1065 lines
30 KiB
C
1065 lines
30 KiB
C
/*
|
|
** 2006 June 10
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** Code for testing the virtual table interfaces. This code
|
|
** is not included in the SQLite library. It is used for automated
|
|
** testing of the SQLite library.
|
|
**
|
|
** $Id: test8.c,v 1.44 2007/01/03 23:37:29 drh Exp $
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include "tcl.h"
|
|
#include "os.h"
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
typedef struct echo_vtab echo_vtab;
|
|
typedef struct echo_cursor echo_cursor;
|
|
|
|
/*
|
|
** The test module defined in this file uses two global Tcl variables to
|
|
** commicate with test-scripts:
|
|
**
|
|
** $::echo_module
|
|
** $::echo_module_sync_fail
|
|
** $::echo_module_begin_fail
|
|
**
|
|
** The variable ::echo_module is a list. Each time one of the following
|
|
** methods is called, one or more elements are appended to the list.
|
|
** This is used for automated testing of virtual table modules.
|
|
**
|
|
** The ::echo_module_sync_fail variable is set by test scripts and read
|
|
** by code in this file. If it is set to the name of a real table in the
|
|
** the database, then all xSync operations on echo virtual tables that
|
|
** use the named table as a backing store will fail.
|
|
*/
|
|
|
|
/*
|
|
** An echo virtual-table object.
|
|
**
|
|
** echo.vtab.aIndex is an array of booleans. The nth entry is true if
|
|
** the nth column of the real table is the left-most column of an index
|
|
** (implicit or otherwise). In other words, if SQLite can optimize
|
|
** a query like "SELECT * FROM real_table WHERE col = ?".
|
|
**
|
|
** Member variable aCol[] contains copies of the column names of the real
|
|
** table.
|
|
*/
|
|
struct echo_vtab {
|
|
sqlite3_vtab base;
|
|
Tcl_Interp *interp; /* Tcl interpreter containing debug variables */
|
|
sqlite3 *db; /* Database connection */
|
|
|
|
char *zTableName; /* Name of the real table */
|
|
char *zLogName; /* Name of the log table */
|
|
int nCol; /* Number of columns in the real table */
|
|
int *aIndex; /* Array of size nCol. True if column has an index */
|
|
char **aCol; /* Array of size nCol. Column names */
|
|
};
|
|
|
|
/* An echo cursor object */
|
|
struct echo_cursor {
|
|
sqlite3_vtab_cursor base;
|
|
sqlite3_stmt *pStmt;
|
|
};
|
|
|
|
/*
|
|
** Retrieve the column names for the table named zTab via database
|
|
** connection db. SQLITE_OK is returned on success, or an sqlite error
|
|
** code otherwise.
|
|
**
|
|
** If successful, the number of columns is written to *pnCol. *paCol is
|
|
** set to point at sqliteMalloc()'d space containing the array of
|
|
** nCol column names. The caller is responsible for calling sqliteFree
|
|
** on *paCol.
|
|
*/
|
|
static int getColumnNames(
|
|
sqlite3 *db,
|
|
const char *zTab,
|
|
char ***paCol,
|
|
int *pnCol
|
|
){
|
|
char **aCol = 0;
|
|
char *zSql;
|
|
sqlite3_stmt *pStmt = 0;
|
|
int rc = SQLITE_OK;
|
|
int nCol = 0;
|
|
|
|
/* Prepare the statement "SELECT * FROM <tbl>". The column names
|
|
** of the result set of the compiled SELECT will be the same as
|
|
** the column names of table <tbl>.
|
|
*/
|
|
zSql = sqlite3MPrintf("SELECT * FROM %Q", zTab);
|
|
if( !zSql ){
|
|
rc = SQLITE_NOMEM;
|
|
goto out;
|
|
}
|
|
rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
|
|
sqliteFree(zSql);
|
|
|
|
if( rc==SQLITE_OK ){
|
|
int ii;
|
|
int nBytes;
|
|
char *zSpace;
|
|
nCol = sqlite3_column_count(pStmt);
|
|
|
|
/* Figure out how much space to allocate for the array of column names
|
|
** (including space for the strings themselves). Then allocate it.
|
|
*/
|
|
nBytes = sizeof(char *) * nCol;
|
|
for(ii=0; ii<nCol; ii++){
|
|
nBytes += (strlen(sqlite3_column_name(pStmt, ii)) + 1);
|
|
}
|
|
aCol = (char **)sqliteMalloc(nBytes);
|
|
if( !aCol ){
|
|
rc = SQLITE_NOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* Copy the column names into the allocated space and set up the
|
|
** pointers in the aCol[] array.
|
|
*/
|
|
zSpace = (char *)(&aCol[nCol]);
|
|
for(ii=0; ii<nCol; ii++){
|
|
aCol[ii] = zSpace;
|
|
zSpace += sprintf(zSpace, "%s", sqlite3_column_name(pStmt, ii));
|
|
zSpace++;
|
|
}
|
|
assert( (zSpace-nBytes)==(char *)aCol );
|
|
}
|
|
|
|
*paCol = aCol;
|
|
*pnCol = nCol;
|
|
|
|
out:
|
|
sqlite3_finalize(pStmt);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Parameter zTab is the name of a table in database db with nCol
