963 lines
20 KiB
C
963 lines
20 KiB
C
/*
|
|
* math.c
|
|
*
|
|
* crypto math operations and data types
|
|
*
|
|
* David A. McGrew
|
|
* Cisco Systems, Inc.
|
|
*/
|
|
/*
|
|
*
|
|
* Copyright (c) 2001-2005 Cisco Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
*
|
|
* Neither the name of the Cisco Systems, Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include "crypto_math.h"
|
|
#include <stdlib.h> /* malloc() used in bitvector_alloc */
|
|
|
|
int
|
|
octet_weight[256] = {
|
|
0, 1, 1, 2, 1, 2, 2, 3,
|
|
1, 2, 2, 3, 2, 3, 3, 4,
|
|
1, 2, 2, 3, 2, 3, 3, 4,
|
|
2, 3, 3, 4, 3, 4, 4, 5,
|
|
1, 2, 2, 3, 2, 3, 3, 4,
|
|
2, 3, 3, 4, 3, 4, 4, 5,
|
|
2, 3, 3, 4, 3, 4, 4, 5,
|
|
3, 4, 4, 5, 4, 5, 5, 6,
|
|
1, 2, 2, 3, 2, 3, 3, 4,
|
|
2, 3, 3, 4, 3, 4, 4, 5,
|
|
2, 3, 3, 4, 3, 4, 4, 5,
|
|
3, 4, 4, 5, 4, 5, 5, 6,
|
|
2, 3, 3, 4, 3, 4, 4, 5,
|
|
3, 4, 4, 5, 4, 5, 5, 6,
|
|
3, 4, 4, 5, 4, 5, 5, 6,
|
|
4, 5, 5, 6, 5, 6, 6, 7,
|
|
1, 2, 2, 3, 2, 3, 3, 4,
|
|
2, 3, 3, 4, 3, 4, 4, 5,
|
|
2, 3, 3, 4, 3, 4, 4, 5,
|
|
3, 4, 4, 5, 4, 5, 5, 6,
|
|
2, 3, 3, 4, 3, 4, 4, 5,
|
|
3, 4, 4, 5, 4, 5, 5, 6,
|
|
3, 4, 4, 5, 4, 5, 5, 6,
|
|
4, 5, 5, 6, 5, 6, 6, 7,
|
|
2, 3, 3, 4, 3, 4, 4, 5,
|
|
3, 4, 4, 5, 4, 5, 5, 6,
|
|
3, 4, 4, 5, 4, 5, 5, 6,
|
|
4, 5, 5, 6, 5, 6, 6, 7,
|
|
3, 4, 4, 5, 4, 5, 5, 6,
|
|
4, 5, 5, 6, 5, 6, 6, 7,
|
|
4, 5, 5, 6, 5, 6, 6, 7,
|
|
5, 6, 6, 7, 6, 7, 7, 8
|
|
};
|
|
|
|
int
|
|
low_bit[256] = {
|
|
-1, 0, 1, 0, 2, 0, 1, 0,
|
|
3, 0, 1, 0, 2, 0, 1, 0,
|
|
4, 0, 1, 0, 2, 0, 1, 0,
|
|
3, 0, 1, 0, 2, 0, 1, 0,
|
|
5, 0, 1, 0, 2, 0, 1, 0,
|
|
3, 0, 1, 0, 2, 0, 1, 0,
|
|
4, 0, 1, 0, 2, 0, 1, 0,
|
|
3, 0, 1, 0, 2, 0, 1, 0,
|
|
6, 0, 1, 0, 2, 0, 1, 0,
|
|
3, 0, 1, 0, 2, 0, 1, 0,
|
|
4, 0, 1, 0, 2, 0, 1, 0,
|
|
3, 0, 1, 0, 2, 0, 1, 0,
|
|
5, 0, 1, 0, 2, 0, 1, 0,
|
|
3, 0, 1, 0, 2, 0, 1, 0,
|
|
4, 0, 1, 0, 2, 0, 1, 0,
|
|
3, 0, 1, 0, 2, 0, 1, 0,
|
|
7, 0, 1, 0, 2, 0, 1, 0,
|
|
3, 0, 1, 0, 2, 0, 1, 0,
|
|
4, 0, 1, 0, 2, 0, 1, 0,
|
|
3, 0, 1, 0, 2, 0, 1, 0,
|
|
5, 0, 1, 0, 2, 0, 1, 0,
|
|
3, 0, 1, 0, 2, 0, 1, 0,
|
|
4, 0, 1, 0, 2, 0, 1, 0,
|
|
3, 0, 1, 0, 2, 0, 1, 0,
|
|
6, 0, 1, 0, 2, 0, 1, 0,
|
|
3, 0, 1, 0, 2, 0, 1, 0,
|
|
4, 0, 1, 0, 2, 0, 1, 0,
|
|
3, 0, 1, 0, 2, 0, 1, 0,
|
|
5, 0, 1, 0, 2, 0, 1, 0,
|
|
3, 0, 1, 0, 2, 0, 1, 0,
|
|
4, 0, 1, 0, 2, 0, 1, 0,
|
|
3, 0, 1, 0, 2, 0, 1, 0
|
|
};
|
|
|
|
|
|
int
|
|
high_bit[256] = {
|
|
-1, 0, 1, 1, 2, 2, 2, 2,
|
|
3, 3, 3, 3, 3, 3, 3, 3,
|
|
4, 4, 4, 4, 4, 4, 4, 4,
|
|
