freeswitch/libs/libcodec2/src/sine.c

531 lines
15 KiB
C

/*---------------------------------------------------------------------------*\
FILE........: sine.c
AUTHOR......: David Rowe
DATE CREATED: 19/8/2010
Sinusoidal analysis and synthesis functions.
\*---------------------------------------------------------------------------*/
/*
Copyright (C) 1990-2010 David Rowe
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 2.1, as
published by the Free Software Foundation. This program is
distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*---------------------------------------------------------------------------*\
INCLUDES
\*---------------------------------------------------------------------------*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "defines.h"
#include "sine.h"
#include "four1.h"
/*---------------------------------------------------------------------------*\
HEADERS
\*---------------------------------------------------------------------------*/
void hs_pitch_refinement(MODEL *model, COMP Sw[], float pmin, float pmax,
float pstep);
/*---------------------------------------------------------------------------*\
FUNCTIONS
\*---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*\
FUNCTION....: make_analysis_window
AUTHOR......: David Rowe
DATE CREATED: 11/5/94
Init function that generates the time domain analysis window and it's DFT.
\*---------------------------------------------------------------------------*/
void make_analysis_window(float w[],COMP W[])
{
float m;
COMP temp;
int i,j;
/*
Generate Hamming window centered on M-sample pitch analysis window
0 M/2 M-1
|-------------|-------------|
|-------|-------|
NW samples
All our analysis/synthsis is centred on the M/2 sample.
*/
m = 0.0;
for(i=0; i<M/2-NW/2; i++)
w[i] = 0.0;
for(i=M/2-NW/2,j=0; i<M/2+NW/2; i++,j++) {
w[i] = 0.5 - 0.5*cos(TWO_PI*j/(NW-1));
m += w[i]*w[i];
}
for(i=M/2+NW/2; i<M; i++)
w[i] = 0.0;
/* Normalise - makes freq domain amplitude estimation straight
forward */
m = 1.0/sqrt(m*FFT_ENC);
for(i=0; i<M; i++) {
w[i] *= m;
}
/*
Generate DFT of analysis window, used for later processing. Note
we modulo FFT_ENC shift the time domain window w[], this makes the
imaginary part of the DFT W[] equal to zero as the shifted w[] is
even about the n=0 time axis if NW is odd. Having the imag part
of the DFT W[] makes computation easier.
0 FFT_ENC-1
|-------------------------|
----\ /----
\ /
\ / <- shifted version of window w[n]
\ /
\ /
-------
|---------| |---------|
NW/2 NW/2
*/
for(i=0; i<FFT_ENC; i++) {
W[i].real = 0.0;
W[i].imag = 0.0;
}
for(i=0; i<NW/2; i++)
W[i].real = w[i+M/2];
for(i=FFT_ENC-NW/2,j=M/2-NW/2; i<FFT_ENC; i++,j++)
W[i].real = w[j];
four1(&W[-1].imag,FFT_ENC,-1); /* "Numerical Recipes in C" FFT */
/*
Re-arrange W[] to be symmetrical about FFT_ENC/2. Makes later
analysis convenient.
Before:
0 FFT_ENC-1
|----------|---------|
__ _
\ /
\_______________/
After:
0 FFT_ENC-1
|----------|---------|
___
/ \
________/ \_______
*/
for(i=0; i<FFT_ENC/2; i++) {
temp.real = W[i].real;
temp.imag = W[i].imag;
W[i].real = W[i+FFT_ENC/2].real;
W[i].imag = W[i+FFT_ENC/2].imag;
W[i+FFT_ENC/2].real = temp.real;
W[i+FFT_ENC/2].imag = temp.imag;
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: dft_speech
AUTHOR......: David Rowe
DATE CREATED: 27/5/94
Finds the DFT of the current speech input speech frame.
\*---------------------------------------------------------------------------*/
void dft_speech(COMP Sw[], float Sn[], float w[])
{
int i;
for(i=0; i<FFT_ENC; i++) {
Sw[i].real = 0.0;
Sw[i].imag = 0.0;
}
/* Centre analysis window on time axis, we need to arrange input
to FFT this way to make FFT phases correct */
/* move 2nd half to start of FFT input vector */
for(i=0; i<NW/2; i++)
Sw[i].real = Sn[i+M/2]*w[i+M/2];
/* move 1st half to end of FFT input vector */
for(i=0; i<NW/2; i++)
Sw[FFT_ENC-NW/2+i].real = Sn[i+M/2-NW/2]*w[i+M/2-NW/2];
four1(&Sw[-1].imag,FFT_ENC,-1);
}
/*---------------------------------------------------------------------------*\
FUNCTION....: two_stage_pitch_refinement
AUTHOR......: David Rowe
DATE CREATED: 27/5/94
Refines the current pitch estimate using the harmonic sum pitch
estimation technique.