|
|
** columns. This function allocates an array of integers nCol in
|
|
** size and populates it according to any implicit or explicit
|
|
** indices on table zTab.
|
|
**
|
|
** If successful, SQLITE_OK is returned and *paIndex set to point
|
|
** at the allocated array. Otherwise, an error code is returned.
|
|
**
|
|
** See comments associated with the member variable aIndex above
|
|
** "struct echo_vtab" for details of the contents of the array.
|
|
*/
|
|
static int getIndexArray(
|
|
sqlite3 *db, /* Database connection */
|
|
const char *zTab, /* Name of table in database db */
|
|
int nCol,
|
|
int **paIndex
|
|
){
|
|
sqlite3_stmt *pStmt = 0;
|
|
int *aIndex = 0;
|
|
int rc;
|
|
char *zSql;
|
|
|
|
/* Allocate space for the index array */
|
|
aIndex = (int *)sqliteMalloc(sizeof(int) * nCol);
|
|
if( !aIndex ){
|
|
rc = SQLITE_NOMEM;
|
|
goto get_index_array_out;
|
|
}
|
|
|
|
/* Compile an sqlite pragma to loop through all indices on table zTab */
|
|
zSql = sqlite3MPrintf("PRAGMA index_list(%s)", zTab);
|
|
if( !zSql ){
|
|
rc = SQLITE_NOMEM;
|
|
goto get_index_array_out;
|
|
}
|
|
rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
|
|
sqliteFree(zSql);
|
|
|
|
/* For each index, figure out the left-most column and set the
|
|
** corresponding entry in aIndex[] to 1.
|
|
*/
|
|
while( pStmt && sqlite3_step(pStmt)==SQLITE_ROW ){
|
|
const char *zIdx = (const char *)sqlite3_column_text(pStmt, 1);
|
|
sqlite3_stmt *pStmt2 = 0;
|
|
zSql = sqlite3MPrintf("PRAGMA index_info(%s)", zIdx);
|
|
if( !zSql ){
|
|
rc = SQLITE_NOMEM;
|
|
goto get_index_array_out;
|
|
}
|
|
rc = sqlite3_prepare(db, zSql, -1, &pStmt2, 0);
|
|
sqliteFree(zSql);
|
|
if( pStmt2 && sqlite3_step(pStmt2)==SQLITE_ROW ){
|
|
int cid = sqlite3_column_int(pStmt2, 1);
|
|
assert( cid>=0 && cid<nCol );
|
|
aIndex[cid] = 1;
|
|
}
|
|
if( pStmt2 ){
|
|
rc = sqlite3_finalize(pStmt2);
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
goto get_index_array_out;
|
|
}
|
|
}
|
|
|
|
|
|
get_index_array_out:
|
|
if( pStmt ){
|
|
int rc2 = sqlite3_finalize(pStmt);
|
|
if( rc==SQLITE_OK ){
|
|
rc = rc2;
|
|
}
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
sqliteFree(aIndex);
|
|
aIndex = 0;
|
|
}
|
|
*paIndex = aIndex;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Global Tcl variable $echo_module is a list. This routine appends
|
|
** the string element zArg to that list in interpreter interp.
|
|
*/
|
|
static void appendToEchoModule(Tcl_Interp *interp, const char *zArg){
|
|
int flags = (TCL_APPEND_VALUE | TCL_LIST_ELEMENT | TCL_GLOBAL_ONLY);
|
|
Tcl_SetVar(interp, "echo_module", (zArg?zArg:""), flags);
|
|
}
|
|
|
|
/*
|
|
** This function is called from within the echo-modules xCreate and
|
|
** xConnect methods. The argc and argv arguments are copies of those
|
|
** passed to the calling method. This function is responsible for
|
|
** calling sqlite3_declare_vtab() to declare the schema of the virtual
|
|
** table being created or connected.
|
|
**
|
|
** If the constructor was passed just one argument, i.e.:
|
|
**
|
|
** CREATE TABLE t1 AS echo(t2);
|
|
**
|
|
** Then t2 is assumed to be the name of a *real* database table. The
|
|
** schema of the virtual table is declared by passing a copy of the
|
|
** CREATE TABLE statement for the real table to sqlite3_declare_vtab().
|
|
** Hence, the virtual table should have exactly the same column names and
|
|
** types as the real table.
|
|
*/
|
|
static int echoDeclareVtab(
|
|
echo_vtab *pVtab,
|
|
sqlite3 *db,
|
|
int argc,
|
|
const char *const*argv
|
|
){
|
|
int rc = SQLITE_OK;
|
|
|
|
if( argc>=4 ){
|
|
sqlite3_stmt *pStmt = 0;
|
|
sqlite3_prepare(db,
|
|
"SELECT sql FROM sqlite_master WHERE type = 'table' AND name = ?",
|
|
-1, &pStmt, 0);
|
|
sqlite3_bind_text(pStmt, 1, argv[3], -1, 0);
|
|
if( sqlite3_step(pStmt)==SQLITE_ROW ){
|
|
const char *zCreateTable = (const char *)sqlite3_column_text(pStmt, 0);
|
|
sqlite3_declare_vtab(db, zCreateTable);
|
|
rc = sqlite3_finalize(pStmt);
|
|
} else {
|
|
rc = sqlite3_finalize(pStmt);
|
|
if( rc==SQLITE_OK ){
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
rc = getColumnNames(db, argv[3], &pVtab->aCol, &pVtab->nCol);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = getIndexArray(db, argv[3], pVtab->nCol, &pVtab->aIndex);
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function frees all runtime structures associated with the virtual
