freeswitch/libs/libyuv/unit_test/convert_test.cc

1860 lines
118 KiB
C++

/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include <time.h>
#include "libyuv/compare.h"
#include "libyuv/convert.h"
#include "libyuv/convert_argb.h"
#include "libyuv/convert_from.h"
#include "libyuv/convert_from_argb.h"
#include "libyuv/cpu_id.h"
#ifdef HAVE_JPEG
#include "libyuv/mjpeg_decoder.h"
#endif
#include "libyuv/planar_functions.h"
#include "libyuv/rotate.h"
#include "libyuv/row.h"
#include "libyuv/video_common.h"
#include "../unit_test/unit_test.h"
namespace libyuv {
#define SUBSAMPLE(v, a) ((((v) + (a) - 1)) / (a))
#define TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, W1280, N, NEG, OFF) \
TEST_F(LibYUVConvertTest, SRC_FMT_PLANAR##To##FMT_PLANAR##N) { \
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
const int kHeight = benchmark_height_; \
align_buffer_64(src_y, kWidth * kHeight + OFF); \
align_buffer_64(src_u, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * \
SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) + OFF); \
align_buffer_64(src_v, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * \
SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) + OFF); \
align_buffer_64(dst_y_c, kWidth * kHeight); \
align_buffer_64(dst_u_c, \
SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
align_buffer_64(dst_v_c, \
SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
align_buffer_64(dst_y_opt, kWidth * kHeight); \
align_buffer_64(dst_u_opt, \
SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
align_buffer_64(dst_v_opt, \
SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
for (int i = 0; i < kHeight; ++i) \
for (int j = 0; j < kWidth; ++j) \
src_y[i * kWidth + j + OFF] = (fastrand() & 0xff); \
for (int i = 0; i < SUBSAMPLE(kHeight, SRC_SUBSAMP_Y); ++i) { \
for (int j = 0; j < SUBSAMPLE(kWidth, SRC_SUBSAMP_X); ++j) { \
src_u[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] = \
(fastrand() & 0xff); \
src_v[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] = \
(fastrand() & 0xff); \
} \
} \
memset(dst_y_c, 1, kWidth * kHeight); \
memset(dst_u_c, 2, SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
memset(dst_v_c, 3, SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
memset(dst_y_opt, 101, kWidth * kHeight); \
memset(dst_u_opt, 102, SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
memset(dst_v_opt, 103, SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
MaskCpuFlags(disable_cpu_flags_); \
SRC_FMT_PLANAR##To##FMT_PLANAR(src_y + OFF, kWidth, \
src_u + OFF, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \
src_v + OFF, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \
dst_y_c, kWidth, \
dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X), \
dst_v_c, SUBSAMPLE(kWidth, SUBSAMP_X), \
kWidth, NEG kHeight); \
MaskCpuFlags(benchmark_cpu_info_); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
SRC_FMT_PLANAR##To##FMT_PLANAR(src_y + OFF, kWidth, \
src_u + OFF, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \
src_v + OFF, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \
dst_y_opt, kWidth, \
dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X), \
dst_v_opt, SUBSAMPLE(kWidth, SUBSAMP_X), \
kWidth, NEG kHeight); \
} \
int max_diff = 0; \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_y_c[i * kWidth + j]) - \
static_cast<int>(dst_y_opt[i * kWidth + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_EQ(0, max_diff); \
for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \
for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_u_c[i * \
SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \
static_cast<int>(dst_u_opt[i * \
SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 3); \
for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \
for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_v_c[i * \
SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \
static_cast<int>(dst_v_opt[i * \
SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 3); \
free_aligned_buffer_64(dst_y_c); \
free_aligned_buffer_64(dst_u_c); \
free_aligned_buffer_64(dst_v_c); \
free_aligned_buffer_64(dst_y_opt); \
free_aligned_buffer_64(dst_u_opt); \
free_aligned_buffer_64(dst_v_opt); \
free_aligned_buffer_64(src_y); \
free_aligned_buffer_64(src_u); \
free_aligned_buffer_64(src_v); \
}
#define TESTPLANARTOP(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \
TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_ - 4, _Any, +, 0) \
TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, _Unaligned, +, 1) \
TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, _Invert, -, 0) \
TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, _Opt, +, 0)
TESTPLANARTOP(I420, 2, 2, I420, 2, 2)
TESTPLANARTOP(I422, 2, 1, I420, 2, 2)
TESTPLANARTOP(I444, 1, 1, I420, 2, 2)
TESTPLANARTOP(I411, 4, 1, I420, 2, 2)
TESTPLANARTOP(I420, 2, 2, I422, 2, 1)
TESTPLANARTOP(I420, 2, 2, I444, 1, 1)
TESTPLANARTOP(I420, 2, 2, I411, 4, 1)
TESTPLANARTOP(I420, 2, 2, I420Mirror, 2, 2)
TESTPLANARTOP(I422, 2, 1, I422, 2, 1)
TESTPLANARTOP(I444, 1, 1, I444, 1, 1)
#define TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, W1280, N, NEG, OFF) \
TEST_F(LibYUVConvertTest, SRC_FMT_PLANAR##To##FMT_PLANAR##N) { \
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
const int kHeight = benchmark_height_; \
align_buffer_64(src_y, kWidth * kHeight + OFF); \
align_buffer_64(src_u, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * \
SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) + OFF); \
align_buffer_64(src_v, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * \
SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) + OFF); \
align_buffer_64(dst_y_c, kWidth * kHeight); \
align_buffer_64(dst_uv_c, SUBSAMPLE(kWidth * 2, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
align_buffer_64(dst_y_opt, kWidth * kHeight); \
align_buffer_64(dst_uv_opt, SUBSAMPLE(kWidth * 2, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
for (int i = 0; i < kHeight; ++i) \
for (int j = 0; j < kWidth; ++j) \
src_y[i * kWidth + j + OFF] = (fastrand() & 0xff); \
for (int i = 0; i < SUBSAMPLE(kHeight, SRC_SUBSAMP_Y); ++i) { \
for (int j = 0; j < SUBSAMPLE(kWidth, SRC_SUBSAMP_X); ++j) { \
src_u[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] = \
(fastrand() & 0xff); \
src_v[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] = \
(fastrand() & 0xff); \
} \
} \
memset(dst_y_c, 1, kWidth * kHeight); \
memset(dst_uv_c, 2, SUBSAMPLE(kWidth * 2, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
memset(dst_y_opt, 101, kWidth * kHeight); \
memset(dst_uv_opt, 102, SUBSAMPLE(kWidth * 2, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
MaskCpuFlags(disable_cpu_flags_); \
SRC_FMT_PLANAR##To##FMT_PLANAR(src_y + OFF, kWidth, \
src_u + OFF, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \
src_v + OFF, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \
dst_y_c, kWidth, \
dst_uv_c, SUBSAMPLE(kWidth * 2, SUBSAMP_X), \
kWidth, NEG kHeight); \
MaskCpuFlags(benchmark_cpu_info_); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
SRC_FMT_PLANAR##To##FMT_PLANAR(src_y + OFF, kWidth, \
src_u + OFF, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \
src_v + OFF, \
SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \
dst_y_opt, kWidth, \
dst_uv_opt, \
SUBSAMPLE(kWidth * 2, SUBSAMP_X), \
kWidth, NEG kHeight); \
} \
int max_diff = 0; \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_y_c[i * kWidth + j]) - \
static_cast<int>(dst_y_opt[i * kWidth + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 1); \
for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \
for (int j = 0; j < SUBSAMPLE(kWidth * 2, SUBSAMP_X); ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_uv_c[i * \
SUBSAMPLE(kWidth * 2, SUBSAMP_X) + j]) - \
static_cast<int>(dst_uv_opt[i * \
SUBSAMPLE(kWidth * 2, SUBSAMP_X) + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 1); \
free_aligned_buffer_64(dst_y_c); \
free_aligned_buffer_64(dst_uv_c); \
free_aligned_buffer_64(dst_y_opt); \
free_aligned_buffer_64(dst_uv_opt); \
free_aligned_buffer_64(src_y); \
free_aligned_buffer_64(src_u); \
free_aligned_buffer_64(src_v); \
}
#define TESTPLANARTOBP(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \
TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_ - 4, _Any, +, 0) \
TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, _Unaligned, +, 1) \
TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, _Invert, -, 0) \
TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, _Opt, +, 0)
TESTPLANARTOBP(I420, 2, 2, NV12, 2, 2)
TESTPLANARTOBP(I420, 2, 2, NV21, 2, 2)
#define TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, W1280, N, NEG, OFF) \
TEST_F(LibYUVConvertTest, SRC_FMT_PLANAR##To##FMT_PLANAR##N) { \
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
const int kHeight = benchmark_height_; \
align_buffer_64(src_y, kWidth * kHeight + OFF); \
align_buffer_64(src_uv, 2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * \
SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) + OFF); \
align_buffer_64(dst_y_c, kWidth * kHeight); \
align_buffer_64(dst_u_c, \
SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
align_buffer_64(dst_v_c, \
SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
align_buffer_64(dst_y_opt, kWidth * kHeight); \
align_buffer_64(dst_u_opt, \
SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
align_buffer_64(dst_v_opt, \
SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
for (int i = 0; i < kHeight; ++i) \
for (int j = 0; j < kWidth; ++j) \
src_y[i * kWidth + j + OFF] = (fastrand() & 0xff); \
for (int i = 0; i < SUBSAMPLE(kHeight, SRC_SUBSAMP_Y); ++i) { \
for (int j = 0; j < 2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X); ++j) { \
src_uv[(i * 2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] = \
(fastrand() & 0xff); \
} \
} \
memset(dst_y_c, 1, kWidth * kHeight); \
memset(dst_u_c, 2, SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
memset(dst_v_c, 3, SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
memset(dst_y_opt, 101, kWidth * kHeight); \
memset(dst_u_opt, 102, SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
memset(dst_v_opt, 103, SUBSAMPLE(kWidth, SUBSAMP_X) * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
MaskCpuFlags(disable_cpu_flags_); \
SRC_FMT_PLANAR##To##FMT_PLANAR(src_y + OFF, kWidth, \
src_uv + OFF, \
2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \
dst_y_c, kWidth, \
dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X), \
dst_v_c, SUBSAMPLE(kWidth, SUBSAMP_X), \
kWidth, NEG kHeight); \
MaskCpuFlags(benchmark_cpu_info_); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
SRC_FMT_PLANAR##To##FMT_PLANAR(src_y + OFF, kWidth, \
src_uv + OFF, \
2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \
dst_y_opt, kWidth, \
dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X), \
dst_v_opt, SUBSAMPLE(kWidth, SUBSAMP_X), \
kWidth, NEG kHeight); \
} \
int max_diff = 0; \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_y_c[i * kWidth + j]) - \
static_cast<int>(dst_y_opt[i * kWidth + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 1); \
for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \
for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_u_c[i * \
SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \
static_cast<int>(dst_u_opt[i * \
SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 1); \
for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \
for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_v_c[i * \
SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \
static_cast<int>(dst_v_opt[i * \
SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 1); \
free_aligned_buffer_64(dst_y_c); \
free_aligned_buffer_64(dst_u_c); \
free_aligned_buffer_64(dst_v_c); \
free_aligned_buffer_64(dst_y_opt); \
free_aligned_buffer_64(dst_u_opt); \
free_aligned_buffer_64(dst_v_opt); \
free_aligned_buffer_64(src_y); \
free_aligned_buffer_64(src_uv); \
}
#define TESTBIPLANARTOP(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \
TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_ - 4, _Any, +, 0) \
TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, _Unaligned, +, 1) \
TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, _Invert, -, 0) \
TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \
FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, _Opt, +, 0)
TESTBIPLANARTOP(NV12, 2, 2, I420, 2, 2)
TESTBIPLANARTOP(NV21, 2, 2, I420, 2, 2)
#define ALIGNINT(V, ALIGN) (((V) + (ALIGN) - 1) / (ALIGN) * (ALIGN))
#define TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, W1280, DIFF, N, NEG, OFF, FMT_C, BPP_C) \
TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##N) { \
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
const int kHeight = ALIGNINT(benchmark_height_, YALIGN); \
const int kStrideB = ALIGNINT(kWidth * BPP_B, ALIGN); \
const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X); \
const int kSizeUV = kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y); \
align_buffer_64(src_y, kWidth * kHeight + OFF); \
align_buffer_64(src_u, kSizeUV + OFF); \
align_buffer_64(src_v, kSizeUV + OFF); \
align_buffer_64(dst_argb_c, kStrideB * kHeight + OFF); \
align_buffer_64(dst_argb_opt, kStrideB * kHeight + OFF); \
for (int i = 0; i < kWidth * kHeight; ++i) { \
src_y[i + OFF] = (fastrand() & 0xff); \
} \
for (int i = 0; i < kSizeUV; ++i) { \
src_u[i + OFF] = (fastrand() & 0xff); \
src_v[i + OFF] = (fastrand() & 0xff); \
} \
memset(dst_argb_c + OFF, 1, kStrideB * kHeight); \
memset(dst_argb_opt + OFF, 101, kStrideB * kHeight); \
MaskCpuFlags(disable_cpu_flags_); \
FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, \
src_u + OFF, kStrideUV, \
src_v + OFF, kStrideUV, \
dst_argb_c + OFF, kStrideB, \
kWidth, NEG kHeight); \
MaskCpuFlags(benchmark_cpu_info_); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, \
src_u + OFF, kStrideUV, \
src_v + OFF, kStrideUV, \
dst_argb_opt + OFF, kStrideB, \
kWidth, NEG kHeight); \
} \
int max_diff = 0; \
/* Convert to ARGB so 565 is expanded to bytes that can be compared. */ \
align_buffer_64(dst_argb32_c, kWidth * BPP_C * kHeight); \
align_buffer_64(dst_argb32_opt, kWidth * BPP_C * kHeight); \
memset(dst_argb32_c, 2, kWidth * BPP_C * kHeight); \
memset(dst_argb32_opt, 102, kWidth * BPP_C * kHeight); \
FMT_B##To##FMT_C(dst_argb_c + OFF, kStrideB, \
dst_argb32_c, kWidth * BPP_C , \
kWidth, kHeight); \
FMT_B##To##FMT_C(dst_argb_opt + OFF, kStrideB, \
dst_argb32_opt, kWidth * BPP_C , \
kWidth, kHeight); \
for (int i = 0; i < kWidth * BPP_C * kHeight; ++i) { \
int abs_diff = \
abs(static_cast<int>(dst_argb32_c[i]) - \
static_cast<int>(dst_argb32_opt[i])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
EXPECT_LE(max_diff, DIFF); \
free_aligned_buffer_64(src_y); \
free_aligned_buffer_64(src_u); \
free_aligned_buffer_64(src_v); \
free_aligned_buffer_64(dst_argb_c); \
free_aligned_buffer_64(dst_argb_opt); \
free_aligned_buffer_64(dst_argb32_c); \
free_aligned_buffer_64(dst_argb32_opt); \
}
#define TESTPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, DIFF, FMT_C, BPP_C) \
TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, benchmark_width_ - 4, DIFF, _Any, +, 0, FMT_C, BPP_C) \
TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, benchmark_width_, DIFF, _Unaligned, +, 1, FMT_C, BPP_C) \
TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, benchmark_width_, DIFF, _Invert, -, 0, FMT_C, BPP_C) \
TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, benchmark_width_, DIFF, _Opt, +, 0, FMT_C, BPP_C)
TESTPLANARTOB(I420, 2, 2, ARGB, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(J420, 2, 2, ARGB, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(J420, 2, 2, ABGR, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(H420, 2, 2, ARGB, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(H420, 2, 2, ABGR, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, BGRA, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, ABGR, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, RGBA, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, RAW, 3, 3, 1, 2, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, RGB24, 3, 3, 1, 2, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, RGB565, 2, 2, 1, 9, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, ARGB1555, 2, 2, 1, 9, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, ARGB4444, 2, 2, 1, 17, ARGB, 4)
TESTPLANARTOB(I422, 2, 1, ARGB, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(J422, 2, 1, ARGB, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(J422, 2, 1, ABGR, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(H422, 2, 1, ARGB, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(H422, 2, 1, ABGR, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I422, 2, 1, BGRA, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I422, 2, 1, ABGR, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I422, 2, 1, RGBA, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I411, 4, 1, ARGB, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I444, 1, 1, ARGB, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(J444, 1, 1, ARGB, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I444, 1, 1, ABGR, 4, 4, 1, 2, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, YUY2, 2, 4, 1, 1, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, UYVY, 2, 4, 1, 1, ARGB, 4)
TESTPLANARTOB(I422, 2, 1, YUY2, 2, 4, 1, 0, ARGB, 4)
TESTPLANARTOB(I422, 2, 1, UYVY, 2, 4, 1, 0, ARGB, 4)
TESTPLANARTOB(I420, 2, 2, I400, 1, 1, 1, 0, ARGB, 4)
TESTPLANARTOB(J420, 2, 2, J400, 1, 1, 1, 0, ARGB, 4)
#define TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, W1280, DIFF, N, NEG, OFF, ATTEN) \
TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##N) { \
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
const int kHeight = ALIGNINT(benchmark_height_, YALIGN); \
const int kStrideB = ALIGNINT(kWidth * BPP_B, ALIGN); \
