freeswitch/libs/silk/src/SKP_Silk_burg_modified.c

229 lines
14 KiB
C

/***********************************************************************
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, (subject to the limitations in the disclaimer below)
are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Skype Limited, nor the names of specific
contributors, may be used to endorse or promote products derived from
this software without specific prior written permission.
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED
BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/
/* *
* SKP_Silk_burg_modified.c *
* *
* Calculates the reflection coefficients from the input vector *
* Input vector contains nb_subfr sub vectors of length L_sub + D *
* *
* Copyright 2009 (c), Skype Limited *
* Date: 100105 *
*/
#include "SKP_Silk_SigProc_FIX.h"
#define MAX_FRAME_SIZE 544 // subfr_length * nb_subfr = ( 0.005 * 24000 + 16 ) * 4 = 544
#define MAX_NB_SUBFR 4
#define QA 25
#define N_BITS_HEAD_ROOM 2
#define MIN_RSHIFTS -16
#define MAX_RSHIFTS (32 - QA)
/* Compute reflection coefficients from input signal */
void SKP_Silk_burg_modified(
SKP_int32 *res_nrg, /* O residual energy */
SKP_int *res_nrg_Q, /* O residual energy Q value */
SKP_int32 A_Q16[], /* O prediction coefficients (length order) */
const SKP_int16 x[], /* I input signal, length: nb_subfr * ( D + subfr_length ) */
const SKP_int subfr_length, /* I input signal subframe length (including D preceeding samples) */
const SKP_int nb_subfr, /* I number of subframes stacked in x */
const SKP_int32 WhiteNoiseFrac_Q32, /* I fraction added to zero-lag autocorrelation */
const SKP_int D /* I order */
)
{
SKP_int k, n, s, lz, rshifts, rshifts_extra;
SKP_int32 C0, num, nrg, rc_Q31, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
const SKP_int16 *x_ptr;
SKP_int32 C_first_row[ SKP_Silk_MAX_ORDER_LPC ];
SKP_int32 C_last_row[ SKP_Silk_MAX_ORDER_LPC ];
SKP_int32 Af_QA[ SKP_Silk_MAX_ORDER_LPC ];
SKP_int32 CAf[ SKP_Silk_MAX_ORDER_LPC + 1 ];
SKP_int32 CAb[ SKP_Silk_MAX_ORDER_LPC + 1 ];
SKP_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
SKP_assert( nb_subfr <= MAX_NB_SUBFR );
/* Compute autocorrelations, added over subframes */
SKP_Silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length );
if( rshifts > MAX_RSHIFTS ) {
C0 = SKP_LSHIFT32( C0, rshifts - MAX_RSHIFTS );
SKP_assert( C0 > 0 );
rshifts = MAX_RSHIFTS;
} else {
lz = SKP_Silk_CLZ32( C0 ) - 1;
rshifts_extra = N_BITS_HEAD_ROOM - lz;
if( rshifts_extra > 0 ) {
rshifts_extra = SKP_min( rshifts_extra, MAX_RSHIFTS - rshifts );
C0 = SKP_RSHIFT32( C0, rshifts_extra );
} else {
rshifts_extra = SKP_max( rshifts_extra, MIN_RSHIFTS - rshifts );
C0 = SKP_LSHIFT32( C0, -rshifts_extra );
}
rshifts += rshifts_extra;
}
SKP_memset( C_first_row, 0, SKP_Silk_MAX_ORDER_LPC * sizeof( SKP_int32 ) );
if( rshifts > 0 ) {
for( s = 0; s < nb_subfr; s++ ) {
x_ptr = x + s * subfr_length;
for( n = 1; n < D + 1; n++ ) {
C_first_row[ n - 1 ] += (SKP_int32)SKP_RSHIFT64(
SKP_Silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n ), rshifts );
}
}
} else {
for( s = 0; s < nb_subfr; s++ ) {
x_ptr = x + s * subfr_length;
for( n = 1; n < D + 1; n++ ) {
C_first_row[ n - 1 ] += SKP_LSHIFT32(
SKP_Silk_inner_prod_aligned( x_ptr, x_ptr + n, subfr_length - n ), -rshifts );
}
}
}
SKP_memcpy( C_last_row, C_first_row, SKP_Silk_MAX_ORDER_LPC * sizeof( SKP_int32 ) );
/* Initialize */
CAb[ 0 ] = CAf[ 0 ] = C0 + SKP_SMMUL( WhiteNoiseFrac_Q32, C0 ) + 1; // Q(-rshifts)
for( n = 0; n < D; n++ ) {
/* Update first row of correlation matrix (without first element) */
/* Update last row of correlation matrix (without last element, stored in reversed order) */
/* Update C * Af */
/* Update C * flipud(Af) (stored in reversed order) */
if( rshifts > -2 ) {
for( s = 0; s < nb_subfr; s++ ) {
x_ptr = x + s * subfr_length;
x1 = -SKP_LSHIFT32( (SKP_int32)x_ptr[ n ], 16 - rshifts ); // Q(16-rshifts)
x2 = -SKP_LSHIFT32( (SKP_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts ); // Q(16-rshifts)
tmp1 = SKP_LSHIFT32( (SKP_int32)x_ptr[ n ], QA - 16 ); // Q(QA-16)
tmp2 = SKP_LSHIFT32( (SKP_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); // Q(QA-16)
for( k = 0; k < n; k++ ) {
C_first_row[ k ] = SKP_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); // Q( -rshifts )
