freeswitch/libs/openzap/src/zap_io.c

3651 lines
93 KiB
C

/*
* Copyright (c) 2007, Anthony Minessale II
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of the original author; nor the names of any contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define _GNU_SOURCE
#ifndef WIN32
#endif
#include "openzap.h"
#include <stdarg.h>
#ifdef WIN32
#include <io.h>
#endif
#ifdef ZAP_PIKA_SUPPORT
#include "zap_pika.h"
#endif
#include "zap_cpu_monitor.h"
static int time_is_init = 0;
static void time_init(void)
{
#ifdef WIN32
timeBeginPeriod(1);
#endif
time_is_init = 1;
}
static void time_end(void)
{
#ifdef WIN32
timeEndPeriod(1);
#endif
time_is_init = 0;
}
OZ_DECLARE(zap_time_t) zap_current_time_in_ms(void)
{
#ifdef WIN32
return timeGetTime();
#else
struct timeval tv;
gettimeofday(&tv, NULL);
return ((tv.tv_sec * 1000) + (tv.tv_usec / 1000));
#endif
}
typedef struct {
uint8_t running;
uint8_t alarm;
uint32_t interval;
uint8_t alarm_action_flags;
uint8_t set_alarm_threshold;
uint8_t reset_alarm_threshold;
zap_interrupt_t *interrupt;
} cpu_monitor_t;
static struct {
zap_hash_t *interface_hash;
zap_hash_t *module_hash;
zap_hash_t *span_hash;
zap_mutex_t *mutex;
zap_mutex_t *span_mutex;
uint32_t span_index;
uint32_t running;
zap_span_t *spans;
cpu_monitor_t cpu_monitor;
} globals;
static uint8_t zap_cpu_monitor_disabled = 0;
enum zap_enum_cpu_alarm_action_flags
{
ZAP_CPU_ALARM_ACTION_WARN = (1 << 0),
ZAP_CPU_ALARM_ACTION_REJECT = (1 << 1)
};
/* enum lookup funcs */
ZAP_ENUM_NAMES(TONEMAP_NAMES, TONEMAP_STRINGS)
ZAP_STR2ENUM(zap_str2zap_tonemap, zap_tonemap2str, zap_tonemap_t, TONEMAP_NAMES, ZAP_TONEMAP_INVALID)
ZAP_ENUM_NAMES(OOB_NAMES, OOB_STRINGS)
ZAP_STR2ENUM(zap_str2zap_oob_event, zap_oob_event2str, zap_oob_event_t, OOB_NAMES, ZAP_OOB_INVALID)
ZAP_ENUM_NAMES(TRUNK_TYPE_NAMES, TRUNK_STRINGS)
ZAP_STR2ENUM(zap_str2zap_trunk_type, zap_trunk_type2str, zap_trunk_type_t, TRUNK_TYPE_NAMES, ZAP_TRUNK_NONE)
ZAP_ENUM_NAMES(START_TYPE_NAMES, START_TYPE_STRINGS)
ZAP_STR2ENUM(zap_str2zap_analog_start_type, zap_analog_start_type2str, zap_analog_start_type_t, START_TYPE_NAMES, ZAP_ANALOG_START_NA)
ZAP_ENUM_NAMES(SIGNAL_NAMES, SIGNAL_STRINGS)
ZAP_STR2ENUM(zap_str2zap_signal_event, zap_signal_event2str, zap_signal_event_t, SIGNAL_NAMES, ZAP_SIGEVENT_INVALID)
ZAP_ENUM_NAMES(CHANNEL_STATE_NAMES, CHANNEL_STATE_STRINGS)
ZAP_STR2ENUM(zap_str2zap_channel_state, zap_channel_state2str, zap_channel_state_t, CHANNEL_STATE_NAMES, ZAP_CHANNEL_STATE_INVALID)
ZAP_ENUM_NAMES(MDMF_TYPE_NAMES, MDMF_STRINGS)
ZAP_STR2ENUM(zap_str2zap_mdmf_type, zap_mdmf_type2str, zap_mdmf_type_t, MDMF_TYPE_NAMES, MDMF_INVALID)
ZAP_ENUM_NAMES(CHAN_TYPE_NAMES, CHAN_TYPE_STRINGS)
ZAP_STR2ENUM(zap_str2zap_chan_type, zap_chan_type2str, zap_chan_type_t, CHAN_TYPE_NAMES, ZAP_CHAN_TYPE_COUNT)
static zap_status_t zap_cpu_monitor_start(void);
static void zap_cpu_monitor_stop(void);
static const char *cut_path(const char *in)
{
const char *p, *ret = in;
char delims[] = "/\\";
char *i;
for (i = delims; *i; i++) {
p = in;
while ((p = strchr(p, *i)) != 0) {
ret = ++p;
}
}
return ret;
}
static void null_logger(const char *file, const char *func, int line, int level, const char *fmt, ...)
{
if (file && func && line && level && fmt) {
return;
}
return;
}
static const char *LEVEL_NAMES[] = {
"EMERG",
"ALERT",
"CRIT",
"ERROR",
"WARNING",
"NOTICE",
"INFO",
"DEBUG",
NULL
};
static int zap_log_level = 7;
/* Cpu monitor thread */
static void *zap_cpu_monitor_run(zap_thread_t *me, void *obj);
static void default_logger(const char *file, const char *func, int line, int level, const char *fmt, ...)
{
const char *fp;
char data[1024];
va_list ap;
if (level < 0 || level > 7) {
level = 7;
}
if (level > zap_log_level) {
return;
}
fp = cut_path(file);
va_start(ap, fmt);
vsnprintf(data, sizeof(data), fmt, ap);
fprintf(stderr, "[%s] %s:%d %s() %s", LEVEL_NAMES[level], file, line, func, data);
va_end(ap);
}
static zap_status_t zap_set_caller_data(zap_span_t *span, zap_caller_data_t *caller_data)
{
if (!caller_data) {
zap_log(ZAP_LOG_CRIT, "Error: trying to set caller data, but no caller_data!\n");
return ZAP_FAIL;
}
if (caller_data->cid_num.plan == ZAP_NPI_INVALID) {
caller_data->cid_num.plan = span->default_caller_data.cid_num.plan;
}
if (caller_data->cid_num.type == ZAP_TON_INVALID) {
caller_data->cid_num.type = span->default_caller_data.cid_num.type;
}
if (caller_data->ani.plan == ZAP_NPI_INVALID) {
caller_data->ani.plan = span->default_caller_data.ani.plan;
}
if (caller_data->ani.type == ZAP_TON_INVALID) {
caller_data->ani.type = span->default_caller_data.ani.type;
}
if (caller_data->rdnis.plan == ZAP_NPI_INVALID) {
caller_data->rdnis.plan = span->default_caller_data.rdnis.plan;
}
if (caller_data->rdnis.type == ZAP_NPI_INVALID) {
caller_data->rdnis.type = span->default_caller_data.rdnis.type;
}
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_channel_set_caller_data(zap_channel_t *zchan, zap_caller_data_t *caller_data)
{
zap_status_t err = ZAP_SUCCESS;
if (!zchan) {
zap_log(ZAP_LOG_CRIT, "Error: trying to set caller data, but no zchan!\n");
return ZAP_FAIL;
}
if ((err = zap_set_caller_data(zchan->span, caller_data)) != ZAP_SUCCESS) {
return err;
}
zchan->caller_data = *caller_data;
return ZAP_SUCCESS;
}
OZ_DECLARE_DATA zap_logger_t zap_log = null_logger;
OZ_DECLARE(void) zap_global_set_logger(zap_logger_t logger)
{
if (logger) {
zap_log = logger;
} else {
zap_log = null_logger;
}
}
OZ_DECLARE(void) zap_global_set_default_logger(int level)
{
if (level < 0 || level > 7) {
level = 7;
}
zap_log = default_logger;
zap_log_level = level;
}
OZ_DECLARE_NONSTD(int) zap_hash_equalkeys(void *k1, void *k2)
{
return strcmp((char *) k1, (char *) k2) ? 0 : 1;
}
OZ_DECLARE_NONSTD(uint32_t) zap_hash_hashfromstring(void *ky)
{
unsigned char *str = (unsigned char *) ky;
uint32_t hash = 0;
int c;
while ((c = *str++)) {
hash = c + (hash << 6) + (hash << 16) - hash;
}
return hash;
}
static zap_status_t zap_span_destroy(zap_span_t *span)
{
zap_status_t status = ZAP_FAIL;
if (zap_test_flag(span, ZAP_SPAN_CONFIGURED)) {
if (span->stop) {
span->stop(span);
}
if (span->zio && span->zio->span_destroy) {
zap_log(ZAP_LOG_INFO, "Destroying span %u type (%s)\n", span->span_id, span->type);
status = span->zio->span_destroy(span);
zap_safe_free(span->type);
zap_safe_free(span->dtmf_hangup);
}
}
return status;
}
static zap_status_t zap_channel_destroy(zap_channel_t *zchan)
{
if (zap_test_flag(zchan, ZAP_CHANNEL_CONFIGURED)) {
while (zap_test_flag(zchan, ZAP_CHANNEL_INTHREAD)) {
zap_log(ZAP_LOG_INFO, "Waiting for thread to exit on channel %u:%u\n", zchan->span_id, zchan->chan_id);
zap_sleep(500);
}
#ifdef ZAP_DEBUG_DTMF
zap_mutex_destroy(&zchan->dtmfdbg.mutex);
#endif
zap_mutex_lock(zchan->pre_buffer_mutex);
zap_buffer_destroy(&zchan->pre_buffer);
zap_mutex_unlock(zchan->pre_buffer_mutex);
zap_buffer_destroy(&zchan->digit_buffer);
zap_buffer_destroy(&zchan->gen_dtmf_buffer);
zap_buffer_destroy(&zchan->dtmf_buffer);
zap_buffer_destroy(&zchan->fsk_buffer);
zchan->pre_buffer_size = 0;
hashtable_destroy(zchan->variable_hash);
zap_safe_free(zchan->dtmf_hangup_buf);
if (zchan->tone_session.buffer) {
teletone_destroy_session(&zchan->tone_session);
memset(&zchan->tone_session, 0, sizeof(zchan->tone_session));
}
if (zchan->span->zio->channel_destroy) {
zap_log(ZAP_LOG_INFO, "Closing channel %s:%u:%u fd:%d\n", zchan->span->type, zchan->span_id, zchan->chan_id, zchan->sockfd);
if (zchan->span->zio->channel_destroy(zchan) == ZAP_SUCCESS) {
zap_clear_flag_locked(zchan, ZAP_CHANNEL_CONFIGURED);
} else {
zap_log(ZAP_LOG_ERROR, "Error Closing channel %u:%u fd:%d\n", zchan->span_id, zchan->chan_id, zchan->sockfd);
}
}
zap_mutex_destroy(&zchan->mutex);
zap_mutex_destroy(&zchan->pre_buffer_mutex);
}
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_channel_get_alarms(zap_channel_t *zchan)
{
zap_status_t status = ZAP_FAIL;
if (zap_test_flag(zchan, ZAP_CHANNEL_CONFIGURED)) {
if (zchan->span->zio->get_alarms) {
if ((status = zchan->span->zio->get_alarms(zchan)) == ZAP_SUCCESS) {
*zchan->last_error = '\0';
if (zap_test_alarm_flag(zchan, ZAP_ALARM_RED)) {
snprintf(zchan->last_error + strlen(zchan->last_error), sizeof(zchan->last_error) - strlen(zchan->last_error), "RED/");
}
if (zap_test_alarm_flag(zchan, ZAP_ALARM_YELLOW)) {
snprintf(zchan->last_error + strlen(zchan->last_error), sizeof(zchan->last_error) - strlen(zchan->last_error), "YELLOW/");
}
if (zap_test_alarm_flag(zchan, ZAP_ALARM_BLUE)) {
snprintf(zchan->last_error + strlen(zchan->last_error), sizeof(zchan->last_error) - strlen(zchan->last_error), "BLUE/");
}
if (zap_test_alarm_flag(zchan, ZAP_ALARM_LOOPBACK)) {
snprintf(zchan->last_error + strlen(zchan->last_error), sizeof(zchan->last_error) - strlen(zchan->last_error), "LOOP/");
}
if (zap_test_alarm_flag(zchan, ZAP_ALARM_RECOVER)) {
snprintf(zchan->last_error + strlen(zchan->last_error), sizeof(zchan->last_error) - strlen(zchan->last_error), "RECOVER/");
}
*(zchan->last_error + strlen(zchan->last_error) - 1) = '\0';
}
} else {
status = ZAP_NOTIMPL;
}
}
return status;
}
static void zap_span_add(zap_span_t *span)
{
zap_span_t *sp;
zap_mutex_lock(globals.span_mutex);
for (sp = globals.spans; sp && sp->next; sp = sp->next);
if (sp) {
sp->next = span;
} else {
globals.spans = span;
}
hashtable_insert(globals.span_hash, (void *)span->name, span, HASHTABLE_FLAG_NONE);
zap_mutex_unlock(globals.span_mutex);
}
#if 0
static void zap_span_del(zap_span_t *span)
{
zap_span_t *last = NULL, *sp;
zap_mutex_lock(globals.span_mutex);
for (sp = globals.spans; sp; sp = sp->next) {
if (sp == span) {
if (last) {
last->next = sp->next;
} else {
globals.spans = sp->next;
}
hashtable_remove(globals.span_hash, (void *)sp->name);
break;
}
last = sp;
}
zap_mutex_unlock(globals.span_mutex);
}
#endif
OZ_DECLARE(zap_status_t) zap_span_stop(zap_span_t *span)
{
if (span->stop) {
span->stop(span);
return ZAP_SUCCESS;
}
return ZAP_FAIL;
}
OZ_DECLARE(zap_status_t) zap_span_create(zap_io_interface_t *zio, zap_span_t **span, const char *name)
{
zap_span_t *new_span = NULL;
zap_status_t status = ZAP_FAIL;
assert(zio != NULL);
zap_mutex_lock(globals.mutex);
if (globals.span_index < ZAP_MAX_SPANS_INTERFACE) {
new_span = malloc(sizeof(*new_span));
assert(new_span);
memset(new_span, 0, sizeof(*new_span));
status = zap_mutex_create(&new_span->mutex);
assert(status == ZAP_SUCCESS);
zap_set_flag(new_span, ZAP_SPAN_CONFIGURED);
new_span->span_id = ++globals.span_index;
new_span->zio = zio;
zap_copy_string(new_span->tone_map[ZAP_TONEMAP_DIAL], "%(1000,0,350,440)", ZAP_TONEMAP_LEN);
zap_copy_string(new_span->tone_map[ZAP_TONEMAP_RING], "%(2000,4000,440,480)", ZAP_TONEMAP_LEN);
zap_copy_string(new_span->tone_map[ZAP_TONEMAP_BUSY], "%(500,500,480,620)", ZAP_TONEMAP_LEN);
zap_copy_string(new_span->tone_map[ZAP_TONEMAP_ATTN], "%(100,100,1400,2060,2450,2600)", ZAP_TONEMAP_LEN);
new_span->trunk_type = ZAP_TRUNK_NONE;
new_span->data_type = ZAP_TYPE_SPAN;