4, 4, 4, 4, 4, 4, 4, 4,
|
|
5, 5, 5, 5, 5, 5, 5, 5,
|
|
5, 5, 5, 5, 5, 5, 5, 5,
|
|
5, 5, 5, 5, 5, 5, 5, 5,
|
|
5, 5, 5, 5, 5, 5, 5, 5,
|
|
6, 6, 6, 6, 6, 6, 6, 6,
|
|
6, 6, 6, 6, 6, 6, 6, 6,
|
|
6, 6, 6, 6, 6, 6, 6, 6,
|
|
6, 6, 6, 6, 6, 6, 6, 6,
|
|
6, 6, 6, 6, 6, 6, 6, 6,
|
|
6, 6, 6, 6, 6, 6, 6, 6,
|
|
6, 6, 6, 6, 6, 6, 6, 6,
|
|
6, 6, 6, 6, 6, 6, 6, 6,
|
|
7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7
|
|
};
|
|
|
|
int
|
|
octet_get_weight(uint8_t octet) {
|
|
extern int octet_weight[256];
|
|
|
|
return octet_weight[octet];
|
|
}
|
|
|
|
unsigned char
|
|
v32_weight(v32_t a) {
|
|
unsigned int wt = 0;
|
|
|
|
wt += octet_weight[a.v8[0]]; /* note: endian-ness makes no difference */
|
|
wt += octet_weight[a.v8[1]];
|
|
wt += octet_weight[a.v8[2]];
|
|
wt += octet_weight[a.v8[3]];
|
|
|
|
return wt;
|
|
}
|
|
|
|
inline unsigned char
|
|
v32_distance(v32_t x, v32_t y) {
|
|
x.value ^= y.value;
|
|
return v32_weight(x);
|
|
}
|
|
|
|
unsigned int
|
|
v32_dot_product(v32_t a, v32_t b) {
|
|
a.value &= b.value;
|
|
return v32_weight(a) & 1;
|
|
}
|
|
|
|
/*
|
|
* _bit_string returns a NULL-terminated character string suitable for
|
|
* printing
|
|
*/
|
|
|
|
#define MAX_STRING_LENGTH 1024
|
|
|
|
static char bit_string[MAX_STRING_LENGTH];
|
|
|
|
char *
|
|
octet_bit_string(uint8_t x) {
|
|
int mask, index;
|
|
|
|
for (mask = 1, index = 0; mask < 256; mask <<= 1)
|
|
if ((x & mask) == 0)
|
|
bit_string[index++] = '0';
|
|
else
|
|
bit_string[index++] = '1';
|
|
|
|
bit_string[index++] = 0; /* NULL terminate string */
|
|
|
|
return bit_string;
|
|
}
|
|
|
|
char *
|
|
v16_bit_string(v16_t x) {
|
|
int i, mask, index;
|
|
|
|
for (i = index = 0; i < 2; i++) {
|
|
for (mask = 1; mask < 256; mask <<= 1)
|
|
if ((x.v8[i] & mask) == 0)
|
|
bit_string[index++] = '0';
|
|
else
|
|
bit_string[index++] = '1';
|
|
}
|
|
bit_string[index++] = 0; /* NULL terminate string */
|
|
return bit_string;
|
|
}
|
|
|
|
char *
|
|
v32_bit_string(v32_t x) {
|
|
int i, mask, index;
|
|
|
|
for (i = index = 0; i < 4; i++) {
|
|
for (mask = 128; mask > 0; mask >>= 1)
|
|
if ((x.v8[i] & mask) == 0)
|
|
bit_string[index++] = '0';
|
|
else
|
|
bit_string[index++] = '1';
|
|
}
|
|
bit_string[index++] = 0; /* NULL terminate string */
|
|
return bit_string;
|
|
}
|
|
|
|
char *
|
|
v64_bit_string(const v64_t *x) {
|
|
int i, mask, index;
|
|
|
|
for (i = index = 0; i < 8; i++) {
|
|
for (mask = 1; mask < 256; mask <<= 1)
|
|
if ((x->v8[i] & mask) == 0)