|
|
** table pVtab.
|
|
*/
|
|
static int echoDestructor(sqlite3_vtab *pVtab){
|
|
echo_vtab *p = (echo_vtab*)pVtab;
|
|
sqliteFree(p->aIndex);
|
|
sqliteFree(p->aCol);
|
|
sqliteFree(p->zTableName);
|
|
sqliteFree(p->zLogName);
|
|
sqliteFree(p);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** This function is called to do the work of the xConnect() method -
|
|
** to allocate the required in-memory structures for a newly connected
|
|
** virtual table.
|
|
*/
|
|
static int echoConstructor(
|
|
sqlite3 *db,
|
|
void *pAux,
|
|
int argc, const char *const*argv,
|
|
sqlite3_vtab **ppVtab,
|
|
char **pzErr
|
|
){
|
|
int i;
|
|
echo_vtab *pVtab;
|
|
|
|
/* Allocate the sqlite3_vtab/echo_vtab structure itself */
|
|
pVtab = sqliteMalloc( sizeof(*pVtab) );
|
|
if( !pVtab ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
pVtab->interp = (Tcl_Interp *)pAux;
|
|
pVtab->db = db;
|
|
|
|
/* Allocate echo_vtab.zTableName */
|
|
pVtab->zTableName = sqlite3MPrintf("%s", argv[3]);
|
|
if( !pVtab->zTableName ){
|
|
echoDestructor((sqlite3_vtab *)pVtab);
|
|
return SQLITE_NOMEM;
|
|
}
|
|
|
|
/* Log the arguments to this function to Tcl var ::echo_module */
|
|
for(i=0; i<argc; i++){
|
|
appendToEchoModule(pVtab->interp, argv[i]);
|
|
}
|
|
|
|
/* Invoke sqlite3_declare_vtab and set up other members of the echo_vtab
|
|
** structure. If an error occurs, delete the sqlite3_vtab structure and
|
|
** return an error code.
|
|
*/
|
|
if( echoDeclareVtab(pVtab, db, argc, argv) ){
|
|
echoDestructor((sqlite3_vtab *)pVtab);
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/* Success. Set *ppVtab and return */
|
|
*ppVtab = &pVtab->base;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Echo virtual table module xCreate method.
|
|
*/
|
|
static int echoCreate(
|
|
sqlite3 *db,
|
|
void *pAux,
|
|
int argc, const char *const*argv,
|
|
sqlite3_vtab **ppVtab,
|
|
char **pzErr
|
|
){
|
|
int rc = SQLITE_OK;
|
|
appendToEchoModule((Tcl_Interp *)(pAux), "xCreate");
|
|
rc = echoConstructor(db, pAux, argc, argv, ppVtab, pzErr);
|
|
|
|
/* If there were two arguments passed to the module at the SQL level
|
|
** (i.e. "CREATE VIRTUAL TABLE tbl USING echo(arg1, arg2)"), then
|
|
** the second argument is used as a table name. Attempt to create
|
|
** such a table with a single column, "logmsg". This table will
|
|
** be used to log calls to the xUpdate method. It will be deleted
|
|
** when the virtual table is DROPed.
|
|
**
|
|
** Note: The main point of this is to test that we can drop tables
|
|
** from within an xDestroy method call.
|
|
*/
|
|
if( rc==SQLITE_OK && argc==5 ){
|
|
char *zSql;
|
|
echo_vtab *pVtab = *(echo_vtab **)ppVtab;
|
|
pVtab->zLogName = sqlite3MPrintf("%s", argv[4]);
|
|
zSql = sqlite3MPrintf("CREATE TABLE %Q(logmsg)", pVtab->zLogName);
|
|
rc = sqlite3_exec(db, zSql, 0, 0, 0);
|
|
sqliteFree(zSql);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Echo virtual table module xConnect method.
|
|
*/
|
|
static int echoConnect(
|
|
sqlite3 *db,
|
|
void *pAux,
|
|
int argc, const char *const*argv,
|
|
sqlite3_vtab **ppVtab,
|
|
char **pzErr
|
|
){
|
|
appendToEchoModule((Tcl_Interp *)(pAux), "xConnect");
|
|
return echoConstructor(db, pAux, argc, argv, ppVtab, pzErr);
|
|
}
|
|
|
|
/*
|
|
** Echo virtual table module xDisconnect method.
|
|
*/
|
|
static int echoDisconnect(sqlite3_vtab *pVtab){
|
|
appendToEchoModule(((echo_vtab *)pVtab)->interp, "xDisconnect");
|
|
return echoDestructor(pVtab);
|
|
}
|
|
|
|
/*
|
|
** Echo virtual table module xDestroy method.
|
|
*/
|
|
static int echoDestroy(sqlite3_vtab *pVtab){
|
|
int rc = SQLITE_OK;
|
|
echo_vtab *p = (echo_vtab *)pVtab;
|
|
appendToEchoModule(((echo_vtab *)pVtab)->interp, "xDestroy");
|
|
|
|
/* Drop the "log" table, if one exists (see echoCreate() for details) */
|
|
if( p && p->zLogName ){
|
|
char *zSql;
|
|
zSql = sqlite3MPrintf("DROP TABLE %Q", p->zLogName);
|
|
rc = sqlite3_exec(p->db, zSql, 0, 0, 0);
|
|
sqliteFree(zSql);
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
rc = echoDestructor(pVtab);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Echo virtual table module xOpen method.