zap_mutex_lock(globals.span_mutex);
if (!zap_strlen_zero(name) && hashtable_search(globals.span_hash, (void *)name)) {
zap_log(ZAP_LOG_WARNING, "name %s is already used, substituting 'span%d' as the name\n", name, new_span->span_id);
name = NULL;
}
zap_mutex_unlock(globals.span_mutex);
if (!name) {
char buf[128] = "";
snprintf(buf, sizeof(buf), "span%d", new_span->span_id);
name = buf;
}
new_span->name = strdup(name);
zap_span_add(new_span);
*span = new_span;
status = ZAP_SUCCESS;
}
zap_mutex_unlock(globals.mutex);
return status;
}
OZ_DECLARE(zap_status_t) zap_span_close_all(void)
{
zap_span_t *span;
uint32_t i = 0, j;
zap_mutex_lock(globals.span_mutex);
for (span = globals.spans; span; span = span->next) {
if (zap_test_flag(span, ZAP_SPAN_CONFIGURED)) {
for(j = 1; j <= span->chan_count && span->channels[j]; j++) {
zap_channel_destroy(span->channels[j]);
i++;
}
}
}
zap_mutex_unlock(globals.span_mutex);
return i ? ZAP_SUCCESS : ZAP_FAIL;
}
OZ_DECLARE(zap_status_t) zap_span_load_tones(zap_span_t *span, const char *mapname)
{
zap_config_t cfg;
char *var, *val;
int x = 0;
if (!zap_config_open_file(&cfg, "tones.conf")) {
snprintf(span->last_error, sizeof(span->last_error), "error loading tones.");
return ZAP_FAIL;
}
while (zap_config_next_pair(&cfg, &var, &val)) {
int detect = 0;
if (!strcasecmp(cfg.category, mapname) && var && val) {
uint32_t index;
char *name = NULL;
if (!strncasecmp(var, "detect-", 7)) {
name = var + 7;
detect = 1;
} else if (!strncasecmp(var, "generate-", 9)) {
name = var + 9;
} else {
zap_log(ZAP_LOG_WARNING, "Unknown tone name %s\n", var);
continue;
}
index = zap_str2zap_tonemap(name);
if (index >= ZAP_TONEMAP_INVALID || index == ZAP_TONEMAP_NONE) {
zap_log(ZAP_LOG_WARNING, "Unknown tone name %s\n", name);
} else {
if (detect) {
char *p = val, *next;
int i = 0;
do {
teletone_process_t this;
next = strchr(p, ',');
this = (teletone_process_t)atof(p);
span->tone_detect_map[index].freqs[i++] = this;
if (next) {
p = next + 1;
}
} while (next);
zap_log(ZAP_LOG_DEBUG, "added tone detect [%s] = [%s]\n", name, val);
} else {
zap_log(ZAP_LOG_DEBUG, "added tone generation [%s] = [%s]\n", name, val);
zap_copy_string(span->tone_map[index], val, sizeof(span->tone_map[index]));
}
x++;
}
}
}
zap_config_close_file(&cfg);
if (!x) {
snprintf(span->last_error, sizeof(span->last_error), "error loading tones.");
return ZAP_FAIL;
}
return ZAP_SUCCESS;
}
#define ZAP_SLINEAR_MAX_VALUE 32767
#define ZAP_SLINEAR_MIN_VALUE -32767
static void reset_gain_table(unsigned char *gain_table, float new_gain, zap_codec_t codec_gain)
{
/* sample value */
uint8_t sv = 0;
/* linear gain factor */
float lingain = 0;
/* linear value for each table sample */
float linvalue = 0;
/* amplified (or attenuated in case of negative amplification) sample value */
int ampvalue = 0;
/* gain tables are only for alaw and ulaw */
if (codec_gain != ZAP_CODEC_ALAW && codec_gain != ZAP_CODEC_ULAW) {
zap_log(ZAP_LOG_WARNING, "Not resetting gain table because codec is not ALAW or ULAW but %d\n", codec_gain);
return;
}
if (!new_gain) {
/* for a 0.0db gain table, each alaw/ulaw sample value is left untouched (0 ==0, 1 == 1, 2 == 2 etc)*/
sv = 0;
while (1) {
gain_table[sv] = (unsigned char)sv;
if (sv == (ZAP_GAINS_TABLE_SIZE - 1)) {
break;
}
sv++;
}
return;
}
/* use the 20log rule to increase the gain: http://en.wikipedia.org/wiki/Gain, http:/en.wikipedia.org/wiki/20_log_rule#Definitions */
lingain = (float)pow(10.0f, new_gain/20.0f);
sv = 0;
while (1) {
/* get the linear value for this alaw/ulaw sample value */
linvalue = codec_gain == ZAP_CODEC_ALAW ? (float)alaw_to_linear(sv) : (float)ulaw_to_linear(sv);
/* multiply the linear value and the previously calculated linear gain */
ampvalue = (int)(linvalue * lingain);
/* chop it if goes beyond the limits */
if (ampvalue > ZAP_SLINEAR_MAX_VALUE) {
ampvalue = ZAP_SLINEAR_MAX_VALUE;
}
if (ampvalue < ZAP_SLINEAR_MIN_VALUE) {
ampvalue = ZAP_SLINEAR_MIN_VALUE;
}
gain_table[sv] = codec_gain == ZAP_CODEC_ALAW ? linear_to_alaw(ampvalue) : linear_to_ulaw(ampvalue);
if (sv == (ZAP_GAINS_TABLE_SIZE-1)) {
break;
}
sv++;
}
}
OZ_DECLARE(zap_status_t) zap_span_add_channel(zap_span_t *span, zap_socket_t sockfd, zap_chan_type_t type, zap_channel_t **chan)
{
unsigned i = 0;
if (span->chan_count < ZAP_MAX_CHANNELS_SPAN) {
zap_channel_t *new_chan = span->channels[++span->chan_count];
if (!new_chan) {
if (!(new_chan = malloc(sizeof(*new_chan)))) {
return ZAP_FAIL;
}
span->channels[span->chan_count] = new_chan;
memset(new_chan, 0, sizeof(*new_chan));
}
new_chan->type = type;
new_chan->sockfd = sockfd;
new_chan->zio = span->zio;
new_chan->span_id = span->span_id;
new_chan->chan_id = span->chan_count;
new_chan->span = span;
new_chan->fds[0] = -1;
new_chan->fds[1] = -1;
new_chan->data_type = ZAP_TYPE_CHANNEL;
if (!new_chan->dtmf_on) {
new_chan->dtmf_on = ZAP_DEFAULT_DTMF_ON;
}
if (!new_chan->dtmf_off) {
new_chan->dtmf_off = ZAP_DEFAULT_DTMF_OFF;
}
zap_mutex_create(&new_chan->mutex);
zap_mutex_create(&new_chan->pre_buffer_mutex);
#ifdef ZAP_DEBUG_DTMF
zap_mutex_create(&new_chan->dtmfdbg.mutex);
#endif
zap_buffer_create(&new_chan->digit_buffer, 128, 128, 0);
zap_buffer_create(&new_chan->gen_dtmf_buffer, 128, 128, 0);
new_chan->variable_hash = create_hashtable(16, zap_hash_hashfromstring, zap_hash_equalkeys);
new_chan->dtmf_hangup_buf = calloc (span->dtmf_hangup_len + 1, sizeof (char));
/* set 0.0db gain table */
i = 0;
while (1) {
new_chan->txgain_table[i] = (unsigned char)i;
new_chan->rxgain_table[i] = (unsigned char)i;
if (i == (sizeof(new_chan->txgain_table)-1)) {
break;
}
i++;
}
zap_set_flag(new_chan, ZAP_CHANNEL_CONFIGURED | ZAP_CHANNEL_READY);
*chan = new_chan;
return ZAP_SUCCESS;
}
return ZAP_FAIL;
}
OZ_DECLARE(zap_status_t) zap_span_find_by_name(const char *name, zap_span_t **span)
{
zap_status_t status = ZAP_FAIL;
zap_mutex_lock(globals.span_mutex);
if (!zap_strlen_zero(name)) {
if ((*span = hashtable_search(globals.span_hash, (void *)name))) {
status = ZAP_SUCCESS;
} else {
int span_id = atoi(name);
zap_span_find(span_id, span);
if (*span) {
status = ZAP_SUCCESS;
}
}
}
zap_mutex_unlock(globals.span_mutex);
return status;
}
OZ_DECLARE(zap_status_t) zap_span_find(uint32_t id, zap_span_t **span)
{
zap_span_t *fspan = NULL, *sp;
if (id > ZAP_MAX_SPANS_INTERFACE) {
return ZAP_FAIL;
}
zap_mutex_lock(globals.span_mutex);
for (sp = globals.spans; sp; sp = sp->next) {
if (sp->span_id == id) {
fspan = sp;
break;
}
}
zap_mutex_unlock(globals.span_mutex);
if (!fspan || !zap_test_flag(fspan, ZAP_SPAN_CONFIGURED)) {
return ZAP_FAIL;
}
*span = fspan;
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_span_set_event_callback(zap_span_t *span, zio_event_cb_t event_callback)
{
zap_mutex_lock(span->mutex);
span->event_callback = event_callback;
zap_mutex_unlock(span->mutex);
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_span_poll_event(zap_span_t *span, uint32_t ms)
{
assert(span->zio != NULL);
if (span->zio->poll_event) {
return span->zio->poll_event(span, ms);
} else {
zap_log(ZAP_LOG_ERROR, "poll_event method not implemented in module %s!", span->zio->name);
}
return ZAP_NOTIMPL;
}
OZ_DECLARE(zap_status_t) zap_span_next_event(zap_span_t *span, zap_event_t **event)
{
assert(span->zio != NULL);
if (span->zio->next_event) {
return span->zio->next_event(span, event);
} else {
zap_log(ZAP_LOG_ERROR, "next_event method not implemented in module %s!", span->zio->name);
}
return ZAP_NOTIMPL;
}
static zap_status_t zchan_fsk_write_sample(int16_t *buf, zap_size_t buflen, void *user_data)
{
zap_channel_t *zchan = (zap_channel_t *) user_data;
zap_buffer_write(zchan->fsk_buffer, buf, buflen * 2);
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_channel_send_fsk_data(zap_channel_t *zchan, zap_fsk_data_state_t *fsk_data, float db_level)
{
struct zap_fsk_modulator fsk_trans;
if (!zchan->fsk_buffer) {
zap_buffer_create(&zchan->fsk_buffer, 128, 128, 0);
} else {
zap_buffer_zero(zchan->fsk_buffer);
}
if (zchan->token_count > 1) {
zap_fsk_modulator_init(&fsk_trans, FSK_BELL202, zchan->rate, fsk_data, db_level, 80, 5, 0, zchan_fsk_write_sample, zchan);
zap_fsk_modulator_send_all((&fsk_trans));
} else {
zap_fsk_modulator_init(&fsk_trans, FSK_BELL202, zchan->rate, fsk_data, db_level, 180, 5, 300, zchan_fsk_write_sample, zchan);
zap_fsk_modulator_send_all((&fsk_trans));
zchan->buffer_delay = 3500 / zchan->effective_interval;
}
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_channel_set_event_callback(zap_channel_t *zchan, zio_event_cb_t event_callback)
{
zap_mutex_lock(zchan->mutex);
zchan->event_callback = event_callback;
zap_mutex_unlock(zchan->mutex);
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_channel_clear_token(zap_channel_t *zchan, const char *token)
{
zap_status_t status = ZAP_FAIL;
zap_mutex_lock(zchan->mutex);
if (token == NULL) {
memset(zchan->tokens, 0, sizeof(zchan->tokens));
zchan->token_count = 0;
} else if (*token != '\0') {
char tokens[ZAP_MAX_TOKENS][ZAP_TOKEN_STRLEN];
int32_t i, count = zchan->token_count;
memcpy(tokens, zchan->tokens, sizeof(tokens));
memset(zchan->tokens, 0, sizeof(zchan->tokens));
zchan->token_count = 0;
for (i = 0; i < count; i++) {
if (strcmp(tokens[i], token)) {
zap_copy_string(zchan->tokens[zchan->token_count], tokens[i], sizeof(zchan->tokens[zchan->token_count]));
zchan->token_count++;
}
}
status = ZAP_SUCCESS;
}
zap_mutex_unlock(zchan->mutex);
return status;
}
OZ_DECLARE(void) zap_channel_rotate_tokens(zap_channel_t *zchan)
{
if (zchan->token_count) {
memmove(zchan->tokens[1], zchan->tokens[0], zchan->token_count * ZAP_TOKEN_STRLEN);
zap_copy_string(zchan->tokens[0], zchan->tokens[zchan->token_count], ZAP_TOKEN_STRLEN);
*zchan->tokens[zchan->token_count] = '\0';
}
}
OZ_DECLARE(void) zap_channel_replace_token(zap_channel_t *zchan, const char *old_token, const char *new_token)
{
unsigned int i;
if (zchan->token_count) {
for(i = 0; i < zchan->token_count; i++) {
if (!strcmp(zchan->tokens[i], old_token)) {
zap_copy_string(zchan->tokens[i], new_token, ZAP_TOKEN_STRLEN);
break;
}
}
}
}
OZ_DECLARE(zap_status_t) zap_channel_add_token(zap_channel_t *zchan, char *token, int end)
{
zap_status_t status = ZAP_FAIL;
zap_mutex_lock(zchan->mutex);
if (zchan->token_count < ZAP_MAX_TOKENS) {
if (end) {
zap_copy_string(zchan->tokens[zchan->token_count++], token, ZAP_TOKEN_STRLEN);
} else {
memmove(zchan->tokens[1], zchan->tokens[0], zchan->token_count * ZAP_TOKEN_STRLEN);
zap_copy_string(zchan->tokens[0], token, ZAP_TOKEN_STRLEN);
zchan->token_count++;
}
status = ZAP_SUCCESS;
}
zap_mutex_unlock(zchan->mutex);
return status;
}
OZ_DECLARE(zap_status_t) zap_channel_complete_state(zap_channel_t *zchan)
{
zap_channel_state_t state = zchan->state;
if (state == ZAP_CHANNEL_STATE_PROGRESS) {
zap_set_flag(zchan, ZAP_CHANNEL_PROGRESS);
} else if (state == ZAP_CHANNEL_STATE_UP) {
zap_set_flag(zchan, ZAP_CHANNEL_PROGRESS);
zap_set_flag(zchan, ZAP_CHANNEL_MEDIA);