|
|
bit_string[index++] = '0';
|
|
else
|
|
bit_string[index++] = '1';
|
|
}
|
|
bit_string[index++] = 0; /* NULL terminate string */
|
|
return bit_string;
|
|
}
|
|
|
|
char *
|
|
v128_bit_string(v128_t *x) {
|
|
int j, index;
|
|
uint32_t mask;
|
|
|
|
for (j=index=0; j < 4; j++) {
|
|
for (mask=0x80000000; mask > 0; mask >>= 1) {
|
|
if (x->v32[j] & mask)
|
|
bit_string[index] = '1';
|
|
else
|
|
bit_string[index] = '0';
|
|
++index;
|
|
}
|
|
}
|
|
bit_string[128] = 0; /* null terminate string */
|
|
|
|
return bit_string;
|
|
}
|
|
|
|
uint8_t
|
|
nibble_to_hex_char(uint8_t nibble) {
|
|
char buf[16] = {'0', '1', '2', '3', '4', '5', '6', '7',
|
|
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
|
|
return buf[nibble & 0xF];
|
|
}
|
|
|
|
char *
|
|
octet_hex_string(uint8_t x) {
|
|
|
|
bit_string[0] = nibble_to_hex_char(x >> 4);
|
|
bit_string[1] = nibble_to_hex_char(x & 0xF);
|
|
|
|
bit_string[2] = 0; /* null terminate string */
|
|
return bit_string;
|
|
}
|
|
|
|
char *
|
|
octet_string_hex_string(const void *str, int length) {
|
|
const uint8_t *s = str;
|
|
int i;
|
|
|
|
/* double length, since one octet takes two hex characters */
|
|
length *= 2;
|
|
|
|
/* truncate string if it would be too long */
|
|
if (length > MAX_STRING_LENGTH)
|
|
length = MAX_STRING_LENGTH-1;
|
|
|
|
for (i=0; i < length; i+=2) {
|
|
bit_string[i] = nibble_to_hex_char(*s >> 4);
|
|
bit_string[i+1] = nibble_to_hex_char(*s++ & 0xF);
|
|
}
|
|
bit_string[i] = 0; /* null terminate string */
|
|
return bit_string;
|
|
}
|
|
|
|
char *
|
|
v16_hex_string(v16_t x) {
|
|
int i, j;
|
|
|
|
for (i=j=0; i < 2; i++) {
|
|
bit_string[j++] = nibble_to_hex_char(x.v8[i] >> 4);
|
|
bit_string[j++] = nibble_to_hex_char(x.v8[i] & 0xF);
|
|
}
|
|
|
|
bit_string[j] = 0; /* null terminate string */
|
|
return bit_string;
|
|
}
|
|
|
|
char *
|
|
v32_hex_string(v32_t x) {
|
|
int i, j;
|
|
|
|
for (i=j=0; i < 4; i++) {
|
|
bit_string[j++] = nibble_to_hex_char(x.v8[i] >> 4);
|
|
bit_string[j++] = nibble_to_hex_char(x.v8[i] & 0xF);
|
|
}
|
|
|
|
bit_string[j] = 0; /* null terminate string */
|
|
return bit_string;
|
|
}
|
|
|
|
char *
|
|
v64_hex_string(const v64_t *x) {
|
|
int i, j;
|
|
|
|
for (i=j=0; i < 8; i++) {
|
|
bit_string[j++] = nibble_to_hex_char(x->v8[i] >> 4);
|
|
bit_string[j++] = nibble_to_hex_char(x->v8[i] & 0xF);
|
|
}
|
|
|
|
bit_string[j] = 0; /* null terminate string */
|
|
return bit_string;
|
|
}
|
|
|
|
char *
|
|