\*---------------------------------------------------------------------------*/
void two_stage_pitch_refinement(MODEL *model, COMP Sw[])
{
float pmin,pmax,pstep; /* pitch refinment minimum, maximum and step */
/* Coarse refinement */
pmax = TWO_PI/model->Wo + 5;
pmin = TWO_PI/model->Wo - 5;
pstep = 1.0;
hs_pitch_refinement(model,Sw,pmin,pmax,pstep);
/* Fine refinement */
pmax = TWO_PI/model->Wo + 1;
pmin = TWO_PI/model->Wo - 1;
pstep = 0.25;
hs_pitch_refinement(model,Sw,pmin,pmax,pstep);
/* Limit range */
if (model->Wo < TWO_PI/P_MAX)
model->Wo = TWO_PI/P_MAX;
if (model->Wo > TWO_PI/P_MIN)
model->Wo = TWO_PI/P_MIN;
model->L = floor(PI/model->Wo);
}
/*---------------------------------------------------------------------------*\
FUNCTION....: hs_pitch_refinement
AUTHOR......: David Rowe
DATE CREATED: 27/5/94
Harmonic sum pitch refinement function.
pmin pitch search range minimum
pmax pitch search range maximum
step pitch search step size
model current pitch estimate in model.Wo
model refined pitch estimate in model.Wo
\*---------------------------------------------------------------------------*/
void hs_pitch_refinement(MODEL *model, COMP Sw[], float pmin, float pmax, float pstep)
{
int m; /* loop variable */
int b; /* bin for current harmonic centre */
float E; /* energy for current pitch*/
float Wo; /* current "test" fundamental freq. */
float Wom; /* Wo that maximises E */
float Em; /* mamimum energy */
float r; /* number of rads/bin */
float p; /* current pitch */
/* Initialisation */
model->L = PI/model->Wo; /* use initial pitch est. for L */
Wom = model->Wo;
Em = 0.0;
r = TWO_PI/FFT_ENC;
/* Determine harmonic sum for a range of Wo values */
for(p=pmin; p<=pmax; p+=pstep) {
E = 0.0;
Wo = TWO_PI/p;
/* Sum harmonic magnitudes */
for(m=1; m<=model->L; m++) {
b = floor(m*Wo/r + 0.5);
E += Sw[b].real*Sw[b].real + Sw[b].imag*Sw[b].imag;
}
/* Compare to see if this is a maximum */
if (E > Em) {
Em = E;
Wom = Wo;
}
}
model->Wo = Wom;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: estimate_amplitudes
AUTHOR......: David Rowe
DATE CREATED: 27/5/94
Estimates the complex amplitudes of the harmonics.
\*---------------------------------------------------------------------------*/
void estimate_amplitudes(MODEL *model, COMP Sw[], COMP W[])
{
int i,m; /* loop variables */
int am,bm; /* bounds of current harmonic */
int b; /* DFT bin of centre of current harmonic */
float den; /* denominator of amplitude expression */
float r; /* number of rads/bin */
int offset;
COMP Am;
r = TWO_PI/FFT_ENC;
for(m=1; m<=model->L; m++) {
den = 0.0;
am = floor((m - 0.5)*model->Wo/r + 0.5);
bm = floor((m + 0.5)*model->Wo/r + 0.5);
b = floor(m*model->Wo/r + 0.5);
/* Estimate ampltude of harmonic */
den = 0.0;
Am.real = Am.imag = 0.0;
for(i=am; i<bm; i++) {
den += Sw[i].real*Sw[i].real + Sw[i].imag*Sw[i].imag;
offset = i + FFT_ENC/2 - floor(m*model->Wo/r + 0.5);
Am.real += Sw[i].real*W[offset].real;
Am.imag += Sw[i].imag*W[offset].real;
}
model->A[m] = sqrt(den);
/* Estimate phase of harmonic */
model->phi[m] = atan2(Sw[b].imag,Sw[b].real);
}
}
/*---------------------------------------------------------------------------*\
est_voicing_mbe()
Returns the error of the MBE cost function for a fiven F0.
Note: I think a lot of the operations below can be simplified as
W[].imag = 0 and has been normalised such that den always equals 1.