zap_set_flag(zchan, ZAP_CHANNEL_ANSWERED);
} else if (state == ZAP_CHANNEL_STATE_PROGRESS_MEDIA) {
zap_set_flag(zchan, ZAP_CHANNEL_PROGRESS);
zap_set_flag(zchan, ZAP_CHANNEL_MEDIA);
}
return ZAP_SUCCESS;
}
static int zap_parse_state_map(zap_channel_t *zchan, zap_channel_state_t state, zap_state_map_t *state_map)
{
int x = 0, ok = 0;
zap_state_direction_t direction = zap_test_flag(zchan, ZAP_CHANNEL_OUTBOUND) ? ZSD_OUTBOUND : ZSD_INBOUND;
for(x = 0; x < ZAP_MAP_NODE_SIZE; x++) {
int i = 0, proceed = 0;
if (!state_map->nodes[x].type) {
break;
}
if (state_map->nodes[x].direction != direction) {
continue;
}
if (state_map->nodes[x].check_states[0] == ZAP_ANY_STATE) {
proceed = 1;
} else {
for(i = 0; i < ZAP_MAP_MAX; i++) {
if (state_map->nodes[x].check_states[i] == zchan->state) {
proceed = 1;
break;
}
}
}
if (!proceed) {
continue;
}
for(i = 0; i < ZAP_MAP_MAX; i++) {
ok = (state_map->nodes[x].type == ZSM_ACCEPTABLE);
if (state_map->nodes[x].states[i] == ZAP_END) {
break;
}
if (state_map->nodes[x].states[i] == state) {
ok = !ok;
goto end;
}
}
}
end:
return ok;
}
OZ_DECLARE(zap_status_t) zap_channel_set_state(zap_channel_t *zchan, zap_channel_state_t state, int lock)
{
int ok = 1;
if (!zap_test_flag(zchan, ZAP_CHANNEL_READY)) {
zap_log(ZAP_LOG_ERROR, "%d:%d Cannot set state in channel that is not ready\n",
zchan->span_id, zchan->chan_id);
return ZAP_FAIL;
}
if (zap_test_flag(zchan->span, ZAP_SPAN_SUSPENDED)) {
if (state != ZAP_CHANNEL_STATE_RESTART && state != ZAP_CHANNEL_STATE_DOWN) {
zap_log(ZAP_LOG_ERROR, "%d:%d Cannot set state in channel that is suspended\n",
zchan->span_id, zchan->chan_id);
return ZAP_FAIL;
}
}
if (lock) {
zap_mutex_lock(zchan->mutex);
}
if (zchan->span->state_map) {
ok = zap_parse_state_map(zchan, state, zchan->span->state_map);
goto end;
}
switch(zchan->state) {
case ZAP_CHANNEL_STATE_HANGUP:
case ZAP_CHANNEL_STATE_TERMINATING:
{
ok = 0;
switch(state) {
case ZAP_CHANNEL_STATE_DOWN:
case ZAP_CHANNEL_STATE_BUSY:
case ZAP_CHANNEL_STATE_RESTART:
ok = 1;
break;
default:
break;
}
}
break;
case ZAP_CHANNEL_STATE_UP:
{
ok = 1;
switch(state) {
case ZAP_CHANNEL_STATE_PROGRESS:
case ZAP_CHANNEL_STATE_PROGRESS_MEDIA:
case ZAP_CHANNEL_STATE_RING:
ok = 0;
break;
default:
break;
}
}
break;
case ZAP_CHANNEL_STATE_DOWN:
{
ok = 0;
switch(state) {
case ZAP_CHANNEL_STATE_DIALTONE:
case ZAP_CHANNEL_STATE_COLLECT:
case ZAP_CHANNEL_STATE_DIALING:
case ZAP_CHANNEL_STATE_RING:
case ZAP_CHANNEL_STATE_PROGRESS_MEDIA:
case ZAP_CHANNEL_STATE_PROGRESS:
case ZAP_CHANNEL_STATE_IDLE:
case ZAP_CHANNEL_STATE_GET_CALLERID:
case ZAP_CHANNEL_STATE_GENRING:
ok = 1;
break;
default:
break;
}
}
break;
case ZAP_CHANNEL_STATE_BUSY:
{
switch(state) {
case ZAP_CHANNEL_STATE_UP:
ok = 0;
break;
default:
break;
}
}
break;
case ZAP_CHANNEL_STATE_RING:
{
switch(state) {
case ZAP_CHANNEL_STATE_UP:
ok = 1;
break;
default:
break;
}
}
break;
default:
break;
}
end:
if (state == zchan->state) {
ok = 0;
}
if (ok) {
zap_set_flag(zchan, ZAP_CHANNEL_STATE_CHANGE);
zap_set_flag_locked(zchan->span, ZAP_SPAN_STATE_CHANGE);
zchan->last_state = zchan->state;
zchan->state = state;
}
if (lock) {
zap_mutex_unlock(zchan->mutex);
}
return ok ? ZAP_SUCCESS : ZAP_FAIL;
}
OZ_DECLARE(zap_status_t) zap_span_channel_use_count(zap_span_t *span, uint32_t *count)
{
uint32_t j;
*count = 0;
if (!span || !zap_test_flag(span, ZAP_SPAN_CONFIGURED)) {
return ZAP_FAIL;
}
for(j = 1; j <= span->chan_count && span->channels[j]; j++) {
if (span->channels[j]) {
if (zap_test_flag(span->channels[j], ZAP_CHANNEL_INUSE)) {
(*count)++;
}
}
}
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_channel_open_any(uint32_t span_id, zap_direction_t direction, zap_caller_data_t *caller_data, zap_channel_t **zchan)
{
zap_status_t status = ZAP_FAIL;
zap_channel_t *check;
uint32_t i, j, count;
zap_span_t *span = NULL;
uint32_t span_max;
if (span_id) {
zap_span_find(span_id, &span);
if (!span || !zap_test_flag(span, ZAP_SPAN_CONFIGURED)) {
zap_log(ZAP_LOG_CRIT, "SPAN NOT DEFINED!\n");
*zchan = NULL;
return ZAP_FAIL;
}
zap_span_channel_use_count(span, &count);
if (count >= span->chan_count) {
zap_log(ZAP_LOG_CRIT, "All circuits are busy.\n");
*zchan = NULL;
return ZAP_FAIL;
}
if (span->channel_request && !span->suggest_chan_id) {
zap_set_caller_data(span, caller_data);
return span->channel_request(span, 0, direction, caller_data, zchan);
}
span_max = span_id;
j = span_id;
} else {
zap_log(ZAP_LOG_CRIT, "No span supplied\n");
*zchan = NULL;
return ZAP_FAIL;
}
zap_mutex_lock(span->mutex);
if (direction == ZAP_TOP_DOWN) {
i = 1;
} else {
i = span->chan_count;
}
for(;;) {
if (direction == ZAP_TOP_DOWN) {
if (i > span->chan_count) {
break;
}
} else {
if (i == 0) {
break;
}
}
if (!(check = span->channels[i])) {
status = ZAP_FAIL;
break;
}
if (zap_test_flag(check, ZAP_CHANNEL_READY) &&
!zap_test_flag(check, ZAP_CHANNEL_INUSE) &&
!zap_test_flag(check, ZAP_CHANNEL_SUSPENDED) &&
check->state == ZAP_CHANNEL_STATE_DOWN &&
check->type != ZAP_CHAN_TYPE_DQ921 &&
check->type != ZAP_CHAN_TYPE_DQ931
) {
if (span && span->channel_request) {
zap_set_caller_data(span, caller_data);
status = span->channel_request(span, i, direction, caller_data, zchan);
break;
}
status = check->zio->open(check);
if (status == ZAP_SUCCESS) {
zap_set_flag(check, ZAP_CHANNEL_INUSE);
zap_channel_open_chan(check);
*zchan = check;
break;
}
}
if (direction == ZAP_TOP_DOWN) {
i++;
} else {
i--;
}
}
zap_mutex_unlock(span->mutex);
return status;
}
static zap_status_t zap_channel_reset(zap_channel_t *zchan)
{
zap_clear_flag(zchan, ZAP_CHANNEL_OPEN);
zchan->event_callback = NULL;
zap_clear_flag(zchan, ZAP_CHANNEL_DTMF_DETECT);
zap_clear_flag(zchan, ZAP_CHANNEL_SUPRESS_DTMF);
zap_channel_done(zchan);
zap_clear_flag_locked(zchan, ZAP_CHANNEL_HOLD);
memset(zchan->tokens, 0, sizeof(zchan->tokens));
zchan->token_count = 0;
if (zchan->dtmf_buffer) {
zap_buffer_zero(zchan->dtmf_buffer);
}
if (zchan->gen_dtmf_buffer) {
zap_buffer_zero(zchan->gen_dtmf_buffer);
}
if (zchan->digit_buffer) {
zap_buffer_zero(zchan->digit_buffer);
}
if (!zchan->dtmf_on) {
zchan->dtmf_on = ZAP_DEFAULT_DTMF_ON;
}
if (!zchan->dtmf_off) {
zchan->dtmf_off = ZAP_DEFAULT_DTMF_OFF;
}
memset(zchan->dtmf_hangup_buf, '\0', zchan->span->dtmf_hangup_len);
if (zap_test_flag(zchan, ZAP_CHANNEL_TRANSCODE)) {
zchan->effective_codec = zchan->native_codec;
zchan->packet_len = zchan->native_interval * (zchan->effective_codec == ZAP_CODEC_SLIN ? 16 : 8);
zap_clear_flag(zchan, ZAP_CHANNEL_TRANSCODE);
}
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_channel_init(zap_channel_t *zchan)
{
if (zchan->init_state != ZAP_CHANNEL_STATE_DOWN) {
zap_set_state_locked(zchan, zchan->init_state);
zchan->init_state = ZAP_CHANNEL_STATE_DOWN;
}
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_channel_open_chan(zap_channel_t *zchan)
{
zap_status_t status = ZAP_FAIL;
assert(zchan != NULL);
if (zap_test_flag(zchan, ZAP_CHANNEL_SUSPENDED)) {
snprintf(zchan->last_error, sizeof(zchan->last_error), "%s", "Channel is suspended");
return ZAP_FAIL;
}
if (globals.cpu_monitor.alarm &&
globals.cpu_monitor.alarm_action_flags & ZAP_CPU_ALARM_ACTION_REJECT) {
snprintf(zchan->last_error, sizeof(zchan->last_error), "%s", "CPU usage alarm is on - refusing to open channel\n");
zap_log(ZAP_LOG_WARNING, "CPU usage alarm is on - refusing to open channel\n");
zchan->caller_data.hangup_cause = ZAP_CAUSE_SWITCH_CONGESTION;
return ZAP_FAIL;
}
if (!zap_test_flag(zchan, ZAP_CHANNEL_READY) || (status = zap_mutex_trylock(zchan->mutex)) != ZAP_SUCCESS) {
snprintf(zchan->last_error, sizeof(zchan->last_error), "Channel is not ready or is in use %d %d", zap_test_flag(zchan, ZAP_CHANNEL_READY), status);
return status;
}
status = ZAP_FAIL;
if (zap_test_flag(zchan, ZAP_CHANNEL_READY)) {
status = zchan->span->zio->open(zchan);
if (status == ZAP_SUCCESS) {
zap_set_flag(zchan, ZAP_CHANNEL_OPEN | ZAP_CHANNEL_INUSE);
}
} else {
snprintf(zchan->last_error, sizeof(zchan->last_error), "%s", "Channel is not ready");
}
zap_mutex_unlock(zchan->mutex);
return status;
}
OZ_DECLARE(zap_status_t) zap_channel_open(uint32_t span_id, uint32_t chan_id, zap_channel_t **zchan)
{
zap_channel_t *check;
zap_status_t status = ZAP_FAIL;
zap_span_t *span = NULL;
zap_mutex_lock(globals.mutex);
zap_span_find(span_id, &span);
if (!span || !zap_test_flag(span, ZAP_SPAN_CONFIGURED) || chan_id >= ZAP_MAX_CHANNELS_SPAN) {
zap_log(ZAP_LOG_CRIT, "SPAN NOT DEFINED!\n");
*zchan = NULL;
goto done;
}
if (span->channel_request) {
zap_log(ZAP_LOG_ERROR, "Individual channel selection not implemented on this span.\n");
*zchan = NULL;
goto done;
}
if (!(check = span->channels[chan_id])) {
zap_log(ZAP_LOG_ERROR, "Invalid Channel %d\n", chan_id);
*zchan = NULL;
goto done;
}
if (zap_test_flag(check, ZAP_CHANNEL_SUSPENDED) ||
!zap_test_flag(check, ZAP_CHANNEL_READY) || (status = zap_mutex_trylock(check->mutex)) != ZAP_SUCCESS) {
*zchan = NULL;
goto done;
}
status = ZAP_FAIL;
if ((!zap_test_flag(check, ZAP_CHANNEL_INUSE)) ||
(check->type == ZAP_CHAN_TYPE_FXS &&
check->token_count == 1 &&
zap_channel_test_feature(check, ZAP_CHANNEL_FEATURE_CALLWAITING))) {
if (!zap_test_flag(check, ZAP_CHANNEL_OPEN)) {
status = check->zio->open(check);
if (status == ZAP_SUCCESS) {
zap_set_flag(check, ZAP_CHANNEL_OPEN);
}
} else {
status = ZAP_SUCCESS;
}
zap_set_flag(check, ZAP_CHANNEL_INUSE);
*zchan = check;
}
zap_mutex_unlock(check->mutex);
done:
zap_mutex_unlock(globals.mutex);
return status;
}
OZ_DECLARE(zap_status_t) zap_channel_outgoing_call(zap_channel_t *zchan)
{
zap_status_t status;
assert(zchan != NULL);
if (zchan->span->outgoing_call) {
if ((status = zchan->span->outgoing_call(zchan)) == ZAP_SUCCESS) {
zap_set_flag(zchan, ZAP_CHANNEL_OUTBOUND);
}
return status;
} else {
zap_log(ZAP_LOG_ERROR, "outgoing_call method not implemented!\n");
}
return ZAP_FAIL;
}
#ifdef ZAP_DEBUG_DTMF
static void close_dtmf_debug(zap_channel_t *zchan)
{
zap_mutex_lock(zchan->dtmfdbg.mutex);
if (zchan->dtmfdbg.file) {
zap_log_chan_msg(zchan, ZAP_LOG_DEBUG, "closing debug dtmf file\n");
fclose(zchan->dtmfdbg.file);
zchan->dtmfdbg.file = NULL;
}
zchan->dtmfdbg.windex = 0;
zchan->dtmfdbg.wrapped = 0;
zap_mutex_unlock(zchan->dtmfdbg.mutex);
}
#endif
OZ_DECLARE(zap_status_t) zap_channel_done(zap_channel_t *zchan)
{
assert(zchan != NULL);
memset(&zchan->caller_data, 0, sizeof(zchan->caller_data));
zap_clear_flag_locked(zchan, ZAP_CHANNEL_INUSE);
zap_clear_flag_locked(zchan, ZAP_CHANNEL_OUTBOUND);
zap_clear_flag_locked(zchan, ZAP_CHANNEL_WINK);
zap_clear_flag_locked(zchan, ZAP_CHANNEL_FLASH);
zap_clear_flag_locked(zchan, ZAP_CHANNEL_STATE_CHANGE);
zap_clear_flag_locked(zchan, ZAP_CHANNEL_HOLD);
zap_clear_flag_locked(zchan, ZAP_CHANNEL_OFFHOOK);
zap_clear_flag_locked(zchan, ZAP_CHANNEL_RINGING);
zap_clear_flag_locked(zchan, ZAP_CHANNEL_PROGRESS_DETECT);
zap_clear_flag_locked(zchan, ZAP_CHANNEL_CALLERID_DETECT);
zap_clear_flag_locked(zchan, ZAP_CHANNEL_3WAY);