v128_hex_string(v128_t *x) {
|
|
int i, j;
|
|
|
|
for (i=j=0; i < 16; i++) {
|
|
bit_string[j++] = nibble_to_hex_char(x->v8[i] >> 4);
|
|
bit_string[j++] = nibble_to_hex_char(x->v8[i] & 0xF);
|
|
}
|
|
|
|
bit_string[j] = 0; /* null terminate string */
|
|
return bit_string;
|
|
}
|
|
|
|
char *
|
|
char_to_hex_string(char *x, int num_char) {
|
|
int i, j;
|
|
|
|
if (num_char >= 16)
|
|
num_char = 16;
|
|
for (i=j=0; i < num_char; i++) {
|
|
bit_string[j++] = nibble_to_hex_char(x[i] >> 4);
|
|
bit_string[j++] = nibble_to_hex_char(x[i] & 0xF);
|
|
}
|
|
|
|
bit_string[j] = 0; /* null terminate string */
|
|
return bit_string;
|
|
}
|
|
|
|
int
|
|
hex_char_to_nibble(uint8_t c) {
|
|
switch(c) {
|
|
case ('0'): return 0x0;
|
|
case ('1'): return 0x1;
|
|
case ('2'): return 0x2;
|
|
case ('3'): return 0x3;
|
|
case ('4'): return 0x4;
|
|
case ('5'): return 0x5;
|
|
case ('6'): return 0x6;
|
|
case ('7'): return 0x7;
|
|
case ('8'): return 0x8;
|
|
case ('9'): return 0x9;
|
|
case ('a'): return 0xa;
|
|
case ('A'): return 0xa;
|
|
case ('b'): return 0xb;
|
|
case ('B'): return 0xb;
|
|
case ('c'): return 0xc;
|
|
case ('C'): return 0xc;
|
|
case ('d'): return 0xd;
|
|
case ('D'): return 0xd;
|
|
case ('e'): return 0xe;
|
|
case ('E'): return 0xe;
|
|
case ('f'): return 0xf;
|
|
case ('F'): return 0xf;
|
|
default: return -1; /* this flags an error */
|
|
}
|
|
/* NOTREACHED */
|
|
return -1; /* this keeps compilers from complaining */
|
|
}
|
|
|
|
int
|
|
is_hex_string(char *s) {
|
|
while(*s != 0)
|
|
if (hex_char_to_nibble(*s++) == -1)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
uint8_t
|
|
hex_string_to_octet(char *s) {
|
|
uint8_t x;
|
|
|
|
x = (hex_char_to_nibble(s[0]) << 4)
|
|
| hex_char_to_nibble(s[1] & 0xFF);
|
|
|
|
return x;
|
|
}
|
|
|
|
/*
|
|
* hex_string_to_octet_string converts a hexadecimal string
|
|
* of length 2 * len to a raw octet string of length len
|
|
*/
|
|
|
|
int
|
|
hex_string_to_octet_string(char *raw, char *hex, int len) {
|
|
uint8_t x;
|
|
int tmp;
|
|
int hex_len;
|
|
|
|
hex_len = 0;
|
|
while (hex_len < len) {
|
|
tmp = hex_char_to_nibble(hex[0]);
|
|
if (tmp == -1)
|
|
return hex_len;
|
|
x = (tmp << 4);
|
|
hex_len++;
|
|
tmp = hex_char_to_nibble(hex[1]);
|
|
if (tmp == -1)
|
|
return hex_len;
|
|
x |= (tmp & 0xff);
|
|
hex_len++;
|
|
*raw++ = x;
|
|
hex += 2;
|
|
}
|
|
return hex_len;
|
|
}
|
|
|
|
v16_t
|
|
hex_string_to_v16(char *s) {
|
|
v16_t x;
|
|
int i, j;
|
|
|
|