C_last_row[ k ] = SKP_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); // Q( -rshifts )
Atmp_QA = Af_QA[ k ];
tmp1 = SKP_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); // Q(QA-16)
tmp2 = SKP_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); // Q(QA-16)
}
tmp1 = SKP_LSHIFT32( -tmp1, 32 - QA - rshifts ); // Q(16-rshifts)
tmp2 = SKP_LSHIFT32( -tmp2, 32 - QA - rshifts ); // Q(16-rshifts)
for( k = 0; k <= n; k++ ) {
CAf[ k ] = SKP_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); // Q( -rshift )
CAb[ k ] = SKP_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); // Q( -rshift )
}
}
} else {
for( s = 0; s < nb_subfr; s++ ) {
x_ptr = x + s * subfr_length;
x1 = -SKP_LSHIFT32( (SKP_int32)x_ptr[ n ], -rshifts ); // Q( -rshifts )
x2 = -SKP_LSHIFT32( (SKP_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); // Q( -rshifts )
tmp1 = SKP_LSHIFT32( (SKP_int32)x_ptr[ n ], 17 ); // Q17
tmp2 = SKP_LSHIFT32( (SKP_int32)x_ptr[ subfr_length - n - 1 ], 17 ); // Q17
for( k = 0; k < n; k++ ) {
C_first_row[ k ] = SKP_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); // Q( -rshifts )
C_last_row[ k ] = SKP_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); // Q( -rshifts )
Atmp1 = SKP_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); // Q17
tmp1 = SKP_MLA( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); // Q17
tmp2 = SKP_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); // Q17
}
tmp1 = -tmp1; // Q17
tmp2 = -tmp2; // Q17
for( k = 0; k <= n; k++ ) {
CAf[ k ] = SKP_SMLAWW( CAf[ k ], tmp1,
SKP_LSHIFT32( (SKP_int32)x_ptr[ n - k ], -rshifts - 1 ) ); // Q( -rshift )
CAb[ k ] = SKP_SMLAWW( CAb[ k ], tmp2,
SKP_LSHIFT32( (SKP_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) );// Q( -rshift )
}
}
}
/* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
tmp1 = C_first_row[ n ]; // Q( -rshifts )
tmp2 = C_last_row[ n ]; // Q( -rshifts )
num = 0; // Q( -rshifts )
nrg = SKP_ADD32( CAb[ 0 ], CAf[ 0 ] ); // Q( 1-rshifts )
for( k = 0; k < n; k++ ) {
Atmp_QA = Af_QA[ k ];
lz = SKP_Silk_CLZ32( SKP_abs( Atmp_QA ) ) - 1;
lz = SKP_min( 32 - QA, lz );
Atmp1 = SKP_LSHIFT32( Atmp_QA, lz ); // Q( QA + lz )
tmp1 = SKP_ADD_LSHIFT32( tmp1, SKP_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); // Q( -rshifts )
tmp2 = SKP_ADD_LSHIFT32( tmp2, SKP_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); // Q( -rshifts )
num = SKP_ADD_LSHIFT32( num, SKP_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); // Q( -rshifts )
nrg = SKP_ADD_LSHIFT32( nrg, SKP_SMMUL( SKP_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ),
Atmp1 ), 32 - QA - lz ); // Q( 1-rshifts )
}
CAf[ n + 1 ] = tmp1; // Q( -rshifts )
CAb[ n + 1 ] = tmp2; // Q( -rshifts )
num = SKP_ADD32( num, tmp2 ); // Q( -rshifts )
num = SKP_LSHIFT32( -num, 1 ); // Q( 1-rshifts )
/* Calculate the next order reflection (parcor) coefficient */
if( SKP_abs( num ) < nrg ) {
rc_Q31 = SKP_DIV32_varQ( num, nrg, 31 );
} else {
/* Negative energy or ratio too high; set remaining coefficients to zero and exit loop */
SKP_memset( &Af_QA[ n ], 0, ( D - n ) * sizeof( SKP_int32 ) );
SKP_assert( 0 );
break;
}
/* Update the AR coefficients */
for( k = 0; k < (n + 1) >> 1; k++ ) {
tmp1 = Af_QA[ k ]; // QA
tmp2 = Af_QA[ n - k - 1 ]; // QA
Af_QA[ k ] = SKP_ADD_LSHIFT32( tmp1, SKP_SMMUL( tmp2, rc_Q31 ), 1 ); // QA
Af_QA[ n - k - 1 ] = SKP_ADD_LSHIFT32( tmp2, SKP_SMMUL( tmp1, rc_Q31 ), 1 ); // QA
}
Af_QA[ n ] = SKP_RSHIFT32( rc_Q31, 31 - QA ); // QA
/* Update C * Af and C * Ab */
for( k = 0; k <= n + 1; k++ ) {
tmp1 = CAf[ k ]; // Q( -rshifts )
tmp2 = CAb[ n - k + 1 ]; // Q( -rshifts )
CAf[ k ] = SKP_ADD_LSHIFT32( tmp1, SKP_SMMUL( tmp2, rc_Q31 ), 1 ); // Q( -rshifts )
CAb[ n - k + 1 ] = SKP_ADD_LSHIFT32( tmp2, SKP_SMMUL( tmp1, rc_Q31 ), 1 ); // Q( -rshifts )
}
}
/* Return residual energy */
nrg = CAf[ 0 ]; // Q( -rshifts )
tmp1 = 1 << 16; // Q16
for( k = 0; k < D; k++ ) {
Atmp1 = SKP_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); // Q16
nrg = SKP_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); // Q( -rshifts )
tmp1 = SKP_SMLAWW( tmp1, Atmp1, Atmp1 ); // Q16
A_Q16[ k ] = -Atmp1;
}
*res_nrg = SKP_SMLAWW( nrg, SKP_SMMUL( WhiteNoiseFrac_Q32, C0 ), -tmp1 ); // Q( -rshifts )
*res_nrg_Q = -rshifts;
}