zap_clear_flag_locked(zchan, ZAP_CHANNEL_PROGRESS);
zap_clear_flag_locked(zchan, ZAP_CHANNEL_MEDIA);
zap_clear_flag_locked(zchan, ZAP_CHANNEL_ANSWERED);
zap_mutex_lock(zchan->pre_buffer_mutex);
zap_buffer_destroy(&zchan->pre_buffer);
zchan->pre_buffer_size = 0;
zap_mutex_unlock(zchan->pre_buffer_mutex);
#ifdef ZAP_DEBUG_DTMF
close_dtmf_debug(zchan);
#endif
zap_channel_flush_dtmf(zchan);
zchan->init_state = ZAP_CHANNEL_STATE_DOWN;
zchan->state = ZAP_CHANNEL_STATE_DOWN;
zap_log(ZAP_LOG_DEBUG, "channel done %u:%u\n", zchan->span_id, zchan->chan_id);
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_channel_use(zap_channel_t *zchan)
{
assert(zchan != NULL);
zap_set_flag_locked(zchan, ZAP_CHANNEL_INUSE);
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_channel_close(zap_channel_t **zchan)
{
zap_channel_t *check;
zap_status_t status = ZAP_FAIL;
assert(zchan != NULL);
check = *zchan;
*zchan = NULL;
if (!check) {
return ZAP_FAIL;
}
if (zap_test_flag(check, ZAP_CHANNEL_CONFIGURED)) {
zap_mutex_lock(check->mutex);
if (zap_test_flag(check, ZAP_CHANNEL_OPEN)) {
status = check->zio->close(check);
if (status == ZAP_SUCCESS) {
zap_channel_reset(check);
*zchan = NULL;
}
}
check->ring_count = 0;
zap_mutex_unlock(check->mutex);
}
return status;
}
static zap_status_t zchan_activate_dtmf_buffer(zap_channel_t *zchan)
{
if (!zchan->dtmf_buffer) {
if (zap_buffer_create(&zchan->dtmf_buffer, 1024, 3192, 0) != ZAP_SUCCESS) {
zap_log(ZAP_LOG_ERROR, "Failed to allocate DTMF Buffer!\n");
snprintf(zchan->last_error, sizeof(zchan->last_error), "buffer error");
return ZAP_FAIL;
} else {
zap_log(ZAP_LOG_DEBUG, "Created DTMF Buffer!\n");
}
}
if (!zchan->tone_session.buffer) {
memset(&zchan->tone_session, 0, sizeof(zchan->tone_session));
teletone_init_session(&zchan->tone_session, 0, NULL, NULL);
}
zchan->tone_session.rate = zchan->rate;
zchan->tone_session.duration = zchan->dtmf_on * (zchan->tone_session.rate / 1000);
zchan->tone_session.wait = zchan->dtmf_off * (zchan->tone_session.rate / 1000);
zchan->tone_session.volume = -7;
/*
zchan->tone_session.debug = 1;
zchan->tone_session.debug_stream = stdout;
*/
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_channel_command(zap_channel_t *zchan, zap_command_t command, void *obj)
{
zap_status_t status = ZAP_FAIL;
assert(zchan != NULL);
assert(zchan->zio != NULL);
zap_mutex_lock(zchan->mutex);
switch(command) {
case ZAP_COMMAND_ENABLE_CALLERID_DETECT:
{
if (!zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_CALLERID)) {
if (zap_fsk_demod_init(&zchan->fsk, zchan->rate, zchan->fsk_buf, sizeof(zchan->fsk_buf)) != ZAP_SUCCESS) {
snprintf(zchan->last_error, sizeof(zchan->last_error), "%s", strerror(errno));
GOTO_STATUS(done, ZAP_FAIL);
}
zap_set_flag_locked(zchan, ZAP_CHANNEL_CALLERID_DETECT);
}
}
break;
case ZAP_COMMAND_DISABLE_CALLERID_DETECT:
{
if (!zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_CALLERID)) {
zap_fsk_demod_destroy(&zchan->fsk);
zap_clear_flag_locked(zchan, ZAP_CHANNEL_CALLERID_DETECT);
}
}
break;
case ZAP_COMMAND_TRACE_INPUT:
{
char *path = (char *) obj;
if (zchan->fds[0] > 0) {
close(zchan->fds[0]);
zchan->fds[0] = -1;
}
if ((zchan->fds[0] = open(path, O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR)) > -1) {
zap_log(ZAP_LOG_DEBUG, "Tracing channel %u:%u to [%s]\n", zchan->span_id, zchan->chan_id, path);
GOTO_STATUS(done, ZAP_SUCCESS);
}
snprintf(zchan->last_error, sizeof(zchan->last_error), "%s", strerror(errno));
GOTO_STATUS(done, ZAP_FAIL);
}
break;
case ZAP_COMMAND_TRACE_OUTPUT:
{
char *path = (char *) obj;
if (zchan->fds[1] > 0) {
close(zchan->fds[1]);
zchan->fds[1] = -1;
}
if ((zchan->fds[1] = open(path, O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR)) > -1) {
zap_log(ZAP_LOG_DEBUG, "Tracing channel %u:%u to [%s]\n", zchan->span_id, zchan->chan_id, path);
GOTO_STATUS(done, ZAP_SUCCESS);
}
snprintf(zchan->last_error, sizeof(zchan->last_error), "%s", strerror(errno));
GOTO_STATUS(done, ZAP_FAIL);
}
break;
case ZAP_COMMAND_TRACE_END_ALL:
{
if (zchan->fds[0] > 0) {
close(zchan->fds[0]);
zchan->fds[0] = -1;
}
if (zchan->fds[1] > 0) {
close(zchan->fds[1]);
zchan->fds[1] = -1;
}
GOTO_STATUS(done, ZAP_SUCCESS);
}
break;
case ZAP_COMMAND_SET_INTERVAL:
{
if (!zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_INTERVAL)) {
zchan->effective_interval = ZAP_COMMAND_OBJ_INT;
if (zchan->effective_interval == zchan->native_interval) {
zap_clear_flag(zchan, ZAP_CHANNEL_BUFFER);
} else {
zap_set_flag(zchan, ZAP_CHANNEL_BUFFER);
}
zchan->packet_len = zchan->native_interval * (zchan->effective_codec == ZAP_CODEC_SLIN ? 16 : 8);
GOTO_STATUS(done, ZAP_SUCCESS);
}
}
break;
case ZAP_COMMAND_GET_INTERVAL:
{
if (!zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_INTERVAL)) {
ZAP_COMMAND_OBJ_INT = zchan->effective_interval;
GOTO_STATUS(done, ZAP_SUCCESS);
}
}
break;
case ZAP_COMMAND_SET_CODEC:
{
if (!zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_CODECS)) {
zchan->effective_codec = ZAP_COMMAND_OBJ_INT;
if (zchan->effective_codec == zchan->native_codec) {
zap_clear_flag(zchan, ZAP_CHANNEL_TRANSCODE);
} else {
zap_set_flag(zchan, ZAP_CHANNEL_TRANSCODE);
}
zchan->packet_len = zchan->native_interval * (zchan->effective_codec == ZAP_CODEC_SLIN ? 16 : 8);
GOTO_STATUS(done, ZAP_SUCCESS);
}
}
break;
case ZAP_COMMAND_SET_NATIVE_CODEC:
{
if (!zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_CODECS)) {
zchan->effective_codec = zchan->native_codec;
zap_clear_flag(zchan, ZAP_CHANNEL_TRANSCODE);
zchan->packet_len = zchan->native_interval * (zchan->effective_codec == ZAP_CODEC_SLIN ? 16 : 8);
GOTO_STATUS(done, ZAP_SUCCESS);
}
}
break;
case ZAP_COMMAND_GET_CODEC:
{
if (!zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_CODECS)) {
ZAP_COMMAND_OBJ_INT = zchan->effective_codec;
GOTO_STATUS(done, ZAP_SUCCESS);
}
}
break;
case ZAP_COMMAND_GET_NATIVE_CODEC:
{
if (!zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_CODECS)) {
ZAP_COMMAND_OBJ_INT = zchan->native_codec;
GOTO_STATUS(done, ZAP_SUCCESS);
}
}
break;
case ZAP_COMMAND_ENABLE_PROGRESS_DETECT:
{
if (!zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_PROGRESS)) {
/* if they don't have thier own, use ours */
zap_channel_clear_detected_tones(zchan);
zap_channel_clear_needed_tones(zchan);
teletone_multi_tone_init(&zchan->span->tone_finder[ZAP_TONEMAP_DIAL], &zchan->span->tone_detect_map[ZAP_TONEMAP_DIAL]);
teletone_multi_tone_init(&zchan->span->tone_finder[ZAP_TONEMAP_RING], &zchan->span->tone_detect_map[ZAP_TONEMAP_RING]);
teletone_multi_tone_init(&zchan->span->tone_finder[ZAP_TONEMAP_BUSY], &zchan->span->tone_detect_map[ZAP_TONEMAP_BUSY]);
zap_set_flag(zchan, ZAP_CHANNEL_PROGRESS_DETECT);
GOTO_STATUS(done, ZAP_SUCCESS);
}
}
break;
case ZAP_COMMAND_DISABLE_PROGRESS_DETECT:
{
if (!zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_PROGRESS)) {
zap_clear_flag_locked(zchan, ZAP_CHANNEL_PROGRESS_DETECT);
zap_channel_clear_detected_tones(zchan);
zap_channel_clear_needed_tones(zchan);
GOTO_STATUS(done, ZAP_SUCCESS);
}
}
break;
case ZAP_COMMAND_ENABLE_DTMF_DETECT:
{
/* if they don't have thier own, use ours */
if (!zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_DTMF_DETECT)) {
teletone_dtmf_detect_init (&zchan->dtmf_detect, zchan->rate);
zap_set_flag_locked(zchan, ZAP_CHANNEL_DTMF_DETECT);
zap_set_flag_locked(zchan, ZAP_CHANNEL_SUPRESS_DTMF);
GOTO_STATUS(done, ZAP_SUCCESS);
}
}
break;
case ZAP_COMMAND_DISABLE_DTMF_DETECT:
{
if (!zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_DTMF_DETECT)) {
teletone_dtmf_detect_init (&zchan->dtmf_detect, zchan->rate);
zap_clear_flag(zchan, ZAP_CHANNEL_DTMF_DETECT);
zap_clear_flag(zchan, ZAP_CHANNEL_SUPRESS_DTMF);
GOTO_STATUS(done, ZAP_SUCCESS);
}
}
break;
case ZAP_COMMAND_SET_PRE_BUFFER_SIZE:
{
int val = ZAP_COMMAND_OBJ_INT;
if (val < 0) {
val = 0;
}
zchan->pre_buffer_size = val * 8;
zap_mutex_lock(zchan->pre_buffer_mutex);
if (!zchan->pre_buffer_size) {
zap_buffer_destroy(&zchan->pre_buffer);
} else if (!zchan->pre_buffer) {
zap_buffer_create(&zchan->pre_buffer, 1024, zchan->pre_buffer_size, 0);
}
zap_mutex_unlock(zchan->pre_buffer_mutex);
GOTO_STATUS(done, ZAP_SUCCESS);
}
break;
case ZAP_COMMAND_GET_DTMF_ON_PERIOD:
{
if (!zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_DTMF_GENERATE)) {
ZAP_COMMAND_OBJ_INT = zchan->dtmf_on;
GOTO_STATUS(done, ZAP_SUCCESS);
}
}
break;
case ZAP_COMMAND_GET_DTMF_OFF_PERIOD:
{
if (!zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_DTMF_GENERATE)) {
ZAP_COMMAND_OBJ_INT = zchan->dtmf_on;
GOTO_STATUS(done, ZAP_SUCCESS);
}
}
break;
case ZAP_COMMAND_SET_DTMF_ON_PERIOD:
{
if (!zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_DTMF_GENERATE)) {
int val = ZAP_COMMAND_OBJ_INT;
if (val > 10 && val < 1000) {
zchan->dtmf_on = val;
GOTO_STATUS(done, ZAP_SUCCESS);
} else {
snprintf(zchan->last_error, sizeof(zchan->last_error), "invalid value %d range 10-1000", val);
GOTO_STATUS(done, ZAP_FAIL);
}
}
}
break;
case ZAP_COMMAND_SET_DTMF_OFF_PERIOD:
{
if (!zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_DTMF_GENERATE)) {
int val = ZAP_COMMAND_OBJ_INT;
if (val > 10 && val < 1000) {
zchan->dtmf_off = val;
GOTO_STATUS(done, ZAP_SUCCESS);
} else {
snprintf(zchan->last_error, sizeof(zchan->last_error), "invalid value %d range 10-1000", val);
GOTO_STATUS(done, ZAP_FAIL);
}
}
}
break;
case ZAP_COMMAND_SEND_DTMF:
{
if (!zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_DTMF_GENERATE)) {
char *digits = ZAP_COMMAND_OBJ_CHAR_P;
if ((status = zchan_activate_dtmf_buffer(zchan)) != ZAP_SUCCESS) {
GOTO_STATUS(done, status);
}
zap_buffer_write(zchan->gen_dtmf_buffer, digits, strlen(digits));
GOTO_STATUS(done, ZAP_SUCCESS);
}
}
break;
case ZAP_COMMAND_DISABLE_ECHOCANCEL:
{
zap_mutex_lock(zchan->pre_buffer_mutex);
zap_buffer_destroy(&zchan->pre_buffer);
zchan->pre_buffer_size = 0;
zap_mutex_unlock(zchan->pre_buffer_mutex);
}
break;
case ZAP_COMMAND_SET_RX_GAIN:
{
zchan->rxgain = ZAP_COMMAND_OBJ_FLOAT;
reset_gain_table(zchan->rxgain_table, zchan->rxgain, zchan->native_codec);
if (zchan->rxgain == 0.0) {
zap_clear_flag(zchan, ZAP_CHANNEL_USE_RX_GAIN);
} else {
zap_set_flag(zchan, ZAP_CHANNEL_USE_RX_GAIN);
}
GOTO_STATUS(done, ZAP_SUCCESS);
}
break;
case ZAP_COMMAND_GET_RX_GAIN:
{
ZAP_COMMAND_OBJ_FLOAT = zchan->rxgain;
GOTO_STATUS(done, ZAP_SUCCESS);
}
break;
case ZAP_COMMAND_SET_TX_GAIN:
{
zchan->txgain = ZAP_COMMAND_OBJ_FLOAT;
reset_gain_table(zchan->txgain_table, zchan->txgain, zchan->native_codec);
if (zchan->txgain == 0.0) {
zap_clear_flag(zchan, ZAP_CHANNEL_USE_TX_GAIN);
} else {
zap_set_flag(zchan, ZAP_CHANNEL_USE_TX_GAIN);
}
GOTO_STATUS(done, ZAP_SUCCESS);
}
break;
case ZAP_COMMAND_GET_TX_GAIN:
{
ZAP_COMMAND_OBJ_FLOAT = zchan->txgain;
GOTO_STATUS(done, ZAP_SUCCESS);
}
break;
default:
break;
}
if (!zchan->zio->command) {
snprintf(zchan->last_error, sizeof(zchan->last_error), "method not implemented");
zap_log(ZAP_LOG_ERROR, "no command function defined by the I/O openzap module!\n");