const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X); \
const int kSizeUV = kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y); \
align_buffer_64(src_y, kWidth * kHeight + OFF); \
align_buffer_64(src_u, kSizeUV + OFF); \
align_buffer_64(src_v, kSizeUV + OFF); \
align_buffer_64(src_a, kWidth * kHeight + OFF); \
align_buffer_64(dst_argb_c, kStrideB * kHeight + OFF); \
align_buffer_64(dst_argb_opt, kStrideB * kHeight + OFF); \
for (int i = 0; i < kWidth * kHeight; ++i) { \
src_y[i + OFF] = (fastrand() & 0xff); \
src_a[i + OFF] = (fastrand() & 0xff); \
} \
for (int i = 0; i < kSizeUV; ++i) { \
src_u[i + OFF] = (fastrand() & 0xff); \
src_v[i + OFF] = (fastrand() & 0xff); \
} \
memset(dst_argb_c + OFF, 1, kStrideB * kHeight); \
memset(dst_argb_opt + OFF, 101, kStrideB * kHeight); \
MaskCpuFlags(disable_cpu_flags_); \
FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, \
src_u + OFF, kStrideUV, \
src_v + OFF, kStrideUV, \
src_a + OFF, kWidth, \
dst_argb_c + OFF, kStrideB, \
kWidth, NEG kHeight, ATTEN); \
MaskCpuFlags(benchmark_cpu_info_); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, \
src_u + OFF, kStrideUV, \
src_v + OFF, kStrideUV, \
src_a + OFF, kWidth, \
dst_argb_opt + OFF, kStrideB, \
kWidth, NEG kHeight, ATTEN); \
} \
int max_diff = 0; \
for (int i = 0; i < kWidth * BPP_B * kHeight; ++i) { \
int abs_diff = \
abs(static_cast<int>(dst_argb_c[i + OFF]) - \
static_cast<int>(dst_argb_opt[i + OFF])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
EXPECT_LE(max_diff, DIFF); \
free_aligned_buffer_64(src_y); \
free_aligned_buffer_64(src_u); \
free_aligned_buffer_64(src_v); \
free_aligned_buffer_64(src_a); \
free_aligned_buffer_64(dst_argb_c); \
free_aligned_buffer_64(dst_argb_opt); \
}
#define TESTQPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, DIFF) \
TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, benchmark_width_ - 4, DIFF, _Any, +, 0, 0) \
TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, benchmark_width_, DIFF, _Unaligned, +, 1, 0) \
TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, benchmark_width_, DIFF, _Invert, -, 0, 0) \
TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, benchmark_width_, DIFF, _Opt, +, 0, 0) \
TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, benchmark_width_, DIFF, _Premult, +, 0, 1)
TESTQPLANARTOB(I420Alpha, 2, 2, ARGB, 4, 4, 1, 2)
TESTQPLANARTOB(I420Alpha, 2, 2, ABGR, 4, 4, 1, 2)
#define TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \
W1280, DIFF, N, NEG, OFF) \
TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##N) { \
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
const int kHeight = benchmark_height_; \
const int kStrideB = kWidth * BPP_B; \
const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X); \
align_buffer_64(src_y, kWidth * kHeight + OFF); \
align_buffer_64(src_uv, \
kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y) * 2 + OFF); \
align_buffer_64(dst_argb_c, kStrideB * kHeight); \
align_buffer_64(dst_argb_opt, kStrideB * kHeight); \
for (int i = 0; i < kHeight; ++i) \
for (int j = 0; j < kWidth; ++j) \
src_y[i * kWidth + j + OFF] = (fastrand() & 0xff); \
for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \
for (int j = 0; j < kStrideUV * 2; ++j) { \
src_uv[i * kStrideUV * 2 + j + OFF] = (fastrand() & 0xff); \
} \
} \
memset(dst_argb_c, 1, kStrideB * kHeight); \
memset(dst_argb_opt, 101, kStrideB * kHeight); \
MaskCpuFlags(disable_cpu_flags_); \
FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, \
src_uv + OFF, kStrideUV * 2, \
dst_argb_c, kWidth * BPP_B, \
kWidth, NEG kHeight); \
MaskCpuFlags(benchmark_cpu_info_); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, \
src_uv + OFF, kStrideUV * 2, \
dst_argb_opt, kWidth * BPP_B, \
kWidth, NEG kHeight); \
} \
/* Convert to ARGB so 565 is expanded to bytes that can be compared. */ \
align_buffer_64(dst_argb32_c, kWidth * 4 * kHeight); \
align_buffer_64(dst_argb32_opt, kWidth * 4 * kHeight); \
memset(dst_argb32_c, 2, kWidth * 4 * kHeight); \
memset(dst_argb32_opt, 102, kWidth * 4 * kHeight); \
FMT_B##ToARGB(dst_argb_c, kStrideB, \
dst_argb32_c, kWidth * 4, \
kWidth, kHeight); \
FMT_B##ToARGB(dst_argb_opt, kStrideB, \
dst_argb32_opt, kWidth * 4, \
kWidth, kHeight); \
int max_diff = 0; \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth * 4; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_argb32_c[i * kWidth * 4 + j]) - \
static_cast<int>(dst_argb32_opt[i * kWidth * 4 + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, DIFF); \
free_aligned_buffer_64(src_y); \
free_aligned_buffer_64(src_uv); \
free_aligned_buffer_64(dst_argb_c); \
free_aligned_buffer_64(dst_argb_opt); \
free_aligned_buffer_64(dst_argb32_c); \
free_aligned_buffer_64(dst_argb32_opt); \
}
#define TESTBIPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, DIFF) \
TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \
benchmark_width_ - 4, DIFF, _Any, +, 0) \
TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \
benchmark_width_, DIFF, _Unaligned, +, 1) \
TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \
benchmark_width_, DIFF, _Invert, -, 0) \
TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \
benchmark_width_, DIFF, _Opt, +, 0)
TESTBIPLANARTOB(NV12, 2, 2, ARGB, 4, 2)
TESTBIPLANARTOB(NV21, 2, 2, ARGB, 4, 2)
TESTBIPLANARTOB(NV12, 2, 2, RGB565, 2, 9)
#define TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
W1280, DIFF, N, NEG, OFF) \
TEST_F(LibYUVConvertTest, FMT_A##To##FMT_PLANAR##N) { \
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
const int kHeight = ALIGNINT(benchmark_height_, YALIGN); \
const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X); \
const int kStride = \
(kStrideUV * SUBSAMP_X * 8 * BPP_A + 7) / 8; \
align_buffer_64(src_argb, kStride * kHeight + OFF); \
align_buffer_64(dst_y_c, kWidth * kHeight); \
align_buffer_64(dst_u_c, \
kStrideUV * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
align_buffer_64(dst_v_c, \
kStrideUV * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
align_buffer_64(dst_y_opt, kWidth * kHeight); \
align_buffer_64(dst_u_opt, \
kStrideUV * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
align_buffer_64(dst_v_opt, \
kStrideUV * \
SUBSAMPLE(kHeight, SUBSAMP_Y)); \
memset(dst_y_c, 1, kWidth * kHeight); \
memset(dst_u_c, 2, \
kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y)); \
memset(dst_v_c, 3, \
kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y)); \
memset(dst_y_opt, 101, kWidth * kHeight); \
memset(dst_u_opt, 102, \
kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y)); \
memset(dst_v_opt, 103, \
kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y)); \
for (int i = 0; i < kHeight; ++i) \
for (int j = 0; j < kStride; ++j) \
src_argb[(i * kStride) + j + OFF] = (fastrand() & 0xff); \
MaskCpuFlags(disable_cpu_flags_); \
FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, \
dst_y_c, kWidth, \
dst_u_c, kStrideUV, \
dst_v_c, kStrideUV, \
kWidth, NEG kHeight); \
MaskCpuFlags(benchmark_cpu_info_); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, \
dst_y_opt, kWidth, \
dst_u_opt, kStrideUV, \
dst_v_opt, kStrideUV, \
kWidth, NEG kHeight); \
} \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth; ++j) { \
EXPECT_NEAR(static_cast<int>(dst_y_c[i * kWidth + j]), \
static_cast<int>(dst_y_opt[i * kWidth + j]), DIFF); \
} \
} \
for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \
for (int j = 0; j < kStrideUV; ++j) { \
EXPECT_NEAR(static_cast<int>(dst_u_c[i * kStrideUV + j]), \
static_cast<int>(dst_u_opt[i * kStrideUV + j]), DIFF); \
} \
} \
for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \
for (int j = 0; j < kStrideUV; ++j) { \
EXPECT_NEAR(static_cast<int>(dst_v_c[i * \
kStrideUV + j]), \
static_cast<int>(dst_v_opt[i * \
kStrideUV + j]), DIFF); \
} \
} \
free_aligned_buffer_64(dst_y_c); \
free_aligned_buffer_64(dst_u_c); \
free_aligned_buffer_64(dst_v_c); \
free_aligned_buffer_64(dst_y_opt); \
free_aligned_buffer_64(dst_u_opt); \
free_aligned_buffer_64(dst_v_opt); \
free_aligned_buffer_64(src_argb); \
}
#define TESTATOPLANAR(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
DIFF) \
TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_ - 4, DIFF, _Any, +, 0) \
TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, DIFF, _Unaligned, +, 1) \
TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, DIFF, _Invert, -, 0) \
TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, DIFF, _Opt, +, 0)
TESTATOPLANAR(ARGB, 4, 1, I420, 2, 2, 4)
#if defined(__arm__) || defined (__aarch64__)
// arm version subsamples by summing 4 pixels then multiplying by matrix with
// 4x smaller coefficients which are rounded to nearest integer.
TESTATOPLANAR(ARGB, 4, 1, J420, 2, 2, 4)
TESTATOPLANAR(ARGB, 4, 1, J422, 2, 1, 4)
#else
TESTATOPLANAR(ARGB, 4, 1, J420, 2, 2, 0)
TESTATOPLANAR(ARGB, 4, 1, J422, 2, 1, 0)
#endif
TESTATOPLANAR(BGRA, 4, 1, I420, 2, 2, 4)
TESTATOPLANAR(ABGR, 4, 1, I420, 2, 2, 4)
TESTATOPLANAR(RGBA, 4, 1, I420, 2, 2, 4)