for (i=j=0; i < 4; i += 2, j++) {
|
|
x.v8[j] = (hex_char_to_nibble(s[i]) << 4)
|
|
| hex_char_to_nibble(s[i+1] & 0xFF);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
v32_t
|
|
hex_string_to_v32(char *s) {
|
|
v32_t x;
|
|
int i, j;
|
|
|
|
for (i=j=0; i < 8; i += 2, j++) {
|
|
x.v8[j] = (hex_char_to_nibble(s[i]) << 4)
|
|
| hex_char_to_nibble(s[i+1] & 0xFF);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
v64_t
|
|
hex_string_to_v64(char *s) {
|
|
v64_t x;
|
|
int i, j;
|
|
|
|
for (i=j=0; i < 16; i += 2, j++) {
|
|
x.v8[j] = (hex_char_to_nibble(s[i]) << 4)
|
|
| hex_char_to_nibble(s[i+1] & 0xFF);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
v128_t
|
|
hex_string_to_v128(char *s) {
|
|
v128_t x;
|
|
int i, j;
|
|
|
|
for (i=j=0; i < 32; i += 2, j++) {
|
|
x.v8[j] = (hex_char_to_nibble(s[i]) << 4)
|
|
| hex_char_to_nibble(s[i+1] & 0xFF);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* the matrix A[] is stored in column format, i.e., A[i] is the ith
|
|
* column of the matrix
|
|
*/
|
|
|
|
uint8_t
|
|
A_times_x_plus_b(uint8_t A[8], uint8_t x, uint8_t b) {
|
|
int index = 0;
|
|
unsigned mask;
|
|
|
|
for (mask=1; mask < 256; mask *= 2) {
|
|
if (x & mask)
|
|
b^= A[index];
|
|
++index;
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
inline void
|
|
v16_copy_octet_string(v16_t *x, const uint8_t s[2]) {
|
|
x->v8[0] = s[0];
|
|
x->v8[1] = s[1];
|
|
}
|
|
|
|
inline void
|
|
v32_copy_octet_string(v32_t *x, const uint8_t s[4]) {
|
|
x->v8[0] = s[0];
|
|
x->v8[1] = s[1];
|
|
x->v8[2] = s[2];
|
|
x->v8[3] = s[3];
|
|
}
|
|
|
|
inline void
|
|
v64_copy_octet_string(v64_t *x, const uint8_t s[8]) {
|
|
x->v8[0] = s[0];
|
|
x->v8[1] = s[1];
|
|
x->v8[2] = s[2];
|
|
x->v8[3] = s[3];
|
|
x->v8[4] = s[4];
|
|
x->v8[5] = s[5];
|
|
x->v8[6] = s[6];
|
|
x->v8[7] = s[7];
|
|
}
|
|
|
|
void
|
|
v128_copy_octet_string(v128_t *x, const uint8_t s[16]) {
|
|
x->v8[0] = s[0];
|
|
x->v8[1] = s[1];
|
|
x->v8[2] = s[2];
|
|
x->v8[3] = s[3];
|
|
x->v8[4] = s[4];
|
|
x->v8[5] = s[5];
|
|
x->v8[6] = s[6];
|
|
x->v8[7] = s[7];
|
|
x->v8[8] = s[8];
|
|
x->v8[9] = s[9];
|
|
x->v8[10] = s[10];
|
|
x->v8[11] = s[11];
|
|
x->v8[12] = s[12];
|
|
x->v8[13] = s[13];
|
|
x->v8[14] = s[14];
|
|
x->v8[15] = s[15];
|
|
|
|
}
|
|
|
|
#ifndef DATATYPES_USE_MACROS /* little functions are not macros */
|
|
|
|
void
|
|
v128_set_to_zero(v128_t *x) {
|
|
_v128_set_to_zero(x);
|
|
}
|
|
|
|
void
|
|
v128_copy(v128_t *x, const v128_t *y) {
|
|
