389 lines
13 KiB
C
389 lines
13 KiB
C
/*
|
|
** SQLite uses this code for testing only. It is not a part of
|
|
** the SQLite library. This file implements two new TCL commands
|
|
** "md5" and "md5file" that compute md5 checksums on arbitrary text
|
|
** and on complete files. These commands are used by the "testfixture"
|
|
** program to help verify the correct operation of the SQLite library.
|
|
**
|
|
** The original use of these TCL commands was to test the ROLLBACK
|
|
** feature of SQLite. First compute the MD5-checksum of the database.
|
|
** Then make some changes but rollback the changes rather than commit
|
|
** them. Compute a second MD5-checksum of the file and verify that the
|
|
** two checksums are the same. Such is the original use of this code.
|
|
** New uses may have been added since this comment was written.
|
|
*/
|
|
/*
|
|
* This code implements the MD5 message-digest algorithm.
|
|
* The algorithm is due to Ron Rivest. This code was
|
|
* written by Colin Plumb in 1993, no copyright is claimed.
|
|
* This code is in the public domain; do with it what you wish.
|
|
*
|
|
* Equivalent code is available from RSA Data Security, Inc.
|
|
* This code has been tested against that, and is equivalent,
|
|
* except that you don't need to include two pages of legalese
|
|
* with every copy.
|
|
*
|
|
* To compute the message digest of a chunk of bytes, declare an
|
|
* MD5Context structure, pass it to MD5Init, call MD5Update as
|
|
* needed on buffers full of bytes, and then call MD5Final, which
|
|
* will fill a supplied 16-byte array with the digest.
|
|
*/
|
|
#include <tcl.h>
|
|
#include <string.h>
|
|
#include "sqlite3.h"
|
|
|
|
/*
|
|
* If compiled on a machine that doesn't have a 32-bit integer,
|
|
* you just set "uint32" to the appropriate datatype for an
|
|
* unsigned 32-bit integer. For example:
|
|
*
|
|
* cc -Duint32='unsigned long' md5.c
|
|
*
|
|
*/
|
|
#ifndef uint32
|
|
# define uint32 unsigned int
|
|
#endif
|
|
|
|
struct Context {
|
|
int isInit;
|
|
uint32 buf[4];
|
|
uint32 bits[2];
|
|
unsigned char in[64];
|
|
};
|
|
typedef struct Context MD5Context;
|
|
|
|
/*
|
|
* Note: this code is harmless on little-endian machines.
|
|
*/
|
|
static void byteReverse (unsigned char *buf, unsigned longs){
|
|
uint32 t;
|
|
do {
|
|
t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 |
|
|
((unsigned)buf[1]<<8 | buf[0]);
|
|
*(uint32 *)buf = t;
|
|
buf += 4;
|
|
} while (--longs);
|
|
}
|
|
/* The four core functions - F1 is optimized somewhat */
|
|
|
|
/* #define F1(x, y, z) (x & y | ~x & z) */
|
|
#define F1(x, y, z) (z ^ (x & (y ^ z)))
|
|
#define F2(x, y, z) F1(z, x, y)
|
|
#define F3(x, y, z) (x ^ y ^ z)
|
|
#define F4(x, y, z) (y ^ (x | ~z))
|
|
|
|
/* This is the central step in the MD5 algorithm. */
|
|
#define MD5STEP(f, w, x, y, z, data, s) \
|
|
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
|
|
|
|
/*
|
|
* The core of the MD5 algorithm, this alters an existing MD5 hash to
|
|
* reflect the addition of 16 longwords of new data. MD5Update blocks
|
|
* the data and converts bytes into longwords for this routine.
|
|
*/
|
|
static void MD5Transform(uint32 buf[4], const uint32 in[16]){
|
|
register uint32 a, b, c, d;
|
|
|
|
a = buf[0];
|
|
b = buf[1];
|
|
c = buf[2];
|
|
d = buf[3];
|
|
|
|
MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
|
|
MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
|
|
MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
|
|
MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
|
|
MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
|
|
MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
|
|
MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
|
|
MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
|
|
MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
|
|
MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
|
|
MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
|
|
MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
|
|
MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
|
|
MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
|
|
MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
|
|
MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
|
|
|
|
MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
|
|
MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
|
|
MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
|
|
MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
|
|
MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
|
|
MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
|
|
MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
|
|
MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
|
|
MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
|
|
MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
|
|
MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
|
|
MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
|
|
MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
|
|
MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
|
|
MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
|
|
MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
|
|
|
|
MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
|
|
MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
|
|
MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
|
|
MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
|
|
MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
|
|
MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
|
|
MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
|
|
MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
|
|
MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
|
|
MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
|
|
MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
|
|
MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
|
|
MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
|
|
MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
|
|
MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
|
|
MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
|
|
|
|
MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
|
|
MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
|
|
MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
|
|
MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
|
|
MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
|
|
MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
|
|
MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
|
|
MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
|
|
MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
|
|
MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
|
|
MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
|
|
MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
|
|
MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
|
|
MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
|
|
MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
|
|
MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
|
|
|
|
buf[0] += a;
|
|
buf[1] += b;
|
|
buf[2] += c;
|
|
buf[3] += d;
|
|
}
|
|
|
|
/*
|
|
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
|
|
* initialization constants.