|
|
*/
|
|
static int echoOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
|
|
echo_cursor *pCur;
|
|
pCur = sqliteMalloc(sizeof(echo_cursor));
|
|
*ppCursor = (sqlite3_vtab_cursor *)pCur;
|
|
return (pCur ? SQLITE_OK : SQLITE_NOMEM);
|
|
}
|
|
|
|
/*
|
|
** Echo virtual table module xClose method.
|
|
*/
|
|
static int echoClose(sqlite3_vtab_cursor *cur){
|
|
int rc;
|
|
echo_cursor *pCur = (echo_cursor *)cur;
|
|
sqlite3_stmt *pStmt = pCur->pStmt;
|
|
pCur->pStmt = 0;
|
|
sqliteFree(pCur);
|
|
rc = sqlite3_finalize(pStmt);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return non-zero if the cursor does not currently point to a valid record
|
|
** (i.e if the scan has finished), or zero otherwise.
|
|
*/
|
|
static int echoEof(sqlite3_vtab_cursor *cur){
|
|
return (((echo_cursor *)cur)->pStmt ? 0 : 1);
|
|
}
|
|
|
|
/*
|
|
** Echo virtual table module xNext method.
|
|
*/
|
|
static int echoNext(sqlite3_vtab_cursor *cur){
|
|
int rc;
|
|
echo_cursor *pCur = (echo_cursor *)cur;
|
|
rc = sqlite3_step(pCur->pStmt);
|
|
|
|
if( rc==SQLITE_ROW ){
|
|
rc = SQLITE_OK;
|
|
}else{
|
|
rc = sqlite3_finalize(pCur->pStmt);
|
|
pCur->pStmt = 0;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Echo virtual table module xColumn method.
|
|
*/
|
|
static int echoColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
|
|
int iCol = i + 1;
|
|
sqlite3_stmt *pStmt = ((echo_cursor *)cur)->pStmt;
|
|
if( !pStmt ){
|
|
sqlite3_result_null(ctx);
|
|
}else{
|
|
assert( sqlite3_data_count(pStmt)>iCol );
|
|
sqlite3_result_value(ctx, sqlite3_column_value(pStmt, iCol));
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Echo virtual table module xRowid method.
|
|
*/
|
|
static int echoRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
|
|
sqlite3_stmt *pStmt = ((echo_cursor *)cur)->pStmt;
|
|
*pRowid = sqlite3_column_int64(pStmt, 0);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Compute a simple hash of the null terminated string zString.
|
|
**
|
|
** This module uses only sqlite3_index_info.idxStr, not
|
|
** sqlite3_index_info.idxNum. So to test idxNum, when idxStr is set
|
|
** in echoBestIndex(), idxNum is set to the corresponding hash value.
|
|
** In echoFilter(), code assert()s that the supplied idxNum value is
|
|
** indeed the hash of the supplied idxStr.
|
|
*/
|
|
static int hashString(const char *zString){
|
|
int val = 0;
|
|
int ii;
|
|
for(ii=0; zString[ii]; ii++){
|
|
val = (val << 3) + (int)zString[ii];
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
** Echo virtual table module xFilter method.
|
|
*/
|
|
static int echoFilter(
|
|
sqlite3_vtab_cursor *pVtabCursor,
|
|
int idxNum, const char *idxStr,
|
|
int argc, sqlite3_value **argv
|
|
){
|
|
int rc;
|
|
int i;
|
|
|
|
echo_cursor *pCur = (echo_cursor *)pVtabCursor;
|
|
echo_vtab *pVtab = (echo_vtab *)pVtabCursor->pVtab;
|
|
sqlite3 *db = pVtab->db;
|
|
|
|
/* Check that idxNum matches idxStr */
|
|
assert( idxNum==hashString(idxStr) );
|
|
|
|
/* Log arguments to the ::echo_module Tcl variable */
|
|
appendToEchoModule(pVtab->interp, "xFilter");
|
|
appendToEchoModule(pVtab->interp, idxStr);
|
|
for(i=0; i<argc; i++){
|
|
appendToEchoModule(pVtab->interp, (const char*)sqlite3_value_text(argv[i]));
|
|
}
|
|
|
|
sqlite3_finalize(pCur->pStmt);
|
|
pCur->pStmt = 0;
|
|
|
|
/* Prepare the SQL statement created by echoBestIndex and bind the
|
|
** runtime parameters passed to this function to it.
|
|
*/
|
|
rc = sqlite3_prepare(db, idxStr, -1, &pCur->pStmt, 0);
|
|
assert( pCur->pStmt || rc!=SQLITE_OK );
|
|
for(i=0; rc==SQLITE_OK && i<argc; i++){
|
|
sqlite3_bind_value(pCur->pStmt, i+1, argv[i]);
|
|
}
|
|
|
|
/* If everything was successful, advance to the first row of the scan */
|
|
if( rc==SQLITE_OK ){
|
|
rc = echoNext(pVtabCursor);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** A helper function used by echoUpdate() and echoBestIndex() for