GOTO_STATUS(done, ZAP_FAIL);
}
status = zchan->zio->command(zchan, command, obj);
if (status == ZAP_NOTIMPL) {
snprintf(zchan->last_error, sizeof(zchan->last_error), "I/O command %d not implemented in backend", command);
zap_log(ZAP_LOG_ERROR, "I/O backend does not support command %d!\n", command);
}
done:
zap_mutex_unlock(zchan->mutex);
return status;
}
OZ_DECLARE(zap_status_t) zap_channel_wait(zap_channel_t *zchan, zap_wait_flag_t *flags, int32_t to)
{
assert(zchan != NULL);
assert(zchan->zio != NULL);
if (!zap_test_flag(zchan, ZAP_CHANNEL_OPEN)) {
snprintf(zchan->last_error, sizeof(zchan->last_error), "channel not open");
return ZAP_FAIL;
}
if (!zchan->zio->wait) {
snprintf(zchan->last_error, sizeof(zchan->last_error), "method not implemented");
return ZAP_FAIL;
}
return zchan->zio->wait(zchan, flags, to);
}
/*******************************/
ZIO_CODEC_FUNCTION(zio_slin2ulaw)
{
int16_t sln_buf[512] = {0}, *sln = sln_buf;
uint8_t *lp = data;
uint32_t i;
zap_size_t len = *datalen;
if (max > len) {
max = len;
}
memcpy(sln, data, max);
for(i = 0; i < max; i++) {
*lp++ = linear_to_ulaw(*sln++);
}
*datalen = max / 2;
return ZAP_SUCCESS;
}
ZIO_CODEC_FUNCTION(zio_ulaw2slin)
{
int16_t *sln = data;
uint8_t law[1024] = {0}, *lp = law;
uint32_t i;
zap_size_t len = *datalen;
if (max > len) {
max = len;
}
memcpy(law, data, max);
for(i = 0; i < max; i++) {
*sln++ = ulaw_to_linear(*lp++);
}
*datalen = max * 2;
return ZAP_SUCCESS;
}
ZIO_CODEC_FUNCTION(zio_slin2alaw)
{
int16_t sln_buf[512] = {0}, *sln = sln_buf;
uint8_t *lp = data;
uint32_t i;
zap_size_t len = *datalen;
if (max > len) {
max = len;
}
memcpy(sln, data, max);
for(i = 0; i < max; i++) {
*lp++ = linear_to_alaw(*sln++);
}
*datalen = max / 2;
return ZAP_SUCCESS;
}
ZIO_CODEC_FUNCTION(zio_alaw2slin)
{
int16_t *sln = data;
uint8_t law[1024] = {0}, *lp = law;
uint32_t i;
zap_size_t len = *datalen;
if (max > len) {
max = len;
}
memcpy(law, data, max);
for(i = 0; i < max; i++) {
*sln++ = alaw_to_linear(*lp++);
}
*datalen = max * 2;
return ZAP_SUCCESS;
}
ZIO_CODEC_FUNCTION(zio_ulaw2alaw)
{
zap_size_t len = *datalen;
uint32_t i;
uint8_t *lp = data;
if (max > len) {
max = len;
}
for(i = 0; i < max; i++) {
*lp = ulaw_to_alaw(*lp);
lp++;
}
return ZAP_SUCCESS;
}
ZIO_CODEC_FUNCTION(zio_alaw2ulaw)
{
zap_size_t len = *datalen;
uint32_t i;
uint8_t *lp = data;
if (max > len) {
max = len;
}
for(i = 0; i < max; i++) {
*lp = alaw_to_ulaw(*lp);
lp++;
}
return ZAP_SUCCESS;
}
/******************************/
OZ_DECLARE(void) zap_channel_clear_detected_tones(zap_channel_t *zchan)
{
uint32_t i;
memset(zchan->detected_tones, 0, sizeof(zchan->detected_tones[0]) * ZAP_TONEMAP_INVALID);
for (i = 1; i < ZAP_TONEMAP_INVALID; i++) {
zchan->span->tone_finder[i].tone_count = 0;
}
}
OZ_DECLARE(void) zap_channel_clear_needed_tones(zap_channel_t *zchan)
{
memset(zchan->needed_tones, 0, sizeof(zchan->needed_tones[0]) * ZAP_TONEMAP_INVALID);
}
OZ_DECLARE(zap_size_t) zap_channel_dequeue_dtmf(zap_channel_t *zchan, char *dtmf, zap_size_t len)
{
zap_size_t bytes = 0;
assert(zchan != NULL);
if (!zap_test_flag(zchan, ZAP_CHANNEL_READY)) {
return ZAP_FAIL;
}
if (zchan->digit_buffer && zap_buffer_inuse(zchan->digit_buffer)) {
zap_mutex_lock(zchan->mutex);
if ((bytes = zap_buffer_read(zchan->digit_buffer, dtmf, len)) > 0) {
*(dtmf + bytes) = '\0';
}
zap_mutex_unlock(zchan->mutex);
}
return bytes;
}
OZ_DECLARE(void) zap_channel_flush_dtmf(zap_channel_t *zchan)
{
if (zchan->digit_buffer && zap_buffer_inuse(zchan->digit_buffer)) {
zap_mutex_lock(zchan->mutex);
zap_buffer_zero(zchan->digit_buffer);
zap_mutex_unlock(zchan->mutex);
}
}
OZ_DECLARE(zap_status_t) zap_channel_queue_dtmf(zap_channel_t *zchan, const char *dtmf)
{
zap_status_t status;
register zap_size_t len, inuse;
zap_size_t wr = 0;
const char *p;
assert(zchan != NULL);
zap_log_chan(zchan, ZAP_LOG_DEBUG, "Queuing DTMF %s\n", dtmf);
#ifdef ZAP_DEBUG_DTMF
zap_mutex_lock(zchan->dtmfdbg.mutex);
if (!zchan->dtmfdbg.file) {
struct tm currtime;
time_t currsec;
char dfile[512];
currsec = time(NULL);
localtime_r(&currsec, &currtime);
snprintf(dfile, sizeof(dfile), "dtmf-s%dc%d-20%d-%d-%d-%d:%d:%d.%s",
zchan->span_id, zchan->chan_id,
currtime.tm_year-100, currtime.tm_mon+1, currtime.tm_mday,
currtime.tm_hour, currtime.tm_min, currtime.tm_sec, zchan->native_codec == ZAP_CODEC_ULAW ? "ulaw" : zchan->native_codec == ZAP_CODEC_ALAW ? "alaw" : "sln");
zchan->dtmfdbg.file = fopen(dfile, "w");
if (!zchan->dtmfdbg.file) {
zap_log_chan(zchan, ZAP_LOG_ERROR, "failed to open debug dtmf file %s\n", dfile);
} else {
/* write the saved audio buffer */
int rc = 0;
int towrite = sizeof(zchan->dtmfdbg.buffer) - zchan->dtmfdbg.windex;
zap_log_chan(zchan, ZAP_LOG_DEBUG, "created debug DTMF file %s\n", dfile);
zchan->dtmfdbg.closetimeout = DTMF_DEBUG_TIMEOUT;
if (zchan->dtmfdbg.wrapped) {
rc = fwrite(&zchan->dtmfdbg.buffer[zchan->dtmfdbg.windex], 1, towrite, zchan->dtmfdbg.file);
if (rc != towrite) {
zap_log_chan(zchan, ZAP_LOG_ERROR, "only wrote %d out of %d bytes in DTMF debug buffer\n", rc, towrite);
}
}
if (zchan->dtmfdbg.windex) {
towrite = zchan->dtmfdbg.windex;
rc = fwrite(&zchan->dtmfdbg.buffer[0], 1, towrite, zchan->dtmfdbg.file);
if (rc != towrite) {
zap_log_chan(zchan, ZAP_LOG_ERROR, "only wrote %d out of %d bytes in DTMF debug buffer\n", rc, towrite);
}
}
zchan->dtmfdbg.windex = 0;
zchan->dtmfdbg.wrapped = 0;
}
} else {
zchan->dtmfdbg.closetimeout = DTMF_DEBUG_TIMEOUT;
}
zap_mutex_unlock(zchan->dtmfdbg.mutex);
#endif
if (zchan->pre_buffer) {
zap_buffer_zero(zchan->pre_buffer);
}
zap_mutex_lock(zchan->mutex);
inuse = zap_buffer_inuse(zchan->digit_buffer);
len = strlen(dtmf);
if (len + inuse > zap_buffer_len(zchan->digit_buffer)) {
zap_buffer_toss(zchan->digit_buffer, strlen(dtmf));
}
if (zchan->span->dtmf_hangup_len) {
for (p = dtmf; zap_is_dtmf(*p); p++) {
memmove (zchan->dtmf_hangup_buf, zchan->dtmf_hangup_buf + 1, zchan->span->dtmf_hangup_len - 1);
zchan->dtmf_hangup_buf[zchan->span->dtmf_hangup_len - 1] = *p;
if (!strcmp(zchan->dtmf_hangup_buf, zchan->span->dtmf_hangup)) {
zap_log(ZAP_LOG_DEBUG, "DTMF hangup detected.\n");
zap_set_state_locked(zchan, ZAP_CHANNEL_STATE_HANGUP);
break;
}
}
}
p = dtmf;
while (wr < len && p) {
if (zap_is_dtmf(*p)) {
wr++;
} else {
break;
}
p++;
}
status = zap_buffer_write(zchan->digit_buffer, dtmf, wr) ? ZAP_SUCCESS : ZAP_FAIL;
zap_mutex_unlock(zchan->mutex);
return status;
}
static zap_status_t handle_dtmf(zap_channel_t *zchan, zap_size_t datalen)
{
zap_buffer_t *buffer = NULL;
zap_size_t dblen = 0;
int wrote = 0;
if (zchan->gen_dtmf_buffer && (dblen = zap_buffer_inuse(zchan->gen_dtmf_buffer))) {
char digits[128] = "";
char *cur;
int x = 0;
if (dblen > sizeof(digits) - 1) {
dblen = sizeof(digits) - 1;
}
if (zap_buffer_read(zchan->gen_dtmf_buffer, digits, dblen) && !zap_strlen_zero_buf(digits)) {
zap_log(ZAP_LOG_DEBUG, "%d:%d GENERATE DTMF [%s]\n", zchan->span_id, zchan->chan_id, digits);
cur = digits;
if (*cur == 'F') {
zap_channel_command(zchan, ZAP_COMMAND_FLASH, NULL);
cur++;
}
for (; *cur; cur++) {
if ((wrote = teletone_mux_tones(&zchan->tone_session, &zchan->tone_session.TONES[(int)*cur]))) {
zap_buffer_write(zchan->dtmf_buffer, zchan->tone_session.buffer, wrote * 2);
x++;
} else {
zap_log(ZAP_LOG_ERROR, "%d:%d Problem Adding DTMF SEQ [%s]\n", zchan->span_id, zchan->chan_id, digits);
return ZAP_FAIL;
}
}
if (x) {
zchan->skip_read_frames = (wrote / (zchan->effective_interval * 8)) + 4;
}
}
}
if (!zchan->buffer_delay || --zchan->buffer_delay == 0) {
if (zchan->dtmf_buffer && (dblen = zap_buffer_inuse(zchan->dtmf_buffer))) {
buffer = zchan->dtmf_buffer;
} else if (zchan->fsk_buffer && (dblen = zap_buffer_inuse(zchan->fsk_buffer))) {
buffer = zchan->fsk_buffer;
}
}
if (buffer) {
zap_size_t dlen = datalen;
uint8_t auxbuf[1024];
zap_size_t len, br, max = sizeof(auxbuf);
if (zchan->native_codec != ZAP_CODEC_SLIN) {
dlen *= 2;
}
len = dblen > dlen ? dlen : dblen;
br = zap_buffer_read(buffer, auxbuf, len);
if (br < dlen) {
memset(auxbuf + br, 0, dlen - br);
}
if (zchan->native_codec != ZAP_CODEC_SLIN) {
if (zchan->native_codec == ZAP_CODEC_ULAW) {
zio_slin2ulaw(auxbuf, max, &dlen);
} else if (zchan->native_codec == ZAP_CODEC_ALAW) {
zio_slin2alaw(auxbuf, max, &dlen);
}
}
return zchan->zio->write(zchan, auxbuf, &dlen);
}
return ZAP_SUCCESS;
}
OZ_DECLARE(void) zap_generate_sln_silence(int16_t *data, uint32_t samples, uint32_t divisor)
{
int16_t x;
uint32_t i;
int sum_rnd = 0;
int16_t rnd2 = (int16_t) zap_current_time_in_ms() * (int16_t) (intptr_t) data;
assert(divisor);
for (i = 0; i < samples; i++, sum_rnd = 0) {
for (x = 0; x < 6; x++) {
rnd2 = rnd2 * 31821U + 13849U;
sum_rnd += rnd2 ;
}
//switch_normalize_to_16bit(sum_rnd);
*data = (int16_t) ((int16_t) sum_rnd / (int) divisor);
data++;
}
}
OZ_DECLARE(zap_status_t) zap_channel_read(zap_channel_t *zchan, void *data, zap_size_t *datalen)
{
zap_status_t status = ZAP_FAIL;
zio_codec_t codec_func = NULL;
zap_size_t max = *datalen;
unsigned i = 0;
assert(zchan != NULL);
assert(zchan->zio != NULL);
if (!zap_test_flag(zchan, ZAP_CHANNEL_OPEN)) {
snprintf(zchan->last_error, sizeof(zchan->last_error), "channel not open");
return ZAP_FAIL;
}
if (!zchan->zio->read) {
snprintf(zchan->last_error, sizeof(zchan->last_error), "method not implemented");
return ZAP_FAIL;
}
status = zchan->zio->read(zchan, data, datalen);
if (zchan->fds[0] > -1) {
int dlen = (int) *datalen;
if (write(zchan->fds[0], data, dlen) != dlen) {
snprintf(zchan->last_error, sizeof(zchan->last_error), "file write error!");
return ZAP_FAIL;
}
}
#ifdef ZAP_DEBUG_DTMF
if (status == ZAP_SUCCESS) {
int dlen = (int) *datalen;
int rc = 0;
zap_mutex_lock(zchan->dtmfdbg.mutex);
if (!zchan->dtmfdbg.file) {
/* no file yet, write to our circular buffer */
int windex = zchan->dtmfdbg.windex;
int avail = sizeof(zchan->dtmfdbg.buffer) - windex;
char *dataptr = data;
if (dlen > avail) {
int diff = dlen - avail;
/* write only what we can and the rest at the beginning of the buffer */
memcpy(&zchan->dtmfdbg.buffer[windex], dataptr, avail);
memcpy(&zchan->dtmfdbg.buffer[0], &dataptr[avail], diff);
windex = diff;
/*zap_log_chan(zchan, ZAP_LOG_DEBUG, "wrapping around dtmf read buffer up to index %d\n\n", windex);*/
zchan->dtmfdbg.wrapped = 1;
} else {
memcpy(&zchan->dtmfdbg.buffer[windex], dataptr, dlen);
windex += dlen;
}
if (windex == sizeof(zchan->dtmfdbg.buffer)) {
/*zap_log_chan_msg(zchan, ZAP_LOG_DEBUG, "wrapping around dtmf read buffer\n");*/
windex = 0;
zchan->dtmfdbg.wrapped = 1;
}
zchan->dtmfdbg.windex = windex;
} else {
rc = fwrite(data, 1, dlen, zchan->dtmfdbg.file);
if (rc != dlen) {
zap_log(ZAP_LOG_WARNING, "DTMF debugger wrote only %d out of %d bytes: %s\n", rc, datalen, strerror(errno));
}
zchan->dtmfdbg.closetimeout--;
if (!zchan->dtmfdbg.closetimeout) {
close_dtmf_debug(zchan);
}
}
zap_mutex_unlock(zchan->dtmfdbg.mutex);
}
#endif
if (status == ZAP_SUCCESS) {
if (zap_test_flag(zchan, ZAP_CHANNEL_USE_RX_GAIN)