_v128_copy(x, y);
|
|
}
|
|
|
|
void
|
|
v128_xor(v128_t *z, v128_t *x, v128_t *y) {
|
|
_v128_xor(z, x, y);
|
|
}
|
|
|
|
void
|
|
v128_and(v128_t *z, v128_t *x, v128_t *y) {
|
|
_v128_and(z, x, y);
|
|
}
|
|
|
|
void
|
|
v128_or(v128_t *z, v128_t *x, v128_t *y) {
|
|
_v128_or(z, x, y);
|
|
}
|
|
|
|
void
|
|
v128_complement(v128_t *x) {
|
|
_v128_complement(x);
|
|
}
|
|
|
|
int
|
|
v128_is_eq(const v128_t *x, const v128_t *y) {
|
|
return _v128_is_eq(x, y);
|
|
}
|
|
|
|
int
|
|
v128_get_bit(const v128_t *x, int i) {
|
|
return _v128_get_bit(x, i);
|
|
}
|
|
|
|
void
|
|
v128_set_bit(v128_t *x, int i) {
|
|
_v128_set_bit(x, i);
|
|
}
|
|
|
|
void
|
|
v128_clear_bit(v128_t *x, int i){
|
|
_v128_clear_bit(x, i);
|
|
}
|
|
|
|
void
|
|
v128_set_bit_to(v128_t *x, int i, int y){
|
|
_v128_set_bit_to(x, i, y);
|
|
}
|
|
|
|
|
|
#endif /* DATATYPES_USE_MACROS */
|
|
|
|
|
|
inline void
|
|
v128_left_shift2(v128_t *x, int num_bits) {
|
|
int i;
|
|
int word_shift = num_bits >> 5;
|
|
int bit_shift = num_bits & 31;
|
|
|
|
for (i=0; i < (4-word_shift); i++) {
|
|
x->v32[i] = x->v32[i+word_shift] << bit_shift;
|
|
}
|
|
|
|
for ( ; i < word_shift; i++) {
|
|
x->v32[i] = 0;
|
|
}
|
|
|
|
}
|
|
|
|
void
|
|
v128_right_shift(v128_t *x, int index) {
|
|
const int base_index = index >> 5;
|
|
const int bit_index = index & 31;
|
|
int i, from;
|
|
uint32_t b;
|
|
|
|
if (index > 127) {
|
|
v128_set_to_zero(x);
|
|
return;
|
|
}
|
|
|
|
if (bit_index == 0) {
|
|
|
|
/* copy each word from left size to right side */
|
|
x->v32[4-1] = x->v32[4-1-base_index];
|
|
for (i=4-1; i > base_index; i--)
|
|
x->v32[i-1] = x->v32[i-1-base_index];
|
|
|
|
} else {
|
|
|
|
/* set each word to the "or" of the two bit-shifted words */
|
|
for (i = 4; i > base_index; i--) {
|
|
from = i-1 - base_index;
|
|
b = x->v32[from] << bit_index;
|
|
if (from > 0)
|
|
b |= x->v32[from-1] >> (32-bit_index);
|
|
x->v32[i-1] = b;
|
|
}
|
|
|
|
}
|
|
|
|
/* now wrap up the final portion */
|
|
for (i=0; i < base_index; i++)
|
|
x->v32[i] = 0;
|
|
|
|
}
|
|
|
|
void
|
|
v128_left_shift(v128_t *x, int index) {
|
|
int i;
|
|
const int base_index = index >> 5;
|
|
const int bit_index = index & 31;
|
|
|
|
if (index > 127) {
|
|
v128_set_to_zero(x);
|
|
return;
|
|
}
|
|
|
|
if (bit_index == 0) {
|
|
for (i=0; i < 4 - base_index; i++)
|
|
x->v32[i] = x->v32[i+base_index];
|
|
} else {
|
|
for (i=0; i < 4 - base_index - 1; i++)
|
|
x->v32[i] = (x->v32[i+base_index] << bit_index) ^