TESTATOPLANAR(RAW, 3, 1, I420, 2, 2, 4)
TESTATOPLANAR(RGB24, 3, 1, I420, 2, 2, 4)
TESTATOPLANAR(RGB565, 2, 1, I420, 2, 2, 5)
// TODO(fbarchard): Make 1555 neon work same as C code, reduce to diff 9.
TESTATOPLANAR(ARGB1555, 2, 1, I420, 2, 2, 15)
TESTATOPLANAR(ARGB4444, 2, 1, I420, 2, 2, 17)
TESTATOPLANAR(ARGB, 4, 1, I411, 4, 1, 4)
TESTATOPLANAR(ARGB, 4, 1, I422, 2, 1, 2)
TESTATOPLANAR(ARGB, 4, 1, I444, 1, 1, 2)
TESTATOPLANAR(YUY2, 2, 1, I420, 2, 2, 2)
TESTATOPLANAR(UYVY, 2, 1, I420, 2, 2, 2)
TESTATOPLANAR(YUY2, 2, 1, I422, 2, 1, 2)
TESTATOPLANAR(UYVY, 2, 1, I422, 2, 1, 2)
TESTATOPLANAR(I400, 1, 1, I420, 2, 2, 2)
TESTATOPLANAR(J400, 1, 1, J420, 2, 2, 2)
#define TESTATOBIPLANARI(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y,\
W1280, N, NEG, OFF) \
TEST_F(LibYUVConvertTest, FMT_A##To##FMT_PLANAR##N) { \
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
const int kHeight = benchmark_height_; \
const int kStride = SUBSAMPLE(kWidth, SUB_A) * BPP_A; \
const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X); \
align_buffer_64(src_argb, kStride * kHeight + OFF); \
align_buffer_64(dst_y_c, kWidth * kHeight); \
align_buffer_64(dst_uv_c, kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y)); \
align_buffer_64(dst_y_opt, kWidth * kHeight); \
align_buffer_64(dst_uv_opt, kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y)); \
for (int i = 0; i < kHeight; ++i) \
for (int j = 0; j < kStride; ++j) \
src_argb[(i * kStride) + j + OFF] = (fastrand() & 0xff); \
memset(dst_y_c, 1, kWidth * kHeight); \
memset(dst_uv_c, 2, kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y)); \
memset(dst_y_opt, 101, kWidth * kHeight); \
memset(dst_uv_opt, 102, kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y)); \
MaskCpuFlags(disable_cpu_flags_); \
FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, \
dst_y_c, kWidth, dst_uv_c, kStrideUV * 2, \
kWidth, NEG kHeight); \
MaskCpuFlags(benchmark_cpu_info_); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, \
dst_y_opt, kWidth, \
dst_uv_opt, kStrideUV * 2, kWidth, NEG kHeight); \
} \
int max_diff = 0; \
for (int i = 0; i < kHeight; ++i) { \
for (int j = 0; j < kWidth; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_y_c[i * kWidth + j]) - \
static_cast<int>(dst_y_opt[i * kWidth + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 4); \
for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \
for (int j = 0; j < kStrideUV * 2; ++j) { \
int abs_diff = \
abs(static_cast<int>(dst_uv_c[i * kStrideUV * 2 + j]) - \
static_cast<int>(dst_uv_opt[i * kStrideUV * 2 + j])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
} \
EXPECT_LE(max_diff, 4); \
free_aligned_buffer_64(dst_y_c); \
free_aligned_buffer_64(dst_uv_c); \
free_aligned_buffer_64(dst_y_opt); \
free_aligned_buffer_64(dst_uv_opt); \
free_aligned_buffer_64(src_argb); \
}
#define TESTATOBIPLANAR(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \
TESTATOBIPLANARI(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_ - 4, _Any, +, 0) \
TESTATOBIPLANARI(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, _Unaligned, +, 1) \
TESTATOBIPLANARI(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, _Invert, -, 0) \
TESTATOBIPLANARI(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \
benchmark_width_, _Opt, +, 0)
TESTATOBIPLANAR(ARGB, 1, 4, NV12, 2, 2)
TESTATOBIPLANAR(ARGB, 1, 4, NV21, 2, 2)
TESTATOBIPLANAR(YUY2, 2, 4, NV12, 2, 2)
TESTATOBIPLANAR(UYVY, 2, 4, NV12, 2, 2)
#define TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \
FMT_B, BPP_B, STRIDE_B, HEIGHT_B, \
W1280, DIFF, N, NEG, OFF) \
TEST_F(LibYUVConvertTest, FMT_A##To##FMT_B##N) { \
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
const int kHeight = benchmark_height_; \
const int kHeightA = (kHeight + HEIGHT_A - 1) / HEIGHT_A * HEIGHT_A; \
const int kHeightB = (kHeight + HEIGHT_B - 1) / HEIGHT_B * HEIGHT_B; \
const int kStrideA = (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A; \
const int kStrideB = (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B; \
align_buffer_64(src_argb, kStrideA * kHeightA + OFF); \
align_buffer_64(dst_argb_c, kStrideB * kHeightB); \
align_buffer_64(dst_argb_opt, kStrideB * kHeightB); \
for (int i = 0; i < kStrideA * kHeightA; ++i) { \
src_argb[i + OFF] = (fastrand() & 0xff); \
} \
memset(dst_argb_c, 1, kStrideB * kHeightB); \
memset(dst_argb_opt, 101, kStrideB * kHeightB); \
MaskCpuFlags(disable_cpu_flags_); \
FMT_A##To##FMT_B(src_argb + OFF, kStrideA, \
dst_argb_c, kStrideB, \
kWidth, NEG kHeight); \
MaskCpuFlags(benchmark_cpu_info_); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_A##To##FMT_B(src_argb + OFF, kStrideA, \
dst_argb_opt, kStrideB, \
kWidth, NEG kHeight); \
} \
int max_diff = 0; \
for (int i = 0; i < kStrideB * kHeightB; ++i) { \
int abs_diff = \
abs(static_cast<int>(dst_argb_c[i]) - \
static_cast<int>(dst_argb_opt[i])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
EXPECT_LE(max_diff, DIFF); \
free_aligned_buffer_64(src_argb); \
free_aligned_buffer_64(dst_argb_c); \
free_aligned_buffer_64(dst_argb_opt); \
}
#define TESTATOBRANDOM(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \
FMT_B, BPP_B, STRIDE_B, HEIGHT_B, DIFF) \
TEST_F(LibYUVConvertTest, FMT_A##To##FMT_B##_Random) { \
for (int times = 0; times < benchmark_iterations_; ++times) { \
const int kWidth = (fastrand() & 63) + 1; \
const int kHeight = (fastrand() & 31) + 1; \
const int kHeightA = (kHeight + HEIGHT_A - 1) / HEIGHT_A * HEIGHT_A; \
const int kHeightB = (kHeight + HEIGHT_B - 1) / HEIGHT_B * HEIGHT_B; \
const int kStrideA = (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A;\
const int kStrideB = (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B;\
align_buffer_page_end(src_argb, kStrideA * kHeightA); \
align_buffer_page_end(dst_argb_c, kStrideB * kHeightB); \
align_buffer_page_end(dst_argb_opt, kStrideB * kHeightB); \
for (int i = 0; i < kStrideA * kHeightA; ++i) { \
src_argb[i] = (fastrand() & 0xff); \
} \
memset(dst_argb_c, 123, kStrideB * kHeightB); \
memset(dst_argb_opt, 123, kStrideB * kHeightB); \
MaskCpuFlags(disable_cpu_flags_); \
FMT_A##To##FMT_B(src_argb, kStrideA, \
dst_argb_c, kStrideB, \
kWidth, kHeight); \
MaskCpuFlags(benchmark_cpu_info_); \
FMT_A##To##FMT_B(src_argb, kStrideA, \
dst_argb_opt, kStrideB, \
kWidth, kHeight); \
int max_diff = 0; \
for (int i = 0; i < kStrideB * kHeightB; ++i) { \
int abs_diff = \
abs(static_cast<int>(dst_argb_c[i]) - \
static_cast<int>(dst_argb_opt[i])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
EXPECT_LE(max_diff, DIFF); \
free_aligned_buffer_page_end(src_argb); \
free_aligned_buffer_page_end(dst_argb_c); \
free_aligned_buffer_page_end(dst_argb_opt); \
} \
}
#define TESTATOB(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \
FMT_B, BPP_B, STRIDE_B, HEIGHT_B, DIFF) \
TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \
FMT_B, BPP_B, STRIDE_B, HEIGHT_B, \
benchmark_width_ - 4, DIFF, _Any, +, 0) \
TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \
FMT_B, BPP_B, STRIDE_B, HEIGHT_B, \
benchmark_width_, DIFF, _Unaligned, +, 1) \
TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \
FMT_B, BPP_B, STRIDE_B, HEIGHT_B, \
benchmark_width_, DIFF, _Invert, -, 0) \
TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \
FMT_B, BPP_B, STRIDE_B, HEIGHT_B, \
benchmark_width_, DIFF, _Opt, +, 0) \
TESTATOBRANDOM(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \
FMT_B, BPP_B, STRIDE_B, HEIGHT_B, DIFF)
TESTATOB(ARGB, 4, 4, 1, ARGB, 4, 4, 1, 0)
TESTATOB(ARGB, 4, 4, 1, BGRA, 4, 4, 1, 0)
TESTATOB(ARGB, 4, 4, 1, ABGR, 4, 4, 1, 0)
TESTATOB(ARGB, 4, 4, 1, RGBA, 4, 4, 1, 0)
TESTATOB(ARGB, 4, 4, 1, RAW, 3, 3, 1, 0)
TESTATOB(ARGB, 4, 4, 1, RGB24, 3, 3, 1, 0)
TESTATOB(ARGB, 4, 4, 1, RGB565, 2, 2, 1, 0)
TESTATOB(ARGB, 4, 4, 1, ARGB1555, 2, 2, 1, 0)
TESTATOB(ARGB, 4, 4, 1, ARGB4444, 2, 2, 1, 0)
TESTATOB(ARGB, 4, 4, 1, YUY2, 2, 4, 1, 4)
TESTATOB(ARGB, 4, 4, 1, UYVY, 2, 4, 1, 4)
TESTATOB(ARGB, 4, 4, 1, I400, 1, 1, 1, 2)
TESTATOB(ARGB, 4, 4, 1, J400, 1, 1, 1, 2)
TESTATOB(BGRA, 4, 4, 1, ARGB, 4, 4, 1, 0)
TESTATOB(ABGR, 4, 4, 1, ARGB, 4, 4, 1, 0)
TESTATOB(RGBA, 4, 4, 1, ARGB, 4, 4, 1, 0)
TESTATOB(RAW, 3, 3, 1, ARGB, 4, 4, 1, 0)
TESTATOB(RAW, 3, 3, 1, RGB24, 3, 3, 1, 0)
TESTATOB(RGB24, 3, 3, 1, ARGB, 4, 4, 1, 0)
TESTATOB(RGB565, 2, 2, 1, ARGB, 4, 4, 1, 0)
TESTATOB(ARGB1555, 2, 2, 1, ARGB, 4, 4, 1, 0)
TESTATOB(ARGB4444, 2, 2, 1, ARGB, 4, 4, 1, 0)
TESTATOB(YUY2, 2, 4, 1, ARGB, 4, 4, 1, 4)
TESTATOB(UYVY, 2, 4, 1, ARGB, 4, 4, 1, 4)
TESTATOB(I400, 1, 1, 1, ARGB, 4, 4, 1, 0)
TESTATOB(J400, 1, 1, 1, ARGB, 4, 4, 1, 0)
TESTATOB(I400, 1, 1, 1, I400, 1, 1, 1, 0)
TESTATOB(J400, 1, 1, 1, J400, 1, 1, 1, 0)
TESTATOB(I400, 1, 1, 1, I400Mirror, 1, 1, 1, 0)
TESTATOB(ARGB, 4, 4, 1, ARGBMirror, 4, 4, 1, 0)
#define TESTATOBDI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \
FMT_B, BPP_B, STRIDE_B, HEIGHT_B, \
W1280, DIFF, N, NEG, OFF) \
TEST_F(LibYUVConvertTest, FMT_A##To##FMT_B##Dither##N) { \
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