&& (zchan->native_codec == ZAP_CODEC_ALAW || zchan->native_codec == ZAP_CODEC_ULAW)) {
unsigned char *rdata = data;
for (i = 0; i < *datalen; i++) {
rdata[i] = zchan->rxgain_table[rdata[i]];
}
}
handle_dtmf(zchan, *datalen);
}
if (status == ZAP_SUCCESS && zap_test_flag(zchan, ZAP_CHANNEL_TRANSCODE) && zchan->effective_codec != zchan->native_codec) {
if (zchan->native_codec == ZAP_CODEC_ULAW && zchan->effective_codec == ZAP_CODEC_SLIN) {
codec_func = zio_ulaw2slin;
} else if (zchan->native_codec == ZAP_CODEC_ULAW && zchan->effective_codec == ZAP_CODEC_ALAW) {
codec_func = zio_ulaw2alaw;
} else if (zchan->native_codec == ZAP_CODEC_ALAW && zchan->effective_codec == ZAP_CODEC_SLIN) {
codec_func = zio_alaw2slin;
} else if (zchan->native_codec == ZAP_CODEC_ALAW && zchan->effective_codec == ZAP_CODEC_ULAW) {
codec_func = zio_alaw2ulaw;
}
if (codec_func) {
status = codec_func(data, max, datalen);
} else {
snprintf(zchan->last_error, sizeof(zchan->last_error), "codec error!");
status = ZAP_FAIL;
}
}
if (zap_test_flag(zchan, ZAP_CHANNEL_DTMF_DETECT) || zap_test_flag(zchan, ZAP_CHANNEL_PROGRESS_DETECT) ||
zap_test_flag(zchan, ZAP_CHANNEL_CALLERID_DETECT)) {
uint8_t sln_buf[1024] = {0};
int16_t *sln;
zap_size_t slen = 0;
char digit_str[80] = "";
if (zchan->effective_codec == ZAP_CODEC_SLIN) {
sln = data;
slen = *datalen / 2;
} else {
zap_size_t len = *datalen;
uint32_t i;
uint8_t *lp = data;
slen = sizeof(sln_buf) / 2;
if (len > slen) {
len = slen;
}
sln = (int16_t *) sln_buf;
for(i = 0; i < len; i++) {
if (zchan->effective_codec == ZAP_CODEC_ULAW) {
*sln++ = ulaw_to_linear(*lp++);
} else if (zchan->effective_codec == ZAP_CODEC_ALAW) {
*sln++ = alaw_to_linear(*lp++);
} else {
snprintf(zchan->last_error, sizeof(zchan->last_error), "codec error!");
return ZAP_FAIL;
}
}
sln = (int16_t *) sln_buf;
slen = len;
}
if (zap_test_flag(zchan, ZAP_CHANNEL_CALLERID_DETECT)) {
if (zap_fsk_demod_feed(&zchan->fsk, sln, slen) != ZAP_SUCCESS) {
zap_size_t type, mlen;
char str[128], *sp;
while(zap_fsk_data_parse(&zchan->fsk, &type, &sp, &mlen) == ZAP_SUCCESS) {
*(str+mlen) = '\0';
zap_copy_string(str, sp, ++mlen);
zap_clean_string(str);
zap_log(ZAP_LOG_DEBUG, "FSK: TYPE %s LEN %d VAL [%s]\n", zap_mdmf_type2str(type), mlen-1, str);
switch(type) {
case MDMF_DDN:
case MDMF_PHONE_NUM:
{
if (mlen > sizeof(zchan->caller_data.ani)) {
mlen = sizeof(zchan->caller_data.ani);
}
zap_set_string(zchan->caller_data.ani.digits, str);
zap_set_string(zchan->caller_data.cid_num.digits, zchan->caller_data.ani.digits);
}
break;
case MDMF_NO_NUM:
{
zap_set_string(zchan->caller_data.ani.digits, *str == 'P' ? "private" : "unknown");
zap_set_string(zchan->caller_data.cid_name, zchan->caller_data.ani.digits);
}
break;
case MDMF_PHONE_NAME:
{
if (mlen > sizeof(zchan->caller_data.cid_name)) {
mlen = sizeof(zchan->caller_data.cid_name);
}
zap_set_string(zchan->caller_data.cid_name, str);
}
break;
case MDMF_NO_NAME:
{
zap_set_string(zchan->caller_data.cid_name, *str == 'P' ? "private" : "unknown");
}
case MDMF_DATETIME:
{
if (mlen > sizeof(zchan->caller_data.cid_date)) {
mlen = sizeof(zchan->caller_data.cid_date);
}
zap_set_string(zchan->caller_data.cid_date, str);
}
break;
}
}
zap_channel_command(zchan, ZAP_COMMAND_DISABLE_CALLERID_DETECT, NULL);
}
}
if (zap_test_flag(zchan, ZAP_CHANNEL_PROGRESS_DETECT) && !zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_PROGRESS)) {
uint32_t i;
for (i = 1; i < ZAP_TONEMAP_INVALID; i++) {
if (zchan->span->tone_finder[i].tone_count) {
if (zchan->needed_tones[i] && teletone_multi_tone_detect(&zchan->span->tone_finder[i], sln, (int)slen)) {
if (++zchan->detected_tones[i]) {
zchan->needed_tones[i] = 0;
zchan->detected_tones[0]++;
}
}
}
}
}
if (zap_test_flag(zchan, ZAP_CHANNEL_DTMF_DETECT) && !zap_channel_test_feature(zchan, ZAP_CHANNEL_FEATURE_DTMF_DETECT)) {
teletone_dtmf_detect(&zchan->dtmf_detect, sln, (int)slen);
teletone_dtmf_get(&zchan->dtmf_detect, digit_str, sizeof(digit_str));
if(*digit_str) {
zio_event_cb_t event_callback = NULL;
if (zchan->state == ZAP_CHANNEL_STATE_CALLWAITING && (*digit_str == 'D' || *digit_str == 'A')) {
zchan->detected_tones[ZAP_TONEMAP_CALLWAITING_ACK]++;
} else {
zap_channel_queue_dtmf(zchan, digit_str);
if (zchan->span->event_callback) {
event_callback = zchan->span->event_callback;
} else if (zchan->event_callback) {
event_callback = zchan->event_callback;
}
if (event_callback) {
zchan->event_header.channel = zchan;
zchan->event_header.e_type = ZAP_EVENT_DTMF;
zchan->event_header.data = digit_str;
event_callback(zchan, &zchan->event_header);
zchan->event_header.e_type = ZAP_EVENT_NONE;
zchan->event_header.data = NULL;
}
if (zap_test_flag(zchan, ZAP_CHANNEL_SUPRESS_DTMF)) {
zchan->skip_read_frames = 20;
}
}
}
}
}
if (zchan->skip_read_frames > 0 || zap_test_flag(zchan, ZAP_CHANNEL_MUTE)) {
zap_mutex_lock(zchan->pre_buffer_mutex);
if (zchan->pre_buffer && zap_buffer_inuse(zchan->pre_buffer)) {
zap_buffer_zero(zchan->pre_buffer);
}
zap_mutex_unlock(zchan->pre_buffer_mutex);
memset(data, 255, *datalen);
if (zchan->skip_read_frames > 0) {
zchan->skip_read_frames--;
}
} else {
zap_mutex_lock(zchan->pre_buffer_mutex);
if (zchan->pre_buffer_size && zchan->pre_buffer) {
zap_buffer_write(zchan->pre_buffer, data, *datalen);
if (zap_buffer_inuse(zchan->pre_buffer) >= zchan->pre_buffer_size) {
zap_buffer_read(zchan->pre_buffer, data, *datalen);
} else {
memset(data, 255, *datalen);
}
}
zap_mutex_unlock(zchan->pre_buffer_mutex);
}
return status;
}
OZ_DECLARE(zap_status_t) zap_channel_write(zap_channel_t *zchan, void *data, zap_size_t datasize, zap_size_t *datalen)
{
zap_status_t status = ZAP_FAIL;
zio_codec_t codec_func = NULL;
zap_size_t max = datasize;
unsigned i = 0;
assert(zchan != NULL);
assert(zchan->zio != NULL);
if (!zchan->buffer_delay &&
((zchan->dtmf_buffer && zap_buffer_inuse(zchan->dtmf_buffer)) ||
(zchan->fsk_buffer && zap_buffer_inuse(zchan->fsk_buffer)))) {
/* read size writing DTMF ATM */
return ZAP_SUCCESS;
}
if (!zap_test_flag(zchan, ZAP_CHANNEL_OPEN)) {
snprintf(zchan->last_error, sizeof(zchan->last_error), "channel not open");
return ZAP_FAIL;
}
if (!zchan->zio->write) {
snprintf(zchan->last_error, sizeof(zchan->last_error), "method not implemented");
return ZAP_FAIL;
}
if (zap_test_flag(zchan, ZAP_CHANNEL_TRANSCODE) && zchan->effective_codec != zchan->native_codec) {
if (zchan->native_codec == ZAP_CODEC_ULAW && zchan->effective_codec == ZAP_CODEC_SLIN) {
codec_func = zio_slin2ulaw;
} else if (zchan->native_codec == ZAP_CODEC_ULAW && zchan->effective_codec == ZAP_CODEC_ALAW) {
codec_func = zio_alaw2ulaw;
} else if (zchan->native_codec == ZAP_CODEC_ALAW && zchan->effective_codec == ZAP_CODEC_SLIN) {
codec_func = zio_slin2alaw;
} else if (zchan->native_codec == ZAP_CODEC_ALAW && zchan->effective_codec == ZAP_CODEC_ULAW) {
codec_func = zio_ulaw2alaw;
}
if (codec_func) {
status = codec_func(data, max, datalen);
} else {
snprintf(zchan->last_error, sizeof(zchan->last_error), "codec error!");
status = ZAP_FAIL;
}
}
if (zchan->fds[1] > -1) {
int dlen = (int) *datalen;
if ((write(zchan->fds[1], data, dlen)) != dlen) {
snprintf(zchan->last_error, sizeof(zchan->last_error), "file write error!");
return ZAP_FAIL;
}
}
if (zap_test_flag(zchan, ZAP_CHANNEL_USE_TX_GAIN)
&& (zchan->native_codec == ZAP_CODEC_ALAW || zchan->native_codec == ZAP_CODEC_ULAW)) {
unsigned char *wdata = data;
for (i = 0; i < *datalen; i++) {
wdata[i] = zchan->txgain_table[wdata[i]];
}
}
status = zchan->zio->write(zchan, data, datalen);
return status;
}
OZ_DECLARE(zap_status_t) zap_channel_clear_vars(zap_channel_t *zchan)
{
if(zchan->variable_hash) {
hashtable_destroy(zchan->variable_hash);
}
zchan->variable_hash = create_hashtable(16, zap_hash_hashfromstring, zap_hash_equalkeys);
if(!zchan->variable_hash)
return ZAP_FAIL;
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_channel_add_var(zap_channel_t *zchan, const char *var_name, const char *value)
{
char *t_name = 0, *t_val = 0;
if(!zchan->variable_hash || !var_name || !value)
{
return ZAP_FAIL;
}
t_name = strdup(var_name);
t_val = strdup(value);
if(hashtable_insert(zchan->variable_hash, t_name, t_val, HASHTABLE_FLAG_FREE_KEY | HASHTABLE_FLAG_FREE_VALUE)) {
return ZAP_SUCCESS;
}
return ZAP_FAIL;
}
OZ_DECLARE(const char *) zap_channel_get_var(zap_channel_t *zchan, const char *var_name)
{
if(!zchan->variable_hash || !var_name)
{
return NULL;
}
return (const char *) hashtable_search(zchan->variable_hash, (void *)var_name);
}
static struct {
zap_io_interface_t *pika_interface;
} interfaces;
OZ_DECLARE(char *) zap_api_execute(const char *type, const char *cmd)
{
zap_io_interface_t *zio = NULL;
char *dup = NULL, *p;
char *rval = NULL;
if (type && !cmd) {
dup = strdup(type);
if ((p = strchr(dup, ' '))) {
*p++ = '\0';
cmd = p;
}
type = dup;
}
zap_mutex_lock(globals.mutex);
if (!(zio = (zap_io_interface_t *) hashtable_search(globals.interface_hash, (void *)type))) {
zap_load_module_assume(type);
if ((zio = (zap_io_interface_t *) hashtable_search(globals.interface_hash, (void *)type))) {
zap_log(ZAP_LOG_INFO, "auto-loaded '%s'\n", type);
}
}
zap_mutex_unlock(globals.mutex);
if (zio && zio->api) {
zap_stream_handle_t stream = { 0 };
zap_status_t status;
ZAP_STANDARD_STREAM(stream);
status = zio->api(&stream, cmd);
if (status != ZAP_SUCCESS) {
zap_safe_free(stream.data);
} else {
rval = (char *) stream.data;
}
}
zap_safe_free(dup);
return rval;
}
static void zap_set_channels_gains(zap_span_t *span, int currindex, float rxgain, float txgain)
{
unsigned chan_index = 0;
if (!span->chan_count) {
return;
}
for (chan_index = currindex+1; chan_index <= span->chan_count; chan_index++) {
if (!ZAP_IS_VOICE_CHANNEL(span->channels[chan_index])) {
continue;
}
zap_channel_command(span->channels[chan_index], ZAP_COMMAND_SET_RX_GAIN, &rxgain);
zap_channel_command(span->channels[chan_index], ZAP_COMMAND_SET_TX_GAIN, &txgain);
}
}
static zap_status_t load_config(void)
{
char cfg_name[] = "openzap.conf";
zap_config_t cfg;
char *var, *val;
int catno = -1;
zap_span_t *span = NULL;
unsigned configured = 0, d = 0;
char name[80] = "";
char number[25] = "";
zap_io_interface_t *zio = NULL;
zap_analog_start_type_t tmp;
float rxgain = 0.0;
float txgain = 0.0;
int chanindex = 0;
if (!zap_config_open_file(&cfg, cfg_name)) {
return ZAP_FAIL;
}
while (zap_config_next_pair(&cfg, &var, &val)) {
if (*cfg.category == '#') {
if (cfg.catno != catno) {
zap_log(ZAP_LOG_DEBUG, "Skipping %s\n", cfg.category);
catno = cfg.catno;
}
} else if (!strncasecmp(cfg.category, "span", 4)) {
if (cfg.catno != catno) {
char *type = cfg.category + 4;
char *name;
if (*type == ' ') {
type++;
}
zap_log(ZAP_LOG_DEBUG, "found config for span\n");
catno = cfg.catno;
if (zap_strlen_zero(type)) {
zap_log(ZAP_LOG_CRIT, "failure creating span, no type specified.\n");
span = NULL;
continue;
}
if ((name = strchr(type, ' '))) {
*name++ = '\0';
}
zap_mutex_lock(globals.mutex);