|
|
(x->v32[i+base_index+1] >> (32 - bit_index));
|
|
x->v32[4 - base_index-1] = x->v32[4-1] << bit_index;
|
|
}
|
|
|
|
/* now wrap up the final portion */
|
|
for (i = 4 - base_index; i < 4; i++)
|
|
x->v32[i] = 0;
|
|
|
|
}
|
|
|
|
|
|
#if 0
|
|
void
|
|
v128_add(v128_t *z, v128_t *x, v128_t *y) {
|
|
/* integer addition modulo 2^128 */
|
|
|
|
#ifdef WORDS_BIGENDIAN
|
|
uint64_t tmp;
|
|
|
|
tmp = x->v32[3] + y->v32[3];
|
|
z->v32[3] = (uint32_t) tmp;
|
|
|
|
tmp = x->v32[2] + y->v32[2] + (tmp >> 32);
|
|
z->v32[2] = (uint32_t) tmp;
|
|
|
|
tmp = x->v32[1] + y->v32[1] + (tmp >> 32);
|
|
z->v32[1] = (uint32_t) tmp;
|
|
|
|
tmp = x->v32[0] + y->v32[0] + (tmp >> 32);
|
|
z->v32[0] = (uint32_t) tmp;
|
|
|
|
#else /* assume little endian architecture */
|
|
uint64_t tmp;
|
|
|
|
tmp = htonl(x->v32[3]) + htonl(y->v32[3]);
|
|
z->v32[3] = ntohl((uint32_t) tmp);
|
|
|
|
tmp = htonl(x->v32[2]) + htonl(y->v32[2]) + htonl(tmp >> 32);
|
|
z->v32[2] = ntohl((uint32_t) tmp);
|
|
|
|
tmp = htonl(x->v32[1]) + htonl(y->v32[1]) + htonl(tmp >> 32);
|
|
z->v32[1] = ntohl((uint32_t) tmp);
|
|
|
|
tmp = htonl(x->v32[0]) + htonl(y->v32[0]) + htonl(tmp >> 32);
|
|
z->v32[0] = ntohl((uint32_t) tmp);
|
|
|
|
#endif /* WORDS_BIGENDIAN */
|
|
|
|
}
|
|
#endif
|
|
|
|
int
|
|
octet_string_is_eq(uint8_t *a, uint8_t *b, int len) {
|
|
uint8_t *end = b + len;
|
|
while (b < end)
|
|
if (*a++ != *b++)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
octet_string_set_to_zero(uint8_t *s, int len) {
|
|
uint8_t *end = s + len;
|
|
|
|
do {
|
|
*s = 0;
|
|
} while (++s < end);
|
|
|
|
}
|
|
|
|
/* functions manipulating bit_vector_t */
|
|
|
|
#define BITVECTOR_MAX_WORDS 5
|
|
|
|
int
|
|
bitvector_alloc(bitvector_t *v, unsigned long length) {
|
|
unsigned long l = (length + bytes_per_word - 1) / bytes_per_word;
|
|
int i;
|
|
|
|
/* allocate memory, then set parameters */
|
|
if (l > BITVECTOR_MAX_WORDS)
|
|
return -1;
|
|
else
|
|
l = BITVECTOR_MAX_WORDS;
|
|
v->word = malloc(l);
|
|
if (v->word == NULL)
|
|
return -1;
|
|
v->length = length;
|
|
|
|
/* initialize bitvector to zero */
|
|
for (i=0; i < (length >> 5); i++) {
|
|
v->word = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
bitvector_set_bit(bitvector_t *v, int bit_index) {
|
|
|
|
v->word[(bit_index >> 5)] |= (1 << (bit_index & 31));
|
|
|
|
}
|
|
|
|
int
|
|
bitvector_get_bit(const bitvector_t *v, int bit_index) {
|
|
|
|
return ((v->word[(bit_index >> 5)]) >> (bit_index & 31)) & 1;