|
|
** manipulating strings in concert with the sqlite3_mprintf() function.
|
|
**
|
|
** Parameter pzStr points to a pointer to a string allocated with
|
|
** sqlite3_mprintf. The second parameter, zAppend, points to another
|
|
** string. The two strings are concatenated together and *pzStr
|
|
** set to point at the result. The initial buffer pointed to by *pzStr
|
|
** is deallocated via sqlite3_free().
|
|
**
|
|
** If the third argument, doFree, is true, then sqlite3_free() is
|
|
** also called to free the buffer pointed to by zAppend.
|
|
*/
|
|
static void string_concat(char **pzStr, char *zAppend, int doFree){
|
|
char *zIn = *pzStr;
|
|
if( zIn ){
|
|
char *zTemp = zIn;
|
|
zIn = sqlite3_mprintf("%s%s", zIn, zAppend);
|
|
sqlite3_free(zTemp);
|
|
}else{
|
|
zIn = sqlite3_mprintf("%s", zAppend);
|
|
}
|
|
*pzStr = zIn;
|
|
if( doFree ){
|
|
sqlite3_free(zAppend);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The echo module implements the subset of query constraints and sort
|
|
** orders that may take advantage of SQLite indices on the underlying
|
|
** real table. For example, if the real table is declared as:
|
|
**
|
|
** CREATE TABLE real(a, b, c);
|
|
** CREATE INDEX real_index ON real(b);
|
|
**
|
|
** then the echo module handles WHERE or ORDER BY clauses that refer
|
|
** to the column "b", but not "a" or "c". If a multi-column index is
|
|
** present, only it's left most column is considered.
|
|
**
|
|
** This xBestIndex method encodes the proposed search strategy as
|
|
** an SQL query on the real table underlying the virtual echo module
|
|
** table and stores the query in sqlite3_index_info.idxStr. The SQL
|
|
** statement is of the form:
|
|
**
|
|
** SELECT rowid, * FROM <real-table> ?<where-clause>? ?<order-by-clause>?
|
|
**
|
|
** where the <where-clause> and <order-by-clause> are determined
|
|
** by the contents of the structure pointed to by the pIdxInfo argument.
|
|
*/
|
|
static int echoBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
|
|
int ii;
|
|
char *zQuery = 0;
|
|
char *zNew;
|
|
int nArg = 0;
|
|
const char *zSep = "WHERE";
|
|
echo_vtab *pVtab = (echo_vtab *)tab;
|
|
sqlite3_stmt *pStmt = 0;
|
|
|
|
int nRow;
|
|
int useIdx = 0;
|
|
int rc = SQLITE_OK;
|
|
|
|
/* Determine the number of rows in the table and store this value in local
|
|
** variable nRow. The 'estimated-cost' of the scan will be the number of
|
|
** rows in the table for a linear scan, or the log (base 2) of the
|
|
** number of rows if the proposed scan uses an index.
|
|
*/
|
|
zQuery = sqlite3_mprintf("SELECT count(*) FROM %Q", pVtab->zTableName);
|
|
rc = sqlite3_prepare(pVtab->db, zQuery, -1, &pStmt, 0);
|
|
sqlite3_free(zQuery);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
sqlite3_step(pStmt);
|
|
nRow = sqlite3_column_int(pStmt, 0);
|
|
rc = sqlite3_finalize(pStmt);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
zQuery = sqlite3_mprintf("SELECT rowid, * FROM %Q", pVtab->zTableName);
|
|
for(ii=0; ii<pIdxInfo->nConstraint; ii++){
|
|
const struct sqlite3_index_constraint *pConstraint;
|
|
struct sqlite3_index_constraint_usage *pUsage;
|
|
int iCol;
|
|
|
|
pConstraint = &pIdxInfo->aConstraint[ii];
|
|
pUsage = &pIdxInfo->aConstraintUsage[ii];
|
|
|
|
iCol = pConstraint->iColumn;
|
|
if( pVtab->aIndex[iCol] ){
|
|
char *zCol = pVtab->aCol[iCol];
|
|
char *zOp = 0;
|
|
useIdx = 1;
|
|
if( iCol<0 ){
|
|
zCol = "rowid";
|
|
}
|
|
switch( pConstraint->op ){
|
|
case SQLITE_INDEX_CONSTRAINT_EQ:
|
|
zOp = "="; break;
|
|
case SQLITE_INDEX_CONSTRAINT_LT:
|
|
zOp = "<"; break;
|
|
case SQLITE_INDEX_CONSTRAINT_GT:
|
|
zOp = ">"; break;
|
|
case SQLITE_INDEX_CONSTRAINT_LE:
|
|
zOp = "<="; break;
|
|
case SQLITE_INDEX_CONSTRAINT_GE:
|
|
zOp = ">="; break;
|
|
case SQLITE_INDEX_CONSTRAINT_MATCH:
|
|
zOp = "LIKE"; break;
|
|
}
|
|
if( zOp[0]=='L' ){
|
|
zNew = sqlite3_mprintf(" %s %s LIKE (SELECT '%%'||?||'%%')",
|
|
zSep, zCol);
|
|
} else {
|
|
zNew = sqlite3_mprintf(" %s %s %s ?", zSep, zCol, zOp);
|
|
}
|
|
string_concat(&zQuery, zNew, 1);
|
|
|
|
zSep = "AND";
|
|
pUsage->argvIndex = ++nArg;
|
|
pUsage->omit = 1;