if (!(zio = (zap_io_interface_t *) hashtable_search(globals.interface_hash, type))) {
zap_load_module_assume(type);
if ((zio = (zap_io_interface_t *) hashtable_search(globals.interface_hash, type))) {
zap_log(ZAP_LOG_INFO, "auto-loaded '%s'\n", type);
}
}
zap_mutex_unlock(globals.mutex);
if (!zio) {
zap_log(ZAP_LOG_CRIT, "failure creating span, no such type '%s'\n", type);
span = NULL;
continue;
}
if (!zio->configure_span) {
zap_log(ZAP_LOG_CRIT, "failure creating span, no configure_span method for '%s'\n", type);
span = NULL;
continue;
}
if (zap_span_create(zio, &span, name) == ZAP_SUCCESS) {
span->type = strdup(type);
d = 0;
zap_log(ZAP_LOG_DEBUG, "created span %d (%s) of type %s\n", span->span_id, span->name, type);
} else {
zap_log(ZAP_LOG_CRIT, "failure creating span of type %s\n", type);
span = NULL;
continue;
}
}
if (!span) {
continue;
}
zap_log(ZAP_LOG_DEBUG, "span %d [%s]=[%s]\n", span->span_id, var, val);
if (!strcasecmp(var, "trunk_type")) {
span->trunk_type = zap_str2zap_trunk_type(val);
zap_log(ZAP_LOG_DEBUG, "setting trunk type to '%s'\n", zap_trunk_type2str(span->trunk_type));
} else if (!strcasecmp(var, "name")) {
if (!strcasecmp(val, "undef")) {
*name = '\0';
} else {
zap_copy_string(name, val, sizeof(name));
}
} else if (!strcasecmp(var, "number")) {
if (!strcasecmp(val, "undef")) {
*number = '\0';
} else {
zap_copy_string(number, val, sizeof(number));
}
} else if (!strcasecmp(var, "analog-start-type")) {
if (span->trunk_type == ZAP_TRUNK_FXS || span->trunk_type == ZAP_TRUNK_FXO || span->trunk_type == ZAP_TRUNK_EM) {
if ((tmp = zap_str2zap_analog_start_type(val)) != ZAP_ANALOG_START_NA) {
span->start_type = tmp;
zap_log(ZAP_LOG_DEBUG, "changing start type to '%s'\n", zap_analog_start_type2str(span->start_type));
}
} else {
zap_log(ZAP_LOG_ERROR, "This option is only valid on analog trunks!\n");
}
} else if (!strcasecmp(var, "fxo-channel")) {
if (span->trunk_type == ZAP_TRUNK_NONE) {
span->trunk_type = ZAP_TRUNK_FXO;
zap_log(ZAP_LOG_DEBUG, "setting trunk type to '%s' start(%s)\n", zap_trunk_type2str(span->trunk_type),
zap_analog_start_type2str(span->start_type));
}
if (span->trunk_type == ZAP_TRUNK_FXO) {
chanindex = span->chan_count;
configured += zio->configure_span(span, val, ZAP_CHAN_TYPE_FXO, name, number);
zap_set_channels_gains(span, chanindex, rxgain, txgain);
} else {
zap_log(ZAP_LOG_WARNING, "Cannot add FXO channels to an FXS trunk!\n");
}
} else if (!strcasecmp(var, "fxs-channel")) {
if (span->trunk_type == ZAP_TRUNK_NONE) {
span->trunk_type = ZAP_TRUNK_FXS;
zap_log(ZAP_LOG_DEBUG, "setting trunk type to '%s' start(%s)\n", zap_trunk_type2str(span->trunk_type),
zap_analog_start_type2str(span->start_type));
}
if (span->trunk_type == ZAP_TRUNK_FXS) {
chanindex = span->chan_count;
configured += zio->configure_span(span, val, ZAP_CHAN_TYPE_FXS, name, number);
zap_set_channels_gains(span, chanindex, rxgain, txgain);
} else {
zap_log(ZAP_LOG_WARNING, "Cannot add FXS channels to an FXO trunk!\n");
}
} else if (!strcasecmp(var, "em-channel")) {
if (span->trunk_type == ZAP_TRUNK_NONE) {
span->trunk_type = ZAP_TRUNK_EM;
zap_log(ZAP_LOG_DEBUG, "setting trunk type to '%s' start(%s)\n", zap_trunk_type2str(span->trunk_type),
zap_analog_start_type2str(span->start_type));
}
if (span->trunk_type == ZAP_TRUNK_EM) {
chanindex = span->chan_count;
configured += zio->configure_span(span, val, ZAP_CHAN_TYPE_EM, name, number);
zap_set_channels_gains(span, chanindex, rxgain, txgain);
} else {
zap_log(ZAP_LOG_WARNING, "Cannot add EM channels to a non-EM trunk!\n");
}
} else if (!strcasecmp(var, "b-channel")) {
chanindex = span->chan_count;
configured += zio->configure_span(span, val, ZAP_CHAN_TYPE_B, name, number);
zap_set_channels_gains(span, chanindex, rxgain, txgain);
} else if (!strcasecmp(var, "d-channel")) {
if (d) {
zap_log(ZAP_LOG_WARNING, "ignoring extra d-channel\n");
} else {
zap_chan_type_t qtype;
if (!strncasecmp(val, "lapd:", 5)) {
qtype = ZAP_CHAN_TYPE_DQ931;
val += 5;
} else {
qtype = ZAP_CHAN_TYPE_DQ921;
}
configured += zio->configure_span(span, val, qtype, name, number);
d++;
}
} else if (!strcasecmp(var, "cas-channel")) {
chanindex = span->chan_count;
configured += zio->configure_span(span, val, ZAP_CHAN_TYPE_CAS, name, number);
zap_set_channels_gains(span, chanindex, rxgain, txgain);
} else if (!strcasecmp(var, "dtmf_hangup")) {
span->dtmf_hangup = strdup(val);
span->dtmf_hangup_len = strlen(val);
} else if (!strcasecmp(var, "txgain")) {
if (sscanf(val, "%f", &txgain) != 1) {
zap_log(ZAP_LOG_ERROR, "invalid txgain: '%s'\n", val);
}
} else if (!strcasecmp(var, "rxgain")) {
if (sscanf(val, "%f", &rxgain) != 1) {
zap_log(ZAP_LOG_ERROR, "invalid rxgain: '%s'\n", val);
}
} else {
zap_log(ZAP_LOG_ERROR, "unknown span variable '%s'\n", var);
}
} else if (!strncasecmp(cfg.category, "general", 7)) {
if (!strncasecmp(var, "cpu_monitoring_interval", 24)) {
if (atoi(val) > 0) {
globals.cpu_monitor.interval = atoi(val);
} else {
zap_log(ZAP_LOG_ERROR, "Invalid cpu monitoring interval %s\n", val);
}
} else if (!strncasecmp(var, "cpu_set_alarm_threshold", 22)) {
if (atoi(val) > 0 && atoi(val) < 100) {
globals.cpu_monitor.set_alarm_threshold = (uint8_t)atoi(val);
} else {
zap_log(ZAP_LOG_ERROR, "Invalid cpu alarm set threshold %s\n", val);
}
} else if (!strncasecmp(var, "cpu_reset_alarm_threshold", 22)) {
if (atoi(val) > 0 && atoi(val) < 100) {
globals.cpu_monitor.reset_alarm_threshold = (uint8_t)atoi(val);
if (globals.cpu_monitor.reset_alarm_threshold > globals.cpu_monitor.set_alarm_threshold) {
globals.cpu_monitor.reset_alarm_threshold = globals.cpu_monitor.set_alarm_threshold-10;
zap_log(ZAP_LOG_ERROR, "Cpu alarm reset threshold must be lower than set threshold, set threshold to %d\n", globals.cpu_monitor.reset_alarm_threshold);
}
} else {
zap_log(ZAP_LOG_ERROR, "Invalid cpu alarm reset threshold %s\n", val);
}
} else if (!strncasecmp(var, "cpu_alarm_action", 16)) {
char* p = val;
do {
if (!strncasecmp(p, "reject", 6)) {
globals.cpu_monitor.alarm_action_flags |= ZAP_CPU_ALARM_ACTION_REJECT;
} else if (!strncasecmp(p, "warn", 4)) {
globals.cpu_monitor.alarm_action_flags |= ZAP_CPU_ALARM_ACTION_WARN;
}
p = strchr(p, ',');
if (p) {
while(++p) if (*p != 0x20) break;
}
} while (p);
}
} else {
zap_log(ZAP_LOG_ERROR, "unknown param [%s] '%s' / '%s'\n", cfg.category, var, val);
}
}
zap_config_close_file(&cfg);
zap_log(ZAP_LOG_INFO, "Configured %u channel(s)\n", configured);
return configured ? ZAP_SUCCESS : ZAP_FAIL;
}
static zap_status_t process_module_config(zap_io_interface_t *zio)
{
zap_config_t cfg;
char *var, *val;
char filename[256] = "";
assert(zio != NULL);
snprintf(filename, sizeof(filename), "%s.conf", zio->name);
if (!zio->configure) {
zap_log(ZAP_LOG_DEBUG, "Module %s does not support configuration.\n", zio->name);
return ZAP_FAIL;
}
if (!zap_config_open_file(&cfg, filename)) {
zap_log(ZAP_LOG_ERROR, "Cannot open %s\n", filename);
return ZAP_FAIL;
}
while (zap_config_next_pair(&cfg, &var, &val)) {
zio->configure(cfg.category, var, val, cfg.lineno);
}
zap_config_close_file(&cfg);
return ZAP_SUCCESS;
}
OZ_DECLARE(int) zap_load_module(const char *name)
{
zap_dso_lib_t lib;
int count = 0, x = 0;
char path[128] = "";
char *err;
zap_module_t *mod;
#ifdef WIN32
const char *ext = ".dll";
//const char *EXT = ".DLL";
#define ZAP_MOD_DIR "." //todo
#elif defined (MACOSX) || defined (DARWIN)
const char *ext = ".dylib";
//const char *EXT = ".DYLIB";
#else
const char *ext = ".so";
//const char *EXT = ".SO";
#endif
if (*name == *ZAP_PATH_SEPARATOR) {
snprintf(path, sizeof(path), "%s%s", name, ext);
} else {
snprintf(path, sizeof(path), "%s%s%s%s", ZAP_MOD_DIR, ZAP_PATH_SEPARATOR, name, ext);
}
if (!(lib = zap_dso_open(path, &err))) {
zap_log(ZAP_LOG_ERROR, "Error loading %s [%s]\n", path, err);
zap_safe_free(err);
return 0;
}
if (!(mod = (zap_module_t *) zap_dso_func_sym(lib, "zap_module", &err))) {
zap_log(ZAP_LOG_ERROR, "Error loading %s [%s]\n", path, err);
zap_safe_free(err);
return 0;
}
if (mod->io_load) {
zap_io_interface_t *interface1 = NULL; /* name conflict w/windows here */
if (mod->io_load(&interface1) != ZAP_SUCCESS || !interface1 || !interface1->name) {
zap_log(ZAP_LOG_ERROR, "Error loading %s\n", path);
} else {
zap_log(ZAP_LOG_INFO, "Loading IO from %s [%s]\n", path, interface1->name);
zap_mutex_lock(globals.mutex);
if (hashtable_search(globals.interface_hash, (void *)interface1->name)) {
zap_log(ZAP_LOG_ERROR, "Interface %s already loaded!\n", interface1->name);
} else {
hashtable_insert(globals.interface_hash, (void *)interface1->name, interface1, HASHTABLE_FLAG_NONE);
process_module_config(interface1);
x++;
}
zap_mutex_unlock(globals.mutex);
}
}
if (mod->sig_load) {
if (mod->sig_load() != ZAP_SUCCESS) {
zap_log(ZAP_LOG_ERROR, "Error loading %s\n", path);
} else {
zap_log(ZAP_LOG_INFO, "Loading SIG from %s\n", path);
x++;
}
}
if (x) {
char *p;
mod->lib = lib;
zap_set_string(mod->path, path);
if (mod->name[0] == '\0') {
if (!(p = strrchr(path, *ZAP_PATH_SEPARATOR))) {
p = path;
}
zap_set_string(mod->name, p);
}
zap_mutex_lock(globals.mutex);
if (hashtable_search(globals.module_hash, (void *)mod->name)) {
zap_log(ZAP_LOG_ERROR, "Module %s already loaded!\n", mod->name);
zap_dso_destroy(&lib);
} else {
hashtable_insert(globals.module_hash, (void *)mod->name, mod, HASHTABLE_FLAG_NONE);
count++;
}
zap_mutex_unlock(globals.mutex);
} else {
zap_log(ZAP_LOG_ERROR, "Unloading %s\n", path);
zap_dso_destroy(&lib);
}
return count;
}
OZ_DECLARE(int) zap_load_module_assume(const char *name)
{
char buf[256] = "";
snprintf(buf, sizeof(buf), "ozmod_%s", name);
return zap_load_module(buf);
}
OZ_DECLARE(int) zap_load_modules(void)
{
char cfg_name[] = "modules.conf";
zap_config_t cfg;
char *var, *val;
int count = 0;
if (!zap_config_open_file(&cfg, cfg_name)) {
return ZAP_FAIL;
}
while (zap_config_next_pair(&cfg, &var, &val)) {
if (!strcasecmp(cfg.category, "modules")) {
if (!strcasecmp(var, "load")) {
count += zap_load_module(val);
}
}
}
return count;
}
OZ_DECLARE(zap_status_t) zap_unload_modules(void)
{
zap_hash_iterator_t *i;
zap_dso_lib_t lib;
for (i = hashtable_first(globals.module_hash); i; i = hashtable_next(i)) {
const void *key;
void *val;
hashtable_this(i, &key, NULL, &val);
if (key && val) {
zap_module_t *mod = (zap_module_t *) val;
if (!mod) {
continue;
}
if (mod->io_unload) {
if (mod->io_unload() == ZAP_SUCCESS) {
zap_log(ZAP_LOG_INFO, "Unloading IO %s\n", mod->name);
} else {
zap_log(ZAP_LOG_ERROR, "Error unloading IO %s\n", mod->name);
}
}
if (mod->sig_unload) {
if (mod->sig_unload() == ZAP_SUCCESS) {
zap_log(ZAP_LOG_INFO, "Unloading SIG %s\n", mod->name);
} else {
zap_log(ZAP_LOG_ERROR, "Error unloading SIG %s\n", mod->name);
}
}
zap_log(ZAP_LOG_INFO, "Unloading %s\n", mod->path);
lib = mod->lib;
zap_dso_destroy(&lib);
}
}
return ZAP_SUCCESS;
}
OZ_DECLARE(zap_status_t) zap_configure_span(const char *type, zap_span_t *span, zio_signal_cb_t sig_cb, ...)
