|
}
|
|
}
|
|
|
|
void SKP_Silk_fit_LTP(
|
|
SKP_int32 LTP_coefs_Q16[ LTP_ORDER ],
|
|
SKP_int16 LTP_coefs_Q14[ LTP_ORDER ]
|
|
)
|
|
{
|
|
SKP_int i;
|
|
|
|
for( i = 0; i < LTP_ORDER; i++ ) {
|
|
LTP_coefs_Q14[ i ] = ( SKP_int16 )SKP_SAT16( SKP_RSHIFT_ROUND( LTP_coefs_Q16[ i ], 2 ) );
|
|
}
|
|
}
|