|
|
}
|
|
}
|
|
|
|
/* If there is only one term in the ORDER BY clause, and it is
|
|
** on a column that this virtual table has an index for, then consume
|
|
** the ORDER BY clause.
|
|
*/
|
|
if( pIdxInfo->nOrderBy==1 && pVtab->aIndex[pIdxInfo->aOrderBy->iColumn] ){
|
|
int iCol = pIdxInfo->aOrderBy->iColumn;
|
|
char *zCol = pVtab->aCol[iCol];
|
|
char *zDir = pIdxInfo->aOrderBy->desc?"DESC":"ASC";
|
|
if( iCol<0 ){
|
|
zCol = "rowid";
|
|
}
|
|
zNew = sqlite3_mprintf(" ORDER BY %s %s", zCol, zDir);
|
|
string_concat(&zQuery, zNew, 1);
|
|
pIdxInfo->orderByConsumed = 1;
|
|
}
|
|
|
|
appendToEchoModule(pVtab->interp, "xBestIndex");;
|
|
appendToEchoModule(pVtab->interp, zQuery);
|
|
|
|
pIdxInfo->idxNum = hashString(zQuery);
|
|
pIdxInfo->idxStr = zQuery;
|
|
pIdxInfo->needToFreeIdxStr = 1;
|
|
if( useIdx ){
|
|
/* Approximation of log2(nRow). */
|
|
for( ii=0; ii<(sizeof(int)*8); ii++ ){
|
|
if( nRow & (1<<ii) ){
|
|
pIdxInfo->estimatedCost = (double)ii;
|
|
}
|
|
}
|
|
} else {
|
|
pIdxInfo->estimatedCost = (double)nRow;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The xUpdate method for echo module virtual tables.
|
|
**
|
|
** apData[0] apData[1] apData[2..]
|
|
**
|
|
** INTEGER DELETE
|
|
**
|
|
** INTEGER NULL (nCol args) UPDATE (do not set rowid)
|
|
** INTEGER INTEGER (nCol args) UPDATE (with SET rowid = <arg1>)
|
|
**
|
|
** NULL NULL (nCol args) INSERT INTO (automatic rowid value)
|
|
** NULL INTEGER (nCol args) INSERT (incl. rowid value)
|
|
**
|
|
*/
|
|
int echoUpdate(
|
|
sqlite3_vtab *tab,
|
|
int nData,
|
|
sqlite3_value **apData,
|
|
sqlite_int64 *pRowid
|
|
){
|
|
echo_vtab *pVtab = (echo_vtab *)tab;
|
|
sqlite3 *db = pVtab->db;
|
|
int rc = SQLITE_OK;
|
|
|
|
sqlite3_stmt *pStmt;
|
|
char *z = 0; /* SQL statement to execute */
|
|
int bindArgZero = 0; /* True to bind apData[0] to sql var no. nData */
|
|
int bindArgOne = 0; /* True to bind apData[1] to sql var no. 1 */
|
|
int i; /* Counter variable used by for loops */
|
|
|
|
assert( nData==pVtab->nCol+2 || nData==1 );
|
|
|
|
/* If apData[0] is an integer and nData>1 then do an UPDATE */
|
|
if( nData>1 && sqlite3_value_type(apData[0])==SQLITE_INTEGER ){
|
|
char *zSep = " SET";
|
|
z = sqlite3_mprintf("UPDATE %Q", pVtab->zTableName);
|
|
|
|
bindArgOne = (apData[1] && sqlite3_value_type(apData[1])==SQLITE_INTEGER);
|
|
bindArgZero = 1;
|
|
|
|
if( bindArgOne ){
|
|
string_concat(&z, " SET rowid=?1 ", 0);
|
|
zSep = ",";
|
|
}
|
|
for(i=2; i<nData; i++){
|
|
if( apData[i]==0 ) continue;
|
|
string_concat(&z, sqlite3_mprintf(
|
|
"%s %Q=?%d", zSep, pVtab->aCol[i-2], i), 1);
|
|
zSep = ",";
|
|
}
|
|
string_concat(&z, sqlite3_mprintf(" WHERE rowid=?%d", nData), 0);
|
|
}
|
|
|
|
/* If apData[0] is an integer and nData==1 then do a DELETE */
|
|
else if( nData==1 && sqlite3_value_type(apData[0])==SQLITE_INTEGER ){
|
|
z = sqlite3_mprintf("DELETE FROM %Q WHERE rowid = ?1", pVtab->zTableName);
|
|
bindArgZero = 1;
|
|
}
|
|
|
|
/* If the first argument is NULL and there are more than two args, INSERT */
|
|
else if( nData>2 && sqlite3_value_type(apData[0])==SQLITE_NULL ){
|
|
int ii;
|
|
char *zInsert = 0;
|
|
char *zValues = 0;
|
|
|
|
zInsert = sqlite3_mprintf("INSERT INTO %Q (", pVtab->zTableName);
|
|
if( sqlite3_value_type(apData[1])==SQLITE_INTEGER ){
|
|
bindArgOne = 1;
|
|
zValues = sqlite3_mprintf("?");
|
|
string_concat(&zInsert, "rowid", 0);
|
|
}
|
|
|
|
assert((pVtab->nCol+2)==nData);
|
|
for(ii=2; ii<nData; ii++){
|
|
string_concat(&zInsert,
|
|
sqlite3_mprintf("%s%Q", zValues?", ":"", pVtab->aCol[ii-2]), 1);
|
|
string_concat(&zValues,
|
|
sqlite3_mprintf("%s?%d", zValues?", ":"", ii), 1);
|
|
}
|
|
|
|