{
zap_module_t *mod = (zap_module_t *) hashtable_search(globals.module_hash, (void *)type);
zap_status_t status = ZAP_FAIL;
if (!mod) {
zap_load_module_assume(type);
if ((mod = (zap_module_t *) hashtable_search(globals.module_hash, (void *)type))) {
zap_log(ZAP_LOG_INFO, "auto-loaded '%s'\n", type);
}
}
if (mod && mod->sig_configure) {
va_list ap;
va_start(ap, sig_cb);
status = mod->sig_configure(span, sig_cb, ap);
va_end(ap);
} else {
zap_log(ZAP_LOG_ERROR, "can't find '%s'\n", type);
status = ZAP_FAIL;
}
return status;
}
OZ_DECLARE(zap_status_t) zap_span_start(zap_span_t *span)
{
if (span->start) {
return span->start(span);
}
return ZAP_FAIL;
}
OZ_DECLARE(zap_status_t) zap_span_send_signal(zap_span_t *span, zap_sigmsg_t *sigmsg)
{
zap_status_t status = ZAP_FAIL;
if (span->signal_cb) {
if (sigmsg->channel) {
zap_mutex_lock(sigmsg->channel->mutex);
}
status = span->signal_cb(sigmsg);
if (sigmsg->channel) {
zap_mutex_unlock(sigmsg->channel->mutex);
}
}
return status;
}
OZ_DECLARE(zap_status_t) zap_global_init(void)
{
int modcount;
memset(&globals, 0, sizeof(globals));
time_init();
zap_thread_override_default_stacksize(ZAP_THREAD_STACKSIZE);
memset(&interfaces, 0, sizeof(interfaces));
globals.interface_hash = create_hashtable(16, zap_hash_hashfromstring, zap_hash_equalkeys);
globals.module_hash = create_hashtable(16, zap_hash_hashfromstring, zap_hash_equalkeys);
globals.span_hash = create_hashtable(16, zap_hash_hashfromstring, zap_hash_equalkeys);
modcount = 0;
zap_mutex_create(&globals.mutex);
zap_mutex_create(&globals.span_mutex);
modcount = zap_load_modules();
zap_log(ZAP_LOG_NOTICE, "Modules configured: %d \n", modcount);
globals.cpu_monitor.interval = 1000;
globals.cpu_monitor.alarm_action_flags = ZAP_CPU_ALARM_ACTION_WARN | ZAP_CPU_ALARM_ACTION_REJECT;
globals.cpu_monitor.set_alarm_threshold = 80;
globals.cpu_monitor.reset_alarm_threshold = 70;
if (load_config() != ZAP_SUCCESS) {
zap_log(ZAP_LOG_ERROR, "No modules configured!\n");
return ZAP_FAIL;
}
globals.running = 1;
if (!zap_cpu_monitor_disabled) {
if (zap_cpu_monitor_start() != ZAP_SUCCESS) {
return ZAP_FAIL;
}
}
return ZAP_SUCCESS;
}
OZ_DECLARE(uint32_t) zap_running(void)
{
return globals.running;
}
OZ_DECLARE(zap_status_t) zap_global_destroy(void)
{
unsigned int j;
zap_span_t *sp;
time_end();
globals.running = 0;
zap_cpu_monitor_stop();
zap_span_close_all();
zap_sleep(1000);
zap_mutex_lock(globals.span_mutex);
for (sp = globals.spans; sp;) {
zap_span_t *cur_span = sp;
sp = sp->next;
if (cur_span) {
if (zap_test_flag(cur_span, ZAP_SPAN_CONFIGURED)) {
zap_mutex_lock(cur_span->mutex);
zap_clear_flag(cur_span, ZAP_SPAN_CONFIGURED);
for(j = 1; j <= cur_span->chan_count && cur_span->channels[j]; j++) {
zap_channel_t *cur_chan = cur_span->channels[j];
if (cur_chan) {
if (zap_test_flag(cur_chan, ZAP_CHANNEL_CONFIGURED)) {
zap_channel_destroy(cur_chan);
}
free(cur_chan);
cur_chan = NULL;
}
}
zap_mutex_unlock(cur_span->mutex);
if (cur_span->mutex) {
zap_mutex_destroy(&cur_span->mutex);
}
zap_safe_free(cur_span->signal_data);
zap_span_destroy(cur_span);
}
hashtable_remove(globals.span_hash, (void *)cur_span->name);
zap_safe_free(cur_span->type);
zap_safe_free(cur_span->name);
free(cur_span);
cur_span = NULL;
}
}
globals.spans = NULL;
zap_mutex_unlock(globals.span_mutex);
globals.span_index = 0;
zap_unload_modules();
zap_mutex_lock(globals.mutex);
hashtable_destroy(globals.interface_hash);
hashtable_destroy(globals.module_hash);
hashtable_destroy(globals.span_hash);
zap_mutex_unlock(globals.mutex);
zap_mutex_destroy(&globals.mutex);
zap_mutex_destroy(&globals.span_mutex);
memset(&globals, 0, sizeof(globals));
return ZAP_SUCCESS;
}
OZ_DECLARE(uint32_t) zap_separate_string(char *buf, char delim, char **array, int arraylen)
{
int argc;
char *ptr;
int quot = 0;
char qc = '\'';
int x;
if (!buf || !array || !arraylen) {
return 0;
}
memset(array, 0, arraylen * sizeof(*array));
ptr = buf;
for (argc = 0; *ptr && (argc < arraylen - 1); argc++) {
array[argc] = ptr;
for (; *ptr; ptr++) {
if (*ptr == qc) {
if (quot) {
quot--;
} else {
quot++;
}
} else if ((*ptr == delim) && !quot) {
*ptr++ = '\0';
break;
}
}
}
if (*ptr) {
array[argc++] = ptr;
}
/* strip quotes and leading / trailing spaces */
for (x = 0; x < argc; x++) {
char *p;
while(*(array[x]) == ' ') {
(array[x])++;
}
p = array[x];
while((p = strchr(array[x], qc))) {
memmove(p, p+1, strlen(p));
p++;
}
p = array[x] + (strlen(array[x]) - 1);
while(*p == ' ') {
*p-- = '\0';
}
}
return argc;
}
OZ_DECLARE(void) zap_bitstream_init(zap_bitstream_t *bsp, uint8_t *data, uint32_t datalen, zap_endian_t endian, uint8_t ss)
{
memset(bsp, 0, sizeof(*bsp));
bsp->data = data;
bsp->datalen = datalen;
bsp->endian = endian;
bsp->ss = ss;
if (endian < 0) {
bsp->top = bsp->bit_index = 7;
bsp->bot = 0;
} else {
bsp->top = bsp->bit_index = 0;
bsp->bot = 7;
}
}
OZ_DECLARE(int8_t) zap_bitstream_get_bit(zap_bitstream_t *bsp)
{
int8_t bit = -1;
if (bsp->byte_index >= bsp->datalen) {
goto done;
}
if (bsp->ss) {
if (!bsp->ssv) {
bsp->ssv = 1;
return 0;
} else if (bsp->ssv == 2) {
bsp->byte_index++;
bsp->ssv = 0;
return 1;
}
}
bit = (bsp->data[bsp->byte_index] >> (bsp->bit_index)) & 1;
if (bsp->bit_index == bsp->bot) {
bsp->bit_index = bsp->top;
if (bsp->ss) {
bsp->ssv = 2;
goto done;
}
if (++bsp->byte_index > bsp->datalen) {
bit = -1;
goto done;
}
} else {
bsp->bit_index = bsp->bit_index + bsp->endian;
}
done:
return bit;
}
OZ_DECLARE(void) print_hex_bytes(uint8_t *data, zap_size_t dlen, char *buf, zap_size_t blen)
{
char *bp = buf;
uint8_t *byte = data;
uint32_t i, j = 0;
if (blen < (dlen * 3) + 2) {
return;
}
*bp++ = '[';
j++;
for(i = 0; i < dlen; i++) {
snprintf(bp, blen-j, "%02x ", *byte++);
bp += 3;
j += 3;
}
*--bp = ']';
}
OZ_DECLARE(void) print_bits(uint8_t *b, int bl, char *buf, int blen, zap_endian_t e, uint8_t ss)
{
zap_bitstream_t bs;
int j = 0, c = 0;
int8_t bit;
uint32_t last;
if (blen < (bl * 10) + 2) {
return;
}
zap_bitstream_init(&bs, b, bl, e, ss);
last = bs.byte_index;
while((bit = zap_bitstream_get_bit(&bs)) > -1) {
buf[j++] = bit ? '1' : '0';
if (bs.byte_index != last) {
buf[j++] = ' ';
last = bs.byte_index;
if (++c == 8) {
buf[j++] = '\n';
c = 0;
}
}
}
}
OZ_DECLARE_NONSTD(zap_status_t) zap_console_stream_raw_write(zap_stream_handle_t *handle, uint8_t *data, zap_size_t datalen)
{
zap_size_t need = handle->data_len + datalen;
if (need >= handle->data_size) {
void *new_data;
need += handle->alloc_chunk;
if (!(new_data = realloc(handle->data, need))) {
return ZAP_MEMERR;
}
handle->data = new_data;
handle->data_size = need;
}
memcpy((uint8_t *) (handle->data) + handle->data_len, data, datalen);
handle->data_len += datalen;
handle->end = (uint8_t *) (handle->data) + handle->data_len;
*(uint8_t *)handle->end = '\0';
return ZAP_SUCCESS;
}
OZ_DECLARE(int) zap_vasprintf(char **ret, const char *fmt, va_list ap) /* code from switch_apr.c */
{
#ifdef HAVE_VASPRINTF
return vasprintf(ret, fmt, ap);
#else
char *buf;
int len;
size_t buflen;
va_list ap2;
char *tmp = NULL;
#ifdef _MSC_VER
#if _MSC_VER >= 1500
/* hack for incorrect assumption in msvc header files for code analysis */
__analysis_assume(tmp);
#endif
ap2 = ap;
#else
va_copy(ap2, ap);
#endif
len = vsnprintf(tmp, 0, fmt, ap2);
if (len > 0 && (buf = malloc((buflen = (size_t) (len + 1)))) != NULL) {
len = vsnprintf(buf, buflen, fmt, ap);
*ret = buf;
} else {
*ret = NULL;
len = -1;
}
va_end(ap2);
return len;
#endif
}
OZ_DECLARE_NONSTD(zap_status_t) zap_console_stream_write(zap_stream_handle_t *handle, const char *fmt, ...)
{
va_list ap;
char *buf = handle->data;
char *end = handle->end;
int ret = 0;
char *data = NULL;
if (handle->data_len >= handle->data_size) {
return ZAP_FAIL;
}
va_start(ap, fmt);
ret = zap_vasprintf(&data, fmt, ap);
va_end(ap);
if (data) {
zap_size_t remaining = handle->data_size - handle->data_len;
zap_size_t need = strlen(data) + 1;
if ((remaining < need) && handle->alloc_len) {
zap_size_t new_len;
void *new_data;
new_len = handle->data_size + need + handle->alloc_chunk;
if ((new_data = realloc(handle->data, new_len))) {
handle->data_size = handle->alloc_len = new_len;
handle->data = new_data;
buf = handle->data;
remaining = handle->data_size - handle->data_len;
handle->end = (uint8_t *) (handle->data) + handle->data_len;
end = handle->end;
} else {
zap_log(ZAP_LOG_CRIT, "Memory Error!\n");
free(data);
return ZAP_FAIL;
}
}
if (remaining < need) {
ret = -1;
} else {
ret = 0;
snprintf(end, remaining, "%s", data);
handle->data_len = strlen(buf);
handle->end = (uint8_t *) (handle->data) + handle->data_len;
}
free(data);
}
return ret ? ZAP_FAIL : ZAP_SUCCESS;
}
static void *zap_cpu_monitor_run(zap_thread_t *me, void *obj)
{
#ifndef WIN32
cpu_monitor_t *monitor = (cpu_monitor_t *)obj;
struct zap_cpu_monitor_stats *cpu_stats = zap_new_cpu_monitor();
if (!cpu_stats) {
return NULL;
}
monitor->running = 1;
while(zap_running()) {
double time;
if (zap_cpu_get_system_idle_time(cpu_stats, &time)) {
break;
}
if (monitor->alarm) {
if ((int)time >= (100-monitor->set_alarm_threshold)) {
zap_log(ZAP_LOG_DEBUG, "CPU alarm OFF (idle:%d)\n", (int) time);
monitor->alarm = 0;
}
if (monitor->alarm_action_flags & ZAP_CPU_ALARM_ACTION_WARN) {
zap_log(ZAP_LOG_WARNING, "CPU alarm is ON (cpu usage:%d)\n", (int) (100-time));
}
} else {
if ((int)time <= (100-monitor->reset_alarm_threshold)) {
zap_log(ZAP_LOG_DEBUG, "CPU alarm ON (idle:%d)\n", (int) time);
monitor->alarm = 1;
}
}
zap_interrupt_wait(monitor->interrupt, monitor->interval);
}
zap_delete_cpu_monitor(cpu_stats);
monitor->running = 0;
#else
UNREFERENCED_PARAMETER(me);
UNREFERENCED_PARAMETER(obj);
#endif
return NULL;
}
static zap_status_t zap_cpu_monitor_start(void)
{
if (zap_interrupt_create(&globals.cpu_monitor.interrupt, ZAP_INVALID_SOCKET) != ZAP_SUCCESS) {
zap_log(ZAP_LOG_CRIT, "Failed to create CPU monitor interrupt\n");
return ZAP_FAIL;
}
if (zap_thread_create_detached(zap_cpu_monitor_run, &globals.cpu_monitor) != ZAP_SUCCESS) {
zap_log(ZAP_LOG_CRIT, "Failed to create cpu monitor thread!!\n");
return ZAP_FAIL;
}
return ZAP_SUCCESS;
}
static void zap_cpu_monitor_stop(void)
{
if (!globals.cpu_monitor.interrupt) {
return;
}
if (!globals.cpu_monitor.running) {
return;
}
if (zap_interrupt_signal(globals.cpu_monitor.interrupt) != ZAP_SUCCESS) {
zap_log(ZAP_LOG_CRIT, "Failed to stop CPU monitor\n");
return;
}
while(globals.cpu_monitor.running) {
zap_sleep(10);
}
zap_interrupt_destroy(&globals.cpu_monitor.interrupt);
}
OZ_DECLARE(void) zap_cpu_monitor_disable(void)
{
zap_cpu_monitor_disabled = 1;
}
/* For Emacs:
* Local Variables:
* mode:c
* indent-tabs-mode:t
* tab-width:4
* c-basic-offset:4
* End:
* For VIM:
* vim:set softtabstop=4 shiftwidth=4 tabstop=4:
*/