\*---------------------------------------------------------------------------*/
float est_voicing_mbe(
MODEL *model,
COMP Sw[],
COMP W[],
float f0,
COMP Sw_[] /* DFT of all voiced synthesised signal for f0 */
/* useful for debugging/dump file */
)
{
int i,l,al,bl,m; /* loop variables */
COMP Am; /* amplitude sample for this band */
int offset; /* centers Hw[] about current harmonic */
float den; /* denominator of Am expression */
float error; /* accumulated error between originl and synthesised */
float Wo; /* current "test" fundamental freq. */
int L;
float sig, snr;
sig = 0.0;
for(l=1; l<=model->L/4; l++) {
sig += model->A[l]*model->A[l];
}
for(i=0; i<FFT_ENC; i++) {
Sw_[i].real = 0.0;
Sw_[i].imag = 0.0;
}
L = floor((FS/2.0)/f0);
Wo = f0*(TWO_PI/FS);
error = 0.0;
/* Just test across the harmonics in the first 1000 Hz (L/4) */
for(l=1; l<=L/4; l++) {
Am.real = 0.0;
Am.imag = 0.0;
den = 0.0;
al = ceil((l - 0.5)*Wo*FFT_ENC/TWO_PI);
bl = ceil((l + 0.5)*Wo*FFT_ENC/TWO_PI);
/* Estimate amplitude of harmonic assuming harmonic is totally voiced */
for(m=al; m<bl; m++) {
offset = FFT_ENC/2 + m - l*Wo*FFT_ENC/TWO_PI + 0.5;
Am.real += Sw[m].real*W[offset].real + Sw[m].imag*W[offset].imag;
Am.imag += Sw[m].imag*W[offset].real - Sw[m].real*W[offset].imag;
den += W[offset].real*W[offset].real + W[offset].imag*W[offset].imag;
}
Am.real = Am.real/den;
Am.imag = Am.imag/den;
/* Determine error between estimated harmonic and original */
for(m=al; m<bl; m++) {
offset = FFT_ENC/2 + m - l*Wo*FFT_ENC/TWO_PI + 0.5;
Sw_[m].real = Am.real*W[offset].real - Am.imag*W[offset].imag;
Sw_[m].imag = Am.real*W[offset].imag + Am.imag*W[offset].real;
error += (Sw[m].real - Sw_[m].real)*(Sw[m].real - Sw_[m].real);
error += (Sw[m].imag - Sw_[m].imag)*(Sw[m].imag - Sw_[m].imag);
}
}
snr = 10.0*log10(sig/error);
if (snr > V_THRESH)
model->voiced = 1;
else
model->voiced = 0;
return snr;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: make_synthesis_window
AUTHOR......: David Rowe
DATE CREATED: 11/5/94
Init function that generates the trapezoidal (Parzen) sythesis window.
\*---------------------------------------------------------------------------*/
void make_synthesis_window(float Pn[])
{
int i;
float win;
/* Generate Parzen window in time domain */
win = 0.0;
for(i=0; i<N/2-TW; i++)
Pn[i] = 0.0;
win = 0.0;
for(i=N/2-TW; i<N/2+TW; win+=1.0/(2*TW), i++ )
Pn[i] = win;
for(i=N/2+TW; i<3*N/2-TW; i++)
Pn[i] = 1.0;
win = 1.0;
for(i=3*N/2-TW; i<3*N/2+TW; win-=1.0/(2*TW), i++)
Pn[i] = win;
for(i=3*N/2+TW; i<2*N; i++)
Pn[i] = 0.0;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: synthesise
AUTHOR......: David Rowe
DATE CREATED: 20/2/95
Synthesise a speech signal in the frequency domain from the
sinusodal model parameters. Uses overlap-add a triangular window to
smoothly interpolate betwen frames.
\*---------------------------------------------------------------------------*/
void synthesise(
float Sn_[], /* time domain synthesised signal */
MODEL *model, /* ptr to model parameters for this frame */
float Pn[], /* time domain Parzen window */
int shift /* used to handle transition frames */
)
{
int i,l,j,b; /* loop variables */
COMP Sw_[FFT_DEC]; /* DFT of synthesised signal */
if (shift) {
/* Update memories */
for(i=0; i<N-1; i++) {
Sn_[i] = Sn_[i+N];
}
Sn_[N-1] = 0.0;
}
for(i=0; i<FFT_DEC; i++) {
Sw_[i].real = 0.0;
Sw_[i].imag = 0.0;
}
/* Now set up frequency domain synthesised speech */
for(l=1; l<=model->L; l++) {
b = floor(l*model->Wo*FFT_DEC/TWO_PI + 0.5);
Sw_[b].real = model->A[l]*cos(model->phi[l]);
Sw_[b].imag = model->A[l]*sin(model->phi[l]);
Sw_[FFT_DEC-b].real = Sw_[b].real;
Sw_[FFT_DEC-b].imag = -Sw_[b].imag;
}
/* Perform inverse DFT */
four1(&Sw_[-1].imag,FFT_DEC,1);
/* Overlap add to previous samples */
for(i=0; i<N-1; i++) {
Sn_[i] += Sw_[FFT_DEC-N+1+i].real*Pn[i];
}
if (shift)
for(i=N-1,j=0; i<2*N; i++,j++)
Sn_[i] = Sw_[j].real*Pn[i];
else
for(i=N-1,j=0; i<2*N; i++,j++)
Sn_[i] += Sw_[j].real*Pn[i];
}