string_concat(&z, zInsert, 1);
|
|
string_concat(&z, ") VALUES(", 0);
|
|
string_concat(&z, zValues, 1);
|
|
string_concat(&z, ")", 0);
|
|
}
|
|
|
|
/* Anything else is an error */
|
|
else{
|
|
assert(0);
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
rc = sqlite3_prepare(db, z, -1, &pStmt, 0);
|
|
assert( rc!=SQLITE_OK || pStmt );
|
|
sqlite3_free(z);
|
|
if( rc==SQLITE_OK ) {
|
|
if( bindArgZero ){
|
|
sqlite3_bind_value(pStmt, nData, apData[0]);
|
|
}
|
|
if( bindArgOne ){
|
|
sqlite3_bind_value(pStmt, 1, apData[1]);
|
|
}
|
|
for(i=2; i<nData; i++){
|
|
if( apData[i] ) sqlite3_bind_value(pStmt, i, apData[i]);
|
|
}
|
|
sqlite3_step(pStmt);
|
|
rc = sqlite3_finalize(pStmt);
|
|
}
|
|
|
|
if( pRowid && rc==SQLITE_OK ){
|
|
*pRowid = sqlite3_last_insert_rowid(db);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** xBegin, xSync, xCommit and xRollback callbacks for echo module
|
|
** virtual tables. Do nothing other than add the name of the callback
|
|
** to the $::echo_module Tcl variable.
|
|
*/
|
|
static int echoTransactionCall(sqlite3_vtab *tab, const char *zCall){
|
|
char *z;
|
|
echo_vtab *pVtab = (echo_vtab *)tab;
|
|
z = sqlite3_mprintf("echo(%s)", pVtab->zTableName);
|
|
appendToEchoModule(pVtab->interp, zCall);
|
|
appendToEchoModule(pVtab->interp, z);
|
|
sqlite3_free(z);
|
|
return SQLITE_OK;
|
|
}
|
|
static int echoBegin(sqlite3_vtab *tab){
|
|
echo_vtab *pVtab = (echo_vtab *)tab;
|
|
Tcl_Interp *interp = pVtab->interp;
|
|
const char *zVal;
|
|
|
|
echoTransactionCall(tab, "xBegin");
|
|
|
|
/* Check if the $::echo_module_begin_fail variable is defined. If it is,
|
|
** and it is set to the name of the real table underlying this virtual
|
|
** echo module table, then cause this xSync operation to fail.
|
|
*/
|
|
zVal = Tcl_GetVar(interp, "echo_module_begin_fail", TCL_GLOBAL_ONLY);
|
|
if( zVal && 0==strcmp(zVal, pVtab->zTableName) ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
static int echoSync(sqlite3_vtab *tab){
|
|
echo_vtab *pVtab = (echo_vtab *)tab;
|
|
Tcl_Interp *interp = pVtab->interp;
|
|
const char *zVal;
|
|
|
|
echoTransactionCall(tab, "xSync");
|
|
|
|
/* Check if the $::echo_module_sync_fail variable is defined. If it is,
|
|
** and it is set to the name of the real table underlying this virtual
|
|
** echo module table, then cause this xSync operation to fail.
|
|
*/
|
|
zVal = Tcl_GetVar(interp, "echo_module_sync_fail", TCL_GLOBAL_ONLY);
|
|
if( zVal && 0==strcmp(zVal, pVtab->zTableName) ){
|
|
return -1;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
static int echoCommit(sqlite3_vtab *tab){
|
|
return echoTransactionCall(tab, "xCommit");
|
|
}
|
|
static int echoRollback(sqlite3_vtab *tab){
|
|
return echoTransactionCall(tab, "xRollback");
|
|
}
|
|
|
|
/*
|
|
** Implementation of "GLOB" function on the echo module. Pass
|
|
** all arguments to the ::echo_glob_overload procedure of TCL
|
|
** and return the result of that procedure as a string.
|
|
*/
|
|
static void overloadedGlobFunction(
|
|
sqlite3_context *pContext,
|
|
int nArg,
|
|
sqlite3_value **apArg
|
|
){
|
|
Tcl_Interp *interp = sqlite3_user_data(pContext);
|
|
Tcl_DString str;
|
|
int i;
|
|
int rc;
|
|
Tcl_DStringInit(&str);
|
|
Tcl_DStringAppendElement(&str, "::echo_glob_overload");
|
|
for(i=0; i<nArg; i++){
|
|
Tcl_DStringAppendElement(&str, (char*)sqlite3_value_text(apArg[i]));
|
|
}
|
|
rc = Tcl_Eval(interp, Tcl_DStringValue(&str));
|
|
Tcl_DStringFree(&str);
|
|
if( rc ){
|
|
sqlite3_result_error(pContext, Tcl_GetStringResult(interp), -1);
|
|
}else{
|
|
sqlite3_result_text(pContext, Tcl_GetStringResult(interp),
|
|
-1, SQLITE_TRANSIENT);
|
|
}
|
|
Tcl_ResetResult(interp);