const int kHeight = benchmark_height_; \
const int kHeightA = (kHeight + HEIGHT_A - 1) / HEIGHT_A * HEIGHT_A; \
const int kHeightB = (kHeight + HEIGHT_B - 1) / HEIGHT_B * HEIGHT_B; \
const int kStrideA = (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A; \
const int kStrideB = (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B; \
align_buffer_64(src_argb, kStrideA * kHeightA + OFF); \
align_buffer_64(dst_argb_c, kStrideB * kHeightB); \
align_buffer_64(dst_argb_opt, kStrideB * kHeightB); \
for (int i = 0; i < kStrideA * kHeightA; ++i) { \
src_argb[i + OFF] = (fastrand() & 0xff); \
} \
memset(dst_argb_c, 1, kStrideB * kHeightB); \
memset(dst_argb_opt, 101, kStrideB * kHeightB); \
MaskCpuFlags(disable_cpu_flags_); \
FMT_A##To##FMT_B##Dither(src_argb + OFF, kStrideA, \
dst_argb_c, kStrideB, \
NULL, kWidth, NEG kHeight); \
MaskCpuFlags(benchmark_cpu_info_); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_A##To##FMT_B##Dither(src_argb + OFF, kStrideA, \
dst_argb_opt, kStrideB, \
NULL, kWidth, NEG kHeight); \
} \
int max_diff = 0; \
for (int i = 0; i < kStrideB * kHeightB; ++i) { \
int abs_diff = \
abs(static_cast<int>(dst_argb_c[i]) - \
static_cast<int>(dst_argb_opt[i])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
EXPECT_LE(max_diff, DIFF); \
free_aligned_buffer_64(src_argb); \
free_aligned_buffer_64(dst_argb_c); \
free_aligned_buffer_64(dst_argb_opt); \
}
#define TESTATOBDRANDOM(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \
FMT_B, BPP_B, STRIDE_B, HEIGHT_B, DIFF) \
TEST_F(LibYUVConvertTest, FMT_A##To##FMT_B##Dither_Random) { \
for (int times = 0; times < benchmark_iterations_; ++times) { \
const int kWidth = (fastrand() & 63) + 1; \
const int kHeight = (fastrand() & 31) + 1; \
const int kHeightA = (kHeight + HEIGHT_A - 1) / HEIGHT_A * HEIGHT_A; \
const int kHeightB = (kHeight + HEIGHT_B - 1) / HEIGHT_B * HEIGHT_B; \
const int kStrideA = (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A;\
const int kStrideB = (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B;\
align_buffer_page_end(src_argb, kStrideA * kHeightA); \
align_buffer_page_end(dst_argb_c, kStrideB * kHeightB); \
align_buffer_page_end(dst_argb_opt, kStrideB * kHeightB); \
for (int i = 0; i < kStrideA * kHeightA; ++i) { \
src_argb[i] = (fastrand() & 0xff); \
} \
memset(dst_argb_c, 123, kStrideB * kHeightB); \
memset(dst_argb_opt, 123, kStrideB * kHeightB); \
MaskCpuFlags(disable_cpu_flags_); \
FMT_A##To##FMT_B##Dither(src_argb, kStrideA, \
dst_argb_c, kStrideB, \
NULL, kWidth, kHeight); \
MaskCpuFlags(benchmark_cpu_info_); \
FMT_A##To##FMT_B##Dither(src_argb, kStrideA, \
dst_argb_opt, kStrideB, \
NULL, kWidth, kHeight); \
int max_diff = 0; \
for (int i = 0; i < kStrideB * kHeightB; ++i) { \
int abs_diff = \
abs(static_cast<int>(dst_argb_c[i]) - \
static_cast<int>(dst_argb_opt[i])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
EXPECT_LE(max_diff, DIFF); \
free_aligned_buffer_page_end(src_argb); \
free_aligned_buffer_page_end(dst_argb_c); \
free_aligned_buffer_page_end(dst_argb_opt); \
} \
}
#define TESTATOBD(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \
FMT_B, BPP_B, STRIDE_B, HEIGHT_B, DIFF) \
TESTATOBDI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \
FMT_B, BPP_B, STRIDE_B, HEIGHT_B, \
benchmark_width_ - 4, DIFF, _Any, +, 0) \
TESTATOBDI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \
FMT_B, BPP_B, STRIDE_B, HEIGHT_B, \
benchmark_width_, DIFF, _Unaligned, +, 1) \
TESTATOBDI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \
FMT_B, BPP_B, STRIDE_B, HEIGHT_B, \
benchmark_width_, DIFF, _Invert, -, 0) \
TESTATOBDI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \
FMT_B, BPP_B, STRIDE_B, HEIGHT_B, \
benchmark_width_, DIFF, _Opt, +, 0) \
TESTATOBDRANDOM(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, \
FMT_B, BPP_B, STRIDE_B, HEIGHT_B, DIFF)
TESTATOBD(ARGB, 4, 4, 1, RGB565, 2, 2, 1, 0)
#define TESTSYMI(FMT_ATOB, BPP_A, STRIDE_A, HEIGHT_A, \
W1280, N, NEG, OFF) \
TEST_F(LibYUVConvertTest, FMT_ATOB##_Symetric##N) { \
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
const int kHeight = benchmark_height_; \
const int kHeightA = (kHeight + HEIGHT_A - 1) / HEIGHT_A * HEIGHT_A; \
const int kStrideA = (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A; \
align_buffer_64(src_argb, kStrideA * kHeightA + OFF); \
align_buffer_64(dst_argb_c, kStrideA * kHeightA); \
align_buffer_64(dst_argb_opt, kStrideA * kHeightA); \
for (int i = 0; i < kStrideA * kHeightA; ++i) { \
src_argb[i + OFF] = (fastrand() & 0xff); \
} \
memset(dst_argb_c, 1, kStrideA * kHeightA); \
memset(dst_argb_opt, 101, kStrideA * kHeightA); \
MaskCpuFlags(disable_cpu_flags_); \
FMT_ATOB(src_argb + OFF, kStrideA, \
dst_argb_c, kStrideA, \
kWidth, NEG kHeight); \
MaskCpuFlags(benchmark_cpu_info_); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_ATOB(src_argb + OFF, kStrideA, \
dst_argb_opt, kStrideA, \
kWidth, NEG kHeight); \
} \
MaskCpuFlags(disable_cpu_flags_); \
FMT_ATOB(dst_argb_c, kStrideA, \
dst_argb_c, kStrideA, \
kWidth, NEG kHeight); \
MaskCpuFlags(benchmark_cpu_info_); \
FMT_ATOB(dst_argb_opt, kStrideA, \
dst_argb_opt, kStrideA, \
kWidth, NEG kHeight); \
for (int i = 0; i < kStrideA * kHeightA; ++i) { \
EXPECT_EQ(src_argb[i + OFF], dst_argb_opt[i]); \
EXPECT_EQ(dst_argb_c[i], dst_argb_opt[i]); \
} \
free_aligned_buffer_64(src_argb); \
free_aligned_buffer_64(dst_argb_c); \
free_aligned_buffer_64(dst_argb_opt); \
}
#define TESTSYM(FMT_ATOB, BPP_A, STRIDE_A, HEIGHT_A) \
TESTSYMI(FMT_ATOB, BPP_A, STRIDE_A, HEIGHT_A, \
benchmark_width_ - 4, _Any, +, 0) \
TESTSYMI(FMT_ATOB, BPP_A, STRIDE_A, HEIGHT_A, \
benchmark_width_, _Unaligned, +, 1) \
TESTSYMI(FMT_ATOB, BPP_A, STRIDE_A, HEIGHT_A, \
benchmark_width_, _Opt, +, 0)
TESTSYM(ARGBToARGB, 4, 4, 1)
TESTSYM(ARGBToBGRA, 4, 4, 1)
TESTSYM(ARGBToABGR, 4, 4, 1)
TESTSYM(BGRAToARGB, 4, 4, 1)
TESTSYM(ABGRToARGB, 4, 4, 1)
TEST_F(LibYUVConvertTest, Test565) {
SIMD_ALIGNED(uint8 orig_pixels[256][4]);
SIMD_ALIGNED(uint8 pixels565[256][2]);
for (int i = 0; i < 256; ++i) {
for (int j = 0; j < 4; ++j) {
orig_pixels[i][j] = i;
}
}
ARGBToRGB565(&orig_pixels[0][0], 0, &pixels565[0][0], 0, 256, 1);
uint32 checksum = HashDjb2(&pixels565[0][0], sizeof(pixels565), 5381);
EXPECT_EQ(610919429u, checksum);
}
#ifdef HAVE_JPEG
TEST_F(LibYUVConvertTest, ValidateJpeg) {
const int kOff = 10;
const int kMinJpeg = 64;
const int kImageSize = benchmark_width_ * benchmark_height_ >= kMinJpeg ?
benchmark_width_ * benchmark_height_ : kMinJpeg;
const int kSize = kImageSize + kOff;
align_buffer_page_end(orig_pixels, kSize);
// No SOI or EOI. Expect fail.
memset(orig_pixels, 0, kSize);
EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize));
// Test special value that matches marker start.
memset(orig_pixels, 0xff, kSize);
EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize));
// EOI, SOI. Expect pass.
orig_pixels[0] = 0xff;
orig_pixels[1] = 0xd8; // SOI.
orig_pixels[kSize - kOff + 0] = 0xff;
orig_pixels[kSize - kOff + 1] = 0xd9; // EOI.
for (int times = 0; times < benchmark_iterations_; ++times) {
EXPECT_TRUE(ValidateJpeg(orig_pixels, kSize));
}
free_aligned_buffer_page_end(orig_pixels);
}
TEST_F(LibYUVConvertTest, ValidateJpegLarge) {
const int kOff = 10;
const int kMinJpeg = 64;
const int kImageSize = benchmark_width_ * benchmark_height_ >= kMinJpeg ?
benchmark_width_ * benchmark_height_ : kMinJpeg;
const int kSize = kImageSize + kOff;
const int kMultiple = 10;
const int kBufSize = kImageSize * kMultiple + kOff;
align_buffer_page_end(orig_pixels, kBufSize);
// No SOI or EOI. Expect fail.
memset(orig_pixels, 0, kBufSize);
EXPECT_FALSE(ValidateJpeg(orig_pixels, kBufSize));
// EOI, SOI. Expect pass.
orig_pixels[0] = 0xff;
orig_pixels[1] = 0xd8; // SOI.
orig_pixels[kSize - kOff + 0] = 0xff;
orig_pixels[kSize - kOff + 1] = 0xd9; // EOI.
for (int times = 0; times < benchmark_iterations_; ++times) {
EXPECT_TRUE(ValidateJpeg(orig_pixels, kBufSize));
}
free_aligned_buffer_page_end(orig_pixels);
}
TEST_F(LibYUVConvertTest, InvalidateJpeg) {
const int kOff = 10;
const int kMinJpeg = 64;
const int kImageSize = benchmark_width_ * benchmark_height_ >= kMinJpeg ?
benchmark_width_ * benchmark_height_ : kMinJpeg;
const int kSize = kImageSize + kOff;
align_buffer_page_end(orig_pixels, kSize);
// NULL pointer. Expect fail.
EXPECT_FALSE(ValidateJpeg(NULL, kSize));
// Negative size. Expect fail.
EXPECT_FALSE(ValidateJpeg(orig_pixels, -1));
// Too large size. Expect fail.
EXPECT_FALSE(ValidateJpeg(orig_pixels, 0xfb000000ull));
// No SOI or EOI. Expect fail.
memset(orig_pixels, 0, kSize);
EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize));
// SOI but no EOI. Expect fail.
orig_pixels[0] = 0xff;
orig_pixels[1] = 0xd8; // SOI.
for (int times = 0; times < benchmark_iterations_; ++times) {
EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize));
}
// EOI but no SOI. Expect fail.
orig_pixels[0] = 0;
orig_pixels[1] = 0;
orig_pixels[kSize - kOff + 0] = 0xff;
orig_pixels[kSize - kOff + 1] = 0xd9; // EOI.
EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize));
free_aligned_buffer_page_end(orig_pixels);
}
TEST_F(LibYUVConvertTest, FuzzJpeg) {
// SOI but no EOI. Expect fail.
for (int times = 0; times < benchmark_iterations_; ++times) {
const int kSize = fastrand() % 5000 + 2;
align_buffer_page_end(orig_pixels, kSize);
MemRandomize(orig_pixels, kSize);
// Add SOI so frame will be scanned.
orig_pixels[0] = 0xff;
orig_pixels[1] = 0xd8; // SOI.
orig_pixels[kSize - 1] = 0xff;
ValidateJpeg(orig_pixels, kSize); // Failure normally expected.
free_aligned_buffer_page_end(orig_pixels);
}
}
TEST_F(LibYUVConvertTest, MJPGToI420) {
const int kOff = 10;
const int kMinJpeg = 64;
const int kImageSize = benchmark_width_ * benchmark_height_ >= kMinJpeg ?
benchmark_width_ * benchmark_height_ : kMinJpeg;
const int kSize = kImageSize + kOff;
align_buffer_page_end(orig_pixels, kSize);
align_buffer_page_end(dst_y_opt, benchmark_width_ * benchmark_height_);
align_buffer_page_end(dst_u_opt,
SUBSAMPLE(benchmark_width_, 2) *
SUBSAMPLE(benchmark_height_, 2));
align_buffer_page_end(dst_v_opt,
SUBSAMPLE(benchmark_width_, 2) *
SUBSAMPLE(benchmark_height_, 2));
// EOI, SOI to make MJPG appear valid.
memset(orig_pixels, 0, kSize);
orig_pixels[0] = 0xff;
orig_pixels[1] = 0xd8; // SOI.
orig_pixels[kSize - kOff + 0] = 0xff;
orig_pixels[kSize - kOff + 1] = 0xd9; // EOI.
for (int times = 0; times < benchmark_iterations_; ++times) {
int ret = MJPGToI420(orig_pixels, kSize,
dst_y_opt, benchmark_width_,
dst_u_opt, SUBSAMPLE(benchmark_width_, 2),
dst_v_opt, SUBSAMPLE(benchmark_width_, 2),
benchmark_width_, benchmark_height_,
benchmark_width_, benchmark_height_);
// Expect failure because image is not really valid.
EXPECT_EQ(1, ret);
}
free_aligned_buffer_page_end(dst_y_opt);
free_aligned_buffer_page_end(dst_u_opt);
free_aligned_buffer_page_end(dst_v_opt);
free_aligned_buffer_page_end(orig_pixels);
}
TEST_F(LibYUVConvertTest, MJPGToARGB) {
const int kOff = 10;
const int kMinJpeg = 64;
const int kImageSize = benchmark_width_ * benchmark_height_ >= kMinJpeg ?
benchmark_width_ * benchmark_height_ : kMinJpeg;
const int kSize = kImageSize + kOff;
align_buffer_page_end(orig_pixels, kSize);
align_buffer_page_end(dst_argb_opt, benchmark_width_ * benchmark_height_ * 4);
// EOI, SOI to make MJPG appear valid.
memset(orig_pixels, 0, kSize);
orig_pixels[0] = 0xff;
orig_pixels[1] = 0xd8; // SOI.
orig_pixels[kSize - kOff + 0] = 0xff;
orig_pixels[kSize - kOff + 1] = 0xd9; // EOI.
for (int times = 0; times < benchmark_iterations_; ++times) {
int ret = MJPGToARGB(orig_pixels, kSize,
dst_argb_opt, benchmark_width_ * 4,
benchmark_width_, benchmark_height_,
benchmark_width_, benchmark_height_);
// Expect failure because image is not really valid.
EXPECT_EQ(1, ret);
}
free_aligned_buffer_page_end(dst_argb_opt);
free_aligned_buffer_page_end(orig_pixels);
}
#endif // HAVE_JPEG
TEST_F(LibYUVConvertTest, NV12Crop) {
const int SUBSAMP_X = 2;
const int SUBSAMP_Y = 2;
const int kWidth = benchmark_width_;
const int kHeight = benchmark_height_;
const int crop_y =
((benchmark_height_ - (benchmark_height_ * 360 / 480)) / 2 + 1) & ~1;
const int kDestWidth = benchmark_width_;
const int kDestHeight = benchmark_height_ - crop_y * 2;
const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X);
const int sample_size = kWidth * kHeight +
kStrideUV *
SUBSAMPLE(kHeight, SUBSAMP_Y) * 2;
align_buffer_64(src_y, sample_size);
uint8* src_uv = src_y + kWidth * kHeight;
align_buffer_64(dst_y, kDestWidth * kDestHeight);
align_buffer_64(dst_u,
SUBSAMPLE(kDestWidth, SUBSAMP_X) *
SUBSAMPLE(kDestHeight, SUBSAMP_Y));
align_buffer_64(dst_v,
SUBSAMPLE(kDestWidth, SUBSAMP_X) *
SUBSAMPLE(kDestHeight, SUBSAMP_Y));
align_buffer_64(dst_y_2, kDestWidth * kDestHeight);
align_buffer_64(dst_u_2,
SUBSAMPLE(kDestWidth, SUBSAMP_X) *
SUBSAMPLE(kDestHeight, SUBSAMP_Y));
align_buffer_64(dst_v_2,
SUBSAMPLE(kDestWidth, SUBSAMP_X) *
SUBSAMPLE(kDestHeight, SUBSAMP_Y));
for (int i = 0; i < kHeight * kWidth; ++i) {
src_y[i] = (fastrand() & 0xff);
}
for (int i = 0; i < (SUBSAMPLE(kHeight, SUBSAMP_Y) *
kStrideUV) * 2; ++i) {
src_uv[i] = (fastrand() & 0xff);
}
memset(dst_y, 1, kDestWidth * kDestHeight);
memset(dst_u, 2, SUBSAMPLE(kDestWidth, SUBSAMP_X) *
SUBSAMPLE(kDestHeight, SUBSAMP_Y));
memset(dst_v, 3, SUBSAMPLE(kDestWidth, SUBSAMP_X) *
SUBSAMPLE(kDestHeight, SUBSAMP_Y));
memset(dst_y_2, 1, kDestWidth * kDestHeight);
memset(dst_u_2, 2, SUBSAMPLE(kDestWidth, SUBSAMP_X) *
SUBSAMPLE(kDestHeight, SUBSAMP_Y));
memset(dst_v_2, 3, SUBSAMPLE(kDestWidth, SUBSAMP_X) *
SUBSAMPLE(kDestHeight, SUBSAMP_Y));
ConvertToI420(src_y, sample_size,
dst_y_2, kDestWidth,
dst_u_2, SUBSAMPLE(kDestWidth, SUBSAMP_X),
dst_v_2, SUBSAMPLE(kDestWidth, SUBSAMP_X),
0, crop_y,
kWidth, kHeight,
kDestWidth, kDestHeight,
libyuv::kRotate0, libyuv::FOURCC_NV12);
NV12ToI420(src_y + crop_y * kWidth, kWidth,
src_uv + (crop_y / 2) * kStrideUV * 2,
kStrideUV * 2,
dst_y, kDestWidth,
dst_u, SUBSAMPLE(kDestWidth, SUBSAMP_X),
dst_v, SUBSAMPLE(kDestWidth, SUBSAMP_X),
kDestWidth, kDestHeight);
for (int i = 0; i < kDestHeight; ++i) {
for (int j = 0; j < kDestWidth; ++j) {
EXPECT_EQ(dst_y[i * kWidth + j], dst_y_2[i * kWidth + j]);
}
}
for (int i = 0; i < SUBSAMPLE(kDestHeight, SUBSAMP_Y); ++i) {
for (int j = 0; j < SUBSAMPLE(kDestWidth, SUBSAMP_X); ++j) {
EXPECT_EQ(dst_u[i * SUBSAMPLE(kDestWidth, SUBSAMP_X) + j],
dst_u_2[i * SUBSAMPLE(kDestWidth, SUBSAMP_X) + j]);
}
}
for (int i = 0; i < SUBSAMPLE(kDestHeight, SUBSAMP_Y); ++i) {
for (int j = 0; j < SUBSAMPLE(kDestWidth, SUBSAMP_X); ++j) {
EXPECT_EQ(dst_v[i * SUBSAMPLE(kDestWidth, SUBSAMP_X) + j],
dst_v_2[i * SUBSAMPLE(kDestWidth, SUBSAMP_X) + j]);
}
}
free_aligned_buffer_64(dst_y);
free_aligned_buffer_64(dst_u);
free_aligned_buffer_64(dst_v);
free_aligned_buffer_64(dst_y_2);
free_aligned_buffer_64(dst_u_2);
free_aligned_buffer_64(dst_v_2);
free_aligned_buffer_64(src_y);
}
TEST_F(LibYUVConvertTest, TestYToARGB) {
uint8 y[32];
uint8 expectedg[32];
for (int i = 0; i < 32; ++i) {
y[i] = i * 5 + 17;
expectedg[i] = static_cast<int>((y[i] - 16) * 1.164f + 0.5f);
}
uint8 argb[32 * 4];
YToARGB(y, 0, argb, 0, 32, 1);
for (int i = 0; i < 32; ++i) {
printf("%2d %d: %d <-> %d,%d,%d,%d\n", i, y[i], expectedg[i],
argb[i * 4 + 0],
argb[i * 4 + 1],
argb[i * 4 + 2],
argb[i * 4 + 3]);
}
for (int i = 0; i < 32; ++i) {
EXPECT_EQ(expectedg[i], argb[i * 4 + 0]);
}
}
static const uint8 kNoDither4x4[16] = {
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
};
TEST_F(LibYUVConvertTest, TestNoDither) {
align_buffer_64(src_argb, benchmark_width_ * benchmark_height_ * 4);
align_buffer_64(dst_rgb565, benchmark_width_ * benchmark_height_ * 2);
align_buffer_64(dst_rgb565dither, benchmark_width_ * benchmark_height_ * 2);
MemRandomize(src_argb, benchmark_width_ * benchmark_height_ * 4);
MemRandomize(dst_rgb565, benchmark_width_ * benchmark_height_ * 2);
MemRandomize(dst_rgb565dither, benchmark_width_ * benchmark_height_ * 2);
ARGBToRGB565(src_argb, benchmark_width_ * 4,
dst_rgb565, benchmark_width_ * 2,
benchmark_width_, benchmark_height_);
ARGBToRGB565Dither(src_argb, benchmark_width_ * 4,
dst_rgb565dither, benchmark_width_ * 2,
kNoDither4x4, benchmark_width_, benchmark_height_);
for (int i = 0; i < benchmark_width_ * benchmark_height_ * 2; ++i) {
EXPECT_EQ(dst_rgb565[i], dst_rgb565dither[i]);
}
free_aligned_buffer_64(src_argb);
free_aligned_buffer_64(dst_rgb565);
free_aligned_buffer_64(dst_rgb565dither);
}
// Ordered 4x4 dither for 888 to 565. Values from 0 to 7.