|
|
*/
|
|
static void MD5Init(MD5Context *ctx){
|
|
ctx->isInit = 1;
|
|
ctx->buf[0] = 0x67452301;
|
|
ctx->buf[1] = 0xefcdab89;
|
|
ctx->buf[2] = 0x98badcfe;
|
|
ctx->buf[3] = 0x10325476;
|
|
ctx->bits[0] = 0;
|
|
ctx->bits[1] = 0;
|
|
}
|
|
|
|
/*
|
|
* Update context to reflect the concatenation of another buffer full
|
|
* of bytes.
|
|
*/
|
|
static
|
|
void MD5Update(MD5Context *pCtx, const unsigned char *buf, unsigned int len){
|
|
struct Context *ctx = (struct Context *)pCtx;
|
|
uint32 t;
|
|
|
|
/* Update bitcount */
|
|
|
|
t = ctx->bits[0];
|
|
if ((ctx->bits[0] = t + ((uint32)len << 3)) < t)
|
|
ctx->bits[1]++; /* Carry from low to high */
|
|
ctx->bits[1] += len >> 29;
|
|
|
|
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
|
|
|
|
/* Handle any leading odd-sized chunks */
|
|
|
|
if ( t ) {
|
|
unsigned char *p = (unsigned char *)ctx->in + t;
|
|
|
|
t = 64-t;
|
|
if (len < t) {
|
|
memcpy(p, buf, len);
|
|
return;
|
|
}
|
|
memcpy(p, buf, t);
|
|
byteReverse(ctx->in, 16);
|
|
MD5Transform(ctx->buf, (uint32 *)ctx->in);
|
|
buf += t;
|
|
len -= t;
|
|
}
|
|
|
|
/* Process data in 64-byte chunks */
|
|
|
|
while (len >= 64) {
|
|
memcpy(ctx->in, buf, 64);
|
|
byteReverse(ctx->in, 16);
|
|
MD5Transform(ctx->buf, (uint32 *)ctx->in);
|
|
buf += 64;
|
|
len -= 64;
|
|
}
|
|
|
|
/* Handle any remaining bytes of data. */
|
|
|
|
memcpy(ctx->in, buf, len);
|
|
}
|
|
|
|
/*
|
|
* Final wrapup - pad to 64-byte boundary with the bit pattern
|
|
* 1 0* (64-bit count of bits processed, MSB-first)
|
|
*/
|
|
static void MD5Final(unsigned char digest[16], MD5Context *pCtx){
|
|
struct Context *ctx = (struct Context *)pCtx;
|
|
unsigned count;
|
|
unsigned char *p;
|
|
|
|
/* Compute number of bytes mod 64 */
|
|
count = (ctx->bits[0] >> 3) & 0x3F;
|
|
|
|
/* Set the first char of padding to 0x80. This is safe since there is
|
|
always at least one byte free */
|
|
p = ctx->in + count;
|
|
*p++ = 0x80;
|
|
|
|
/* Bytes of padding needed to make 64 bytes */
|
|
count = 64 - 1 - count;
|
|
|
|
/* Pad out to 56 mod 64 */
|
|
if (count < 8) {
|
|
/* Two lots of padding: Pad the first block to 64 bytes */
|
|
memset(p, 0, count);
|
|
byteReverse(ctx->in, 16);
|
|
MD5Transform(ctx->buf, (uint32 *)ctx->in);
|
|
|
|
/* Now fill the next block with 56 bytes */
|
|
memset(ctx->in, 0, 56);
|
|
} else {
|
|
/* Pad block to 56 bytes */
|
|
memset(p, 0, count-8);
|
|
}
|
|
byteReverse(ctx->in, 14);
|
|
|
|
/* Append length in bits and transform */
|
|
((uint32 *)ctx->in)[ 14 ] = ctx->bits[0];
|
|
((uint32 *)ctx->in)[ 15 ] = ctx->bits[1];
|
|
|
|
MD5Transform(ctx->buf, (uint32 *)ctx->in);
|
|
byteReverse((unsigned char *)ctx->buf, 4);
|
|
memcpy(digest, ctx->buf, 16);