|
|
}
|
|
|
|
/*
|
|
** This is the xFindFunction implementation for the echo module.
|
|
** SQLite calls this routine when the first argument of a function
|
|
** is a column of an echo virtual table. This routine can optionally
|
|
** override the implementation of that function. It will choose to
|
|
** do so if the function is named "glob", and a TCL command named
|
|
** ::echo_glob_overload exists.
|
|
*/
|
|
static int echoFindFunction(
|
|
sqlite3_vtab *vtab,
|
|
int nArg,
|
|
const char *zFuncName,
|
|
void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
|
|
void **ppArg
|
|
){
|
|
echo_vtab *pVtab = (echo_vtab *)vtab;
|
|
Tcl_Interp *interp = pVtab->interp;
|
|
Tcl_CmdInfo info;
|
|
if( strcmp(zFuncName,"glob")!=0 ){
|
|
return 0;
|
|
}
|
|
if( Tcl_GetCommandInfo(interp, "::echo_glob_overload", &info)==0 ){
|
|
return 0;
|
|
}
|
|
*pxFunc = overloadedGlobFunction;
|
|
*ppArg = interp;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** A virtual table module that merely "echos" the contents of another
|
|
** table (like an SQL VIEW).
|
|
*/
|
|
static sqlite3_module echoModule = {
|
|
0, /* iVersion */
|
|
echoCreate,
|
|
echoConnect,
|
|
echoBestIndex,
|
|
echoDisconnect,
|
|
echoDestroy,
|
|
echoOpen, /* xOpen - open a cursor */
|
|
echoClose, /* xClose - close a cursor */
|
|
echoFilter, /* xFilter - configure scan constraints */
|
|
echoNext, /* xNext - advance a cursor */
|
|
echoEof, /* xEof */
|
|
echoColumn, /* xColumn - read data */
|
|
echoRowid, /* xRowid - read data */
|
|
echoUpdate, /* xUpdate - write data */
|
|
echoBegin, /* xBegin - begin transaction */
|
|
echoSync, /* xSync - sync transaction */
|
|
echoCommit, /* xCommit - commit transaction */
|
|
echoRollback, /* xRollback - rollback transaction */
|
|
echoFindFunction, /* xFindFunction - function overloading */
|
|
};
|
|
|
|
/*
|
|
** Decode a pointer to an sqlite3 object.
|
|
*/
|
|
static int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb){
|
|
*ppDb = (sqlite3*)sqlite3TextToPtr(zA);
|
|
return TCL_OK;
|
|
}
|
|
|
|
/*
|
|
** Register the echo virtual table module.
|
|
*/
|
|
static int register_echo_module(
|
|
ClientData clientData, /* Pointer to sqlite3_enable_XXX function */
|
|
Tcl_Interp *interp, /* The TCL interpreter that invoked this command */
|
|
int objc, /* Number of arguments */
|
|
Tcl_Obj *CONST objv[] /* Command arguments */
|
|
){
|
|
sqlite3 *db;
|
|
if( objc!=2 ){
|
|
Tcl_WrongNumArgs(interp, 1, objv, "DB");
|
|
return TCL_ERROR;
|
|
}
|
|
if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
|
|
sqlite3_create_module(db, "echo", &echoModule, (void *)interp);
|
|
return TCL_OK;
|
|
}
|
|
|
|
/*
|
|
** Tcl interface to sqlite3_declare_vtab, invoked as follows from Tcl:
|
|
**
|
|
** sqlite3_declare_vtab DB SQL
|
|
*/
|
|
static int declare_vtab(
|
|
ClientData clientData, /* Pointer to sqlite3_enable_XXX function */
|
|
Tcl_Interp *interp, /* The TCL interpreter that invoked this command */
|
|
int objc, /* Number of arguments */
|
|
Tcl_Obj *CONST objv[] /* Command arguments */
|
|
){
|
|
sqlite3 *db;
|
|
int rc;
|
|
if( objc!=3 ){
|
|
Tcl_WrongNumArgs(interp, 1, objv, "DB SQL");
|
|
return TCL_ERROR;
|
|
}
|
|
if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
|
|
rc = sqlite3_declare_vtab(db, Tcl_GetString(objv[2]));
|
|
if( rc!=SQLITE_OK ){
|
|
Tcl_SetResult(interp, (char *)sqlite3_errmsg(db), TCL_VOLATILE);
|
|
return TCL_ERROR;
|
|
}
|
|
return TCL_OK;
|
|
}
|
|
|
|
#endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
/*
|
|
** Register commands with the TCL interpreter.
|
|
*/
|
|
int Sqlitetest8_Init(Tcl_Interp *interp){
|
|
static struct {
|
|
char *zName;
|
|
Tcl_ObjCmdProc *xProc;
|
|
void *clientData;
|
|
} aObjCmd[] = {
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
{ "register_echo_module", register_echo_module, 0 },
|
|
{ "sqlite3_declare_vtab", declare_vtab, 0 },
|
|
#endif
|
|
};
|
|
int i;
|
|
for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
|
|
Tcl_CreateObjCommand(interp, aObjCmd[i].zName,
|
|
aObjCmd[i].xProc, aObjCmd[i].clientData, 0);
|
|
}
|
|
return TCL_OK;
|
|
}
|