static const uint8 kDither565_4x4[16] = {
0, 4, 1, 5,
6, 2, 7, 3,
1, 5, 0, 4,
7, 3, 6, 2,
};
TEST_F(LibYUVConvertTest, TestDither) {
align_buffer_64(src_argb, benchmark_width_ * benchmark_height_ * 4);
align_buffer_64(dst_rgb565, benchmark_width_ * benchmark_height_ * 2);
align_buffer_64(dst_rgb565dither, benchmark_width_ * benchmark_height_ * 2);
align_buffer_64(dst_argb, benchmark_width_ * benchmark_height_ * 4);
align_buffer_64(dst_argbdither, benchmark_width_ * benchmark_height_ * 4);
MemRandomize(src_argb, benchmark_width_ * benchmark_height_ * 4);
MemRandomize(dst_rgb565, benchmark_width_ * benchmark_height_ * 2);
MemRandomize(dst_rgb565dither, benchmark_width_ * benchmark_height_ * 2);
MemRandomize(dst_argb, benchmark_width_ * benchmark_height_ * 4);
MemRandomize(dst_argbdither, benchmark_width_ * benchmark_height_ * 4);
ARGBToRGB565(src_argb, benchmark_width_ * 4,
dst_rgb565, benchmark_width_ * 2,
benchmark_width_, benchmark_height_);
ARGBToRGB565Dither(src_argb, benchmark_width_ * 4,
dst_rgb565dither, benchmark_width_ * 2,
kDither565_4x4, benchmark_width_, benchmark_height_);
RGB565ToARGB(dst_rgb565, benchmark_width_ * 2,
dst_argb, benchmark_width_ * 4,
benchmark_width_, benchmark_height_);
RGB565ToARGB(dst_rgb565dither, benchmark_width_ * 2,
dst_argbdither, benchmark_width_ * 4,
benchmark_width_, benchmark_height_);
for (int i = 0; i < benchmark_width_ * benchmark_height_ * 4; ++i) {
EXPECT_NEAR(dst_argb[i], dst_argbdither[i], 9);
}
free_aligned_buffer_64(src_argb);
free_aligned_buffer_64(dst_rgb565);
free_aligned_buffer_64(dst_rgb565dither);
free_aligned_buffer_64(dst_argb);
free_aligned_buffer_64(dst_argbdither);
}
#define TESTPLANARTOBID(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, W1280, DIFF, N, NEG, OFF, FMT_C, BPP_C) \
TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##Dither##N) { \
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
const int kHeight = ALIGNINT(benchmark_height_, YALIGN); \
const int kStrideB = ALIGNINT(kWidth * BPP_B, ALIGN); \
const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X); \
const int kSizeUV = kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y); \
align_buffer_64(src_y, kWidth * kHeight + OFF); \
align_buffer_64(src_u, kSizeUV + OFF); \
align_buffer_64(src_v, kSizeUV + OFF); \
align_buffer_64(dst_argb_c, kStrideB * kHeight + OFF); \
align_buffer_64(dst_argb_opt, kStrideB * kHeight + OFF); \
for (int i = 0; i < kWidth * kHeight; ++i) { \
src_y[i + OFF] = (fastrand() & 0xff); \
} \
for (int i = 0; i < kSizeUV; ++i) { \
src_u[i + OFF] = (fastrand() & 0xff); \
src_v[i + OFF] = (fastrand() & 0xff); \
} \
memset(dst_argb_c + OFF, 1, kStrideB * kHeight); \
memset(dst_argb_opt + OFF, 101, kStrideB * kHeight); \
MaskCpuFlags(disable_cpu_flags_); \
FMT_PLANAR##To##FMT_B##Dither(src_y + OFF, kWidth, \
src_u + OFF, kStrideUV, \
src_v + OFF, kStrideUV, \
dst_argb_c + OFF, kStrideB, \
NULL, kWidth, NEG kHeight); \
MaskCpuFlags(benchmark_cpu_info_); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_PLANAR##To##FMT_B##Dither(src_y + OFF, kWidth, \
src_u + OFF, kStrideUV, \
src_v + OFF, kStrideUV, \
dst_argb_opt + OFF, kStrideB, \
NULL, kWidth, NEG kHeight); \
} \
int max_diff = 0; \
/* Convert to ARGB so 565 is expanded to bytes that can be compared. */ \
align_buffer_64(dst_argb32_c, kWidth * BPP_C * kHeight); \
align_buffer_64(dst_argb32_opt, kWidth * BPP_C * kHeight); \
memset(dst_argb32_c, 2, kWidth * BPP_C * kHeight); \
memset(dst_argb32_opt, 102, kWidth * BPP_C * kHeight); \
FMT_B##To##FMT_C(dst_argb_c + OFF, kStrideB, \
dst_argb32_c, kWidth * BPP_C , \
kWidth, kHeight); \
FMT_B##To##FMT_C(dst_argb_opt + OFF, kStrideB, \
dst_argb32_opt, kWidth * BPP_C , \
kWidth, kHeight); \
for (int i = 0; i < kWidth * BPP_C * kHeight; ++i) { \
int abs_diff = \
abs(static_cast<int>(dst_argb32_c[i]) - \
static_cast<int>(dst_argb32_opt[i])); \
if (abs_diff > max_diff) { \
max_diff = abs_diff; \
} \
} \
EXPECT_LE(max_diff, DIFF); \
free_aligned_buffer_64(src_y); \
free_aligned_buffer_64(src_u); \
free_aligned_buffer_64(src_v); \
free_aligned_buffer_64(dst_argb_c); \
free_aligned_buffer_64(dst_argb_opt); \
free_aligned_buffer_64(dst_argb32_c); \
free_aligned_buffer_64(dst_argb32_opt); \
}
#define TESTPLANARTOBD(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, DIFF, FMT_C, BPP_C) \
TESTPLANARTOBID(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, benchmark_width_ - 4, DIFF, _Any, +, 0, FMT_C, BPP_C) \
TESTPLANARTOBID(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, benchmark_width_, DIFF, _Unaligned, +, 1, FMT_C, BPP_C) \
TESTPLANARTOBID(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, benchmark_width_, DIFF, _Invert, -, 0, FMT_C, BPP_C) \
TESTPLANARTOBID(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \
YALIGN, benchmark_width_, DIFF, _Opt, +, 0, FMT_C, BPP_C)
TESTPLANARTOBD(I420, 2, 2, RGB565, 2, 2, 1, 9, ARGB, 4)
#define TESTPTOB(NAME, UYVYTOI420, UYVYTONV12) \
TEST_F(LibYUVConvertTest, NAME) { \
const int kWidth = benchmark_width_; \
const int kHeight = benchmark_height_; \
\
align_buffer_64(orig_uyvy, \
4 * SUBSAMPLE(kWidth, 2) * kHeight); \
align_buffer_64(orig_y, kWidth * kHeight); \
align_buffer_64(orig_u, \
SUBSAMPLE(kWidth, 2) * \
SUBSAMPLE(kHeight, 2)); \
align_buffer_64(orig_v, \
SUBSAMPLE(kWidth, 2) * \
SUBSAMPLE(kHeight, 2)); \
\
align_buffer_64(dst_y_orig, kWidth * kHeight); \
align_buffer_64(dst_uv_orig, 2 * \
SUBSAMPLE(kWidth, 2) * \
SUBSAMPLE(kHeight, 2)); \
\
align_buffer_64(dst_y, kWidth * kHeight); \
align_buffer_64(dst_uv, 2 * \
SUBSAMPLE(kWidth, 2) * \
SUBSAMPLE(kHeight, 2)); \
\
MemRandomize(orig_uyvy, 4 * SUBSAMPLE(kWidth, 2) * kHeight); \
\
/* Convert UYVY to NV12 in 2 steps for reference */ \
libyuv::UYVYTOI420(orig_uyvy, 4 * SUBSAMPLE(kWidth, 2), \
orig_y, kWidth, \
orig_u, SUBSAMPLE(kWidth, 2), \
orig_v, SUBSAMPLE(kWidth, 2), \
kWidth, kHeight); \
libyuv::I420ToNV12(orig_y, kWidth, \
orig_u, SUBSAMPLE(kWidth, 2), \
orig_v, SUBSAMPLE(kWidth, 2), \
dst_y_orig, kWidth, \
dst_uv_orig, 2 * SUBSAMPLE(kWidth, 2), \
kWidth, kHeight); \
\
/* Convert to NV12 */ \
for (int i = 0; i < benchmark_iterations_; ++i) { \
libyuv::UYVYTONV12(orig_uyvy, 4 * SUBSAMPLE(kWidth, 2), \
dst_y, kWidth, \
dst_uv, 2 * SUBSAMPLE(kWidth, 2), \
kWidth, kHeight); \
} \
\
for (int i = 0; i < kWidth * kHeight; ++i) { \
EXPECT_EQ(orig_y[i], dst_y[i]); \
} \
for (int i = 0; i < kWidth * kHeight; ++i) { \
EXPECT_EQ(dst_y_orig[i], dst_y[i]); \
} \
for (int i = 0; i < 2 * SUBSAMPLE(kWidth, 2) * SUBSAMPLE(kHeight, 2); ++i) { \
EXPECT_EQ(dst_uv_orig[i], dst_uv[i]); \
} \
\
free_aligned_buffer_64(orig_uyvy); \
free_aligned_buffer_64(orig_y); \
free_aligned_buffer_64(orig_u); \
free_aligned_buffer_64(orig_v); \
free_aligned_buffer_64(dst_y_orig); \
free_aligned_buffer_64(dst_uv_orig); \
free_aligned_buffer_64(dst_y); \
free_aligned_buffer_64(dst_uv); \
}
TESTPTOB(TestYUY2ToNV12, YUY2ToI420, YUY2ToNV12)
TESTPTOB(TestUYVYToNV12, UYVYToI420, UYVYToNV12)
#define TESTPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \
W1280, N, NEG, OFF, FMT_C, BPP_C) \
TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##_##FMT_C##N) { \
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
const int kHeight = benchmark_height_; \
const int kStrideB = SUBSAMPLE(kWidth, SUB_B) * BPP_B; \
const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X); \
const int kSizeUV = kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y); \
align_buffer_64(src_y, kWidth * kHeight + OFF); \
align_buffer_64(src_u, kSizeUV + OFF); \
align_buffer_64(src_v, kSizeUV + OFF); \
align_buffer_64(dst_argb_b, kStrideB * kHeight + OFF); \
for (int i = 0; i < kWidth * kHeight; ++i) { \
src_y[i + OFF] = (fastrand() & 0xff); \
} \
for (int i = 0; i < kSizeUV; ++i) { \
src_u[i + OFF] = (fastrand() & 0xff); \
src_v[i + OFF] = (fastrand() & 0xff); \
} \
memset(dst_argb_b + OFF, 1, kStrideB * kHeight); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, \
src_u + OFF, kStrideUV, \
src_v + OFF, kStrideUV, \
dst_argb_b + OFF, kStrideB, \
kWidth, NEG kHeight); \
} \
/* Convert to a 3rd format in 1 step and 2 steps and compare */ \
const int kStrideC = kWidth * BPP_C; \
align_buffer_64(dst_argb_c, kStrideC * kHeight + OFF); \
align_buffer_64(dst_argb_bc, kStrideC * kHeight + OFF); \
memset(dst_argb_c + OFF, 2, kStrideC * kHeight); \
memset(dst_argb_bc + OFF, 3, kStrideC * kHeight); \
FMT_PLANAR##To##FMT_C(src_y + OFF, kWidth, \
src_u + OFF, kStrideUV, \
src_v + OFF, kStrideUV, \
dst_argb_c + OFF, kStrideC, \
kWidth, NEG kHeight); \
/* Convert B to C */ \
FMT_B##To##FMT_C(dst_argb_b + OFF, kStrideB, \
dst_argb_bc + OFF, kStrideC, \
kWidth, kHeight); \
for (int i = 0; i < kStrideC * kHeight; ++i) { \
EXPECT_EQ(dst_argb_c[i + OFF], dst_argb_bc[i + OFF]); \
} \
free_aligned_buffer_64(src_y); \
free_aligned_buffer_64(src_u); \
free_aligned_buffer_64(src_v); \
free_aligned_buffer_64(dst_argb_b); \
free_aligned_buffer_64(dst_argb_c); \
free_aligned_buffer_64(dst_argb_bc); \
}
#define TESTPLANARTOE(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \
FMT_C, BPP_C) \
TESTPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \
benchmark_width_ - 4, _Any, +, 0, FMT_C, BPP_C) \
TESTPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \
benchmark_width_, _Unaligned, +, 1, FMT_C, BPP_C) \
TESTPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \
benchmark_width_, _Invert, -, 0, FMT_C, BPP_C) \
TESTPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \
benchmark_width_, _Opt, +, 0, FMT_C, BPP_C)
TESTPLANARTOE(I420, 2, 2, ARGB, 1, 4, ABGR, 4)
TESTPLANARTOE(J420, 2, 2, ARGB, 1, 4, ARGB, 4)
TESTPLANARTOE(J420, 2, 2, ABGR, 1, 4, ARGB, 4)
TESTPLANARTOE(H420, 2, 2, ARGB, 1, 4, ARGB, 4)
TESTPLANARTOE(H420, 2, 2, ABGR, 1, 4, ARGB, 4)
TESTPLANARTOE(I420, 2, 2, BGRA, 1, 4, ARGB, 4)
TESTPLANARTOE(I420, 2, 2, ABGR, 1, 4, ARGB, 4)
TESTPLANARTOE(I420, 2, 2, RGBA, 1, 4, ARGB, 4)
TESTPLANARTOE(I420, 2, 2, RGB24, 1, 3, ARGB, 4)
TESTPLANARTOE(I420, 2, 2, RAW, 1, 3, RGB24, 3)
TESTPLANARTOE(I420, 2, 2, RGB24, 1, 3, RAW, 3)
TESTPLANARTOE(I420, 2, 2, ARGB, 1, 4, RAW, 3)
TESTPLANARTOE(I420, 2, 2, RAW, 1, 3, ARGB, 4)
TESTPLANARTOE(I420, 2, 2, ARGB, 1, 4, RGB565, 2)
TESTPLANARTOE(I420, 2, 2, ARGB, 1, 4, ARGB1555, 2)
TESTPLANARTOE(I420, 2, 2, ARGB, 1, 4, ARGB4444, 2)
TESTPLANARTOE(I422, 2, 1, ARGB, 1, 4, ARGB, 4)
TESTPLANARTOE(J422, 2, 1, ARGB, 1, 4, ARGB, 4)
TESTPLANARTOE(J422, 2, 1, ABGR, 1, 4, ARGB, 4)
TESTPLANARTOE(H422, 2, 1, ARGB, 1, 4, ARGB, 4)
TESTPLANARTOE(H422, 2, 1, ABGR, 1, 4, ARGB, 4)
TESTPLANARTOE(I422, 2, 1, BGRA, 1, 4, ARGB, 4)
TESTPLANARTOE(I422, 2, 1, ABGR, 1, 4, ARGB, 4)
TESTPLANARTOE(I422, 2, 1, RGBA, 1, 4, ARGB, 4)
TESTPLANARTOE(I411, 4, 1, ARGB, 1, 4, ARGB, 4)
TESTPLANARTOE(I444, 1, 1, ARGB, 1, 4, ARGB, 4)
TESTPLANARTOE(J444, 1, 1, ARGB, 1, 4, ARGB, 4)
TESTPLANARTOE(I444, 1, 1, ABGR, 1, 4, ARGB, 4)
TESTPLANARTOE(I420, 2, 2, YUY2, 2, 4, ARGB, 4)
TESTPLANARTOE(I420, 2, 2, UYVY, 2, 4, ARGB, 4)
TESTPLANARTOE(I422, 2, 1, YUY2, 2, 4, ARGB, 4)
TESTPLANARTOE(I422, 2, 1, UYVY, 2, 4, ARGB, 4)
#define TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \
W1280, N, NEG, OFF, FMT_C, BPP_C, ATTEN) \
TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##_##FMT_C##N) { \
const int kWidth = ((W1280) > 0) ? (W1280) : 1; \
const int kHeight = benchmark_height_; \
const int kStrideB = SUBSAMPLE(kWidth, SUB_B) * BPP_B; \
const int kSizeUV = \
SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y); \
align_buffer_64(src_y, kWidth * kHeight + OFF); \
align_buffer_64(src_u, kSizeUV + OFF); \
align_buffer_64(src_v, kSizeUV + OFF); \
align_buffer_64(src_a, kWidth * kHeight + OFF); \
align_buffer_64(dst_argb_b, kStrideB * kHeight + OFF); \
for (int i = 0; i < kWidth * kHeight; ++i) { \
src_y[i + OFF] = (fastrand() & 0xff); \
src_a[i + OFF] = (fastrand() & 0xff); \
} \
for (int i = 0; i < kSizeUV; ++i) { \
src_u[i + OFF] = (fastrand() & 0xff); \
src_v[i + OFF] = (fastrand() & 0xff); \
} \
memset(dst_argb_b + OFF, 1, kStrideB * kHeight); \
for (int i = 0; i < benchmark_iterations_; ++i) { \
FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, \
src_u + OFF, SUBSAMPLE(kWidth, SUBSAMP_X), \
src_v + OFF, SUBSAMPLE(kWidth, SUBSAMP_X), \
src_a + OFF, kWidth, \
dst_argb_b + OFF, kStrideB, \
kWidth, NEG kHeight, ATTEN); \
} \
int max_diff = 0; \
/* Convert to a 3rd format in 1 step and 2 steps and compare */ \
const int kStrideC = kWidth * BPP_C; \
align_buffer_64(dst_argb_c, kStrideC * kHeight + OFF); \
align_buffer_64(dst_argb_bc, kStrideC * kHeight + OFF); \
memset(dst_argb_c + OFF, 2, kStrideC * kHeight); \
memset(dst_argb_bc + OFF, 3, kStrideC * kHeight); \
FMT_PLANAR##To##FMT_C(src_y + OFF, kWidth, \
src_u + OFF, SUBSAMPLE(kWidth, SUBSAMP_X), \
src_v + OFF, SUBSAMPLE(kWidth, SUBSAMP_X), \
src_a + OFF, kWidth, \
dst_argb_c + OFF, kStrideC, \
kWidth, NEG kHeight, ATTEN); \
/* Convert B to C */ \
FMT_B##To##FMT_C(dst_argb_b + OFF, kStrideB, \
dst_argb_bc + OFF, kStrideC, \
kWidth, kHeight); \
for (int i = 0; i < kStrideC * kHeight; ++i) { \
EXPECT_EQ(dst_argb_c[i + OFF], dst_argb_bc[i + OFF]); \
} \
free_aligned_buffer_64(src_y); \
free_aligned_buffer_64(src_u); \
free_aligned_buffer_64(src_v); \
free_aligned_buffer_64(src_a); \
free_aligned_buffer_64(dst_argb_b); \
free_aligned_buffer_64(dst_argb_c); \
free_aligned_buffer_64(dst_argb_bc); \
}
#define TESTQPLANARTOE(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \
FMT_C, BPP_C) \
TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \
benchmark_width_ - 4, _Any, +, 0, FMT_C, BPP_C, 0) \
TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \
benchmark_width_, _Unaligned, +, 1, FMT_C, BPP_C, 0) \
TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \
benchmark_width_, _Invert, -, 0, FMT_C, BPP_C, 0) \
TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \
benchmark_width_, _Opt, +, 0, FMT_C, BPP_C, 0) \
TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \
benchmark_width_, _Premult, +, 0, FMT_C, BPP_C, 1)
TESTQPLANARTOE(I420Alpha, 2, 2, ARGB, 1, 4, ABGR, 4)
TESTQPLANARTOE(I420Alpha, 2, 2, ABGR, 1, 4, ARGB, 4)
} // namespace libyuv