|
|
memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
|
|
}
|
|
|
|
/*
|
|
** Convert a digest into base-16. digest should be declared as
|
|
** "unsigned char digest[16]" in the calling function. The MD5
|
|
** digest is stored in the first 16 bytes. zBuf should
|
|
** be "char zBuf[33]".
|
|
*/
|
|
static void DigestToBase16(unsigned char *digest, char *zBuf){
|
|
static char const zEncode[] = "0123456789abcdef";
|
|
int i, j;
|
|
|
|
for(j=i=0; i<16; i++){
|
|
int a = digest[i];
|
|
zBuf[j++] = zEncode[(a>>4)&0xf];
|
|
zBuf[j++] = zEncode[a & 0xf];
|
|
}
|
|
zBuf[j] = 0;
|
|
}
|
|
|
|
/*
|
|
** A TCL command for md5. The argument is the text to be hashed. The
|
|
** Result is the hash in base64.
|
|
*/
|
|
static int md5_cmd(void*cd, Tcl_Interp *interp, int argc, const char **argv){
|
|
MD5Context ctx;
|
|
unsigned char digest[16];
|
|
|
|
if( argc!=2 ){
|
|
Tcl_AppendResult(interp,"wrong # args: should be \"", argv[0],
|
|
" TEXT\"", 0);
|
|
return TCL_ERROR;
|
|
}
|
|
MD5Init(&ctx);
|
|
MD5Update(&ctx, (unsigned char*)argv[1], (unsigned)strlen(argv[1]));
|
|
MD5Final(digest, &ctx);
|
|
DigestToBase16(digest, interp->result);
|
|
return TCL_OK;
|
|
}
|
|
|
|
/*
|
|
** A TCL command to take the md5 hash of a file. The argument is the
|
|
** name of the file.
|
|
*/
|
|
static int md5file_cmd(void*cd, Tcl_Interp*interp, int argc, const char **argv){
|
|
FILE *in;
|
|
MD5Context ctx;
|
|
unsigned char digest[16];
|
|
char zBuf[10240];
|
|
|
|
if( argc!=2 ){
|
|
Tcl_AppendResult(interp,"wrong # args: should be \"", argv[0],
|
|
" FILENAME\"", 0);
|
|
return TCL_ERROR;
|
|
}
|
|
in = fopen(argv[1],"rb");
|
|
if( in==0 ){
|
|
Tcl_AppendResult(interp,"unable to open file \"", argv[1],
|
|
"\" for reading", 0);
|
|
return TCL_ERROR;
|
|
}
|
|
MD5Init(&ctx);
|
|
for(;;){
|
|
int n;
|
|
n = fread(zBuf, 1, sizeof(zBuf), in);
|
|
if( n<=0 ) break;
|
|
MD5Update(&ctx, (unsigned char*)zBuf, (unsigned)n);
|
|
}
|
|
fclose(in);
|
|
MD5Final(digest, &ctx);
|
|
DigestToBase16(digest, interp->result);
|
|
return TCL_OK;
|
|
}
|
|
|
|
/*
|
|
** Register the two TCL commands above with the TCL interpreter.
|
|
*/
|
|
int Md5_Init(Tcl_Interp *interp){
|
|
Tcl_CreateCommand(interp, "md5", (Tcl_CmdProc*)md5_cmd, 0, 0);
|
|
Tcl_CreateCommand(interp, "md5file", (Tcl_CmdProc*)md5file_cmd, 0, 0);
|
|
return TCL_OK;
|
|
}
|
|
|
|
/*
|
|
** During testing, the special md5sum() aggregate function is available.
|
|
** inside SQLite. The following routines implement that function.
|
|
*/
|
|
static void md5step(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
MD5Context *p;
|
|
int i;
|
|
if( argc<1 ) return;
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
if( p==0 ) return;
|
|
if( !p->isInit ){
|
|
MD5Init(p);
|
|
}
|
|
for(i=0; i<argc; i++){
|
|
const char *zData = (char*)sqlite3_value_text(argv[i]);
|
|
if( zData ){
|
|
MD5Update(p, (unsigned char*)zData, strlen(zData));
|
|
}
|
|
}
|
|
}
|
|
static void md5finalize(sqlite3_context *context){
|
|
MD5Context *p;
|
|
unsigned char digest[16];
|
|
char zBuf[33];
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
MD5Final(digest,p);
|
|
DigestToBase16(digest, zBuf);
|
|
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
|
}
|
|
void Md5_Register(sqlite3 *db){
|
|
sqlite3_create_function(db, "md5sum", -1, SQLITE_UTF8, 0, 0,
|
|
md5step, md5finalize);
|
|
}
|