freeswitch/third_party/bnlib/test/primetest.c

197 lines
3.9 KiB
C

/*
* Copyright (c) 1994, 1995 Colin Plumb. All rights reserved.
* For licensing and other legal details, see the file legal.c.
*
* primetest.c - Test driver for prime generation.
*/
#include "first.h"
#include <stdio.h>
#include <stdlib.h> /* For strtoul() */
#include "bn.h"
#include "bnprint.h"
#include "cputime.h"
#include "prime.h"
#include "random.h" /* Good random number generator */
#include "noise.h"
#include "kludge.h"
#define bnPut(prompt, bn) bnPrint(stdout, prompt, bn, "\n")
/*
* Generate a random bignum of a specified length, with the given
* high and low 8 bits. "High" is merged into the high 8 bits of the
* number. For example, set it to 0x80 to ensure that the number is
* exactly "bits" bits long (i.e. 2^(bits-1) <= bn < 2^bits).
* "Low" is merged into the low 8 bits. For example, set it to
* 1 to ensure that you generate an odd number.
*/
static int
genRandBn(struct BigNum *bn, unsigned bits, byte high, byte low)
{
unsigned char buf[64];
unsigned bytes;
unsigned l;
int err;
bnSetQ(bn, 0);
bytes = (bits+7) / 8;
l = bytes < sizeof(buf) ? bytes : sizeof(buf);
randBytes(buf, l);
/* Mask off excess high bits */
buf[0] &= 255 >> (-bits & 7);
/* Merge in specified high bits */
buf[0] |= high >> (-bits & 7);
if (bits & 7)
buf[1] |= high << (bits & 7);
for (;;) {
bytes -= l;
if (!bytes) /* Last word - merge in low bits */
buf[l-1] |= low;
err = bnInsertBigBytes(bn, buf, bytes, l);
if (!bytes || err < 0)
break;
l = bytes < sizeof(buf) ? bytes : sizeof(buf);
randBytes(buf, l);
}
memset(buf, 0, sizeof(buf));
return err;
}
/*
* Generate a new RSA key, with the specified number of bits and
* public exponent. The high two bits of each prime are always
* set to make the number more difficult to factor by forcing the
* number into the high end of the range.
*/
struct Progress {
FILE *f;
unsigned column;
unsigned wrap;
};
static int
primeProgress(void *arg, int c)
{
struct Progress *p = arg;
if (++p->column > p->wrap) {
putc('\n', p->f);
p->column = 1;
}
putc(c, p->f);
fflush(p->f);
return 0;
}
static int
primeTest(unsigned bits)
{
int modexps = 0;
struct BigNum bn; /* Temporary */
int i, j;
struct Progress progress;
#if CLOCK_AVAIL
timetype start, stop;
unsigned long curs, tots = 0;
unsigned curms, totms = 0;
#endif
progress.f = stdout;
progress.wrap = 78;
bnBegin(&bn);
/* Find p - choose a starting place */
i = genRandBn(&bn, bits, 0x80, 1);
if (i < 0)
goto error;
/* And search for primes */
for (j = 0; j < 40; j++) {
progress.column = 0;
#if CLOCK_AVAIL
gettime(&start);
#endif
i = primeGen(&bn, 0, primeProgress, &progress, 0);
if (i < 0)
goto error;
#if CLOCK_AVAIL
gettime(&stop);
subtime(stop, start);
tots += curs = sec(stop);
totms += curms = msec(stop);
#endif
modexps += i;
putchar('\n'); /* Signal done */
printf("%d modular exponentiations performed", i);
#if CLOCK_AVAIL
printf(" in %lu.%03u s", curs, curms);
#endif
putchar('\n');
bnPut("n = ", &bn);
if (bnAddQ(&bn, 2) < 0)
goto error;
}
bnEnd(&bn);
printf("Total %d modular exponentiations performed", modexps);
#if CLOCK_AVAIL
tots += totms/1000;
totms %= 1000;
printf(" in %lu.%03u s\n", tots, totms);
totms += 1000 * (tots % j);
tots /= j;
totms /= j;
tots += totms / 1000;
totms %= 1000;
printf("Average time: %lu.%03u s", tots, totms);
#endif
putchar('\n');
/* And that's it... success! */
return 0;
error:
puts("\nError!");
bnEnd(&bn);
return -1;
}
int
main(int argc, char **argv)
{
unsigned long t;
char *p;
if (argc < 2) {
fprintf(stderr, "Usage: %s <bits>...\n", argv[0]);
fputs("\
This generates a random RSA key pair and prints its value. <bits>\n\
is the size of the modulus to use.\n", stderr);
return 1;
}
noise();
bnInit();
while (--argc) {
t = strtoul(*++argv, &p, 0);
if (t < 17 || t > 65536 || *p) {
fprintf(stderr, "Illegal prime size: \"%s\"\n",
*argv);
return 1;
}
primeTest((unsigned)t);
}
return 0;
}