|
|
|
|
}
|
|
|
|
#include <stdio.h>
|
|
|
|
int
|
|
bitvector_print_hex(const bitvector_t *v, FILE *stream) {
|
|
int i;
|
|
int m = v->length >> 5;
|
|
int n = v->length & 31;
|
|
char string[9];
|
|
uint32_t tmp;
|
|
|
|
/* if length isn't a multiple of four, we can't hex_print */
|
|
if (n & 3)
|
|
return -1;
|
|
|
|
/* if the length is zero, do nothing */
|
|
if (v->length == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* loop over words from most significant to least significant -
|
|
*/
|
|
|
|
for (i=m; i > 0; i++) {
|
|
char *str = string + 7;
|
|
tmp = v->word[i];
|
|
|
|
/* null terminate string */
|
|
string[8] = 0;
|
|
|
|
/* loop over nibbles */
|
|
*str-- = nibble_to_hex_char(tmp & 0xf); tmp >>= 4;
|
|
*str-- = nibble_to_hex_char(tmp & 0xf); tmp >>= 4;
|
|
*str-- = nibble_to_hex_char(tmp & 0xf); tmp >>= 4;
|
|
*str-- = nibble_to_hex_char(tmp & 0xf); tmp >>= 4;
|
|
*str-- = nibble_to_hex_char(tmp & 0xf); tmp >>= 4;
|
|
*str-- = nibble_to_hex_char(tmp & 0xf); tmp >>= 4;
|
|
*str-- = nibble_to_hex_char(tmp & 0xf); tmp >>= 4;
|
|
*str-- = nibble_to_hex_char(tmp & 0xf);
|
|
|
|
/* now print stream */
|
|
fprintf(stream, string);
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
int
|
|
hex_string_length(char *s) {
|
|
int count = 0;
|
|
|
|
/* ignore leading zeros */
|
|
while ((*s != 0) && *s == '0')
|
|
s++;
|
|
|
|
/* count remaining characters */
|
|
while (*s != 0) {
|
|
if (hex_char_to_nibble(*s++) == -1)
|
|
return -1;
|
|
count++;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
int
|
|
bitvector_set_from_hex(bitvector_t *v, char *string) {
|
|
int num_hex_chars, m, n, i, j;
|
|
uint32_t tmp;
|
|
|
|
num_hex_chars = hex_string_length(string);
|
|
if (num_hex_chars == -1)
|
|
return -1;
|
|
|
|
/* set length */
|
|
v->length = num_hex_chars * 4;
|
|
/*
|
|
* at this point, we should subtract away a bit if the high
|
|
* bit of the first character is zero, but we ignore that
|
|
* for now and assume that we're four-bit aligned - DAM
|
|
*/
|
|
|
|
|
|
m = num_hex_chars / 8; /* number of words */
|
|
n = num_hex_chars % 8; /* number of nibbles in last word */
|
|
|
|
/* if the length is greater than the bitvector, return an error */
|
|
if (m > BITVECTOR_MAX_WORDS)
|
|
return -1;
|
|
|
|
/*
|
|
* loop over words from most significant - first word is a special
|
|
* case
|
|
*/
|
|
|
|
if (n) {
|
|
tmp = 0;
|
|
for (i=0; i < n; i++) {
|
|
tmp = hex_char_to_nibble(*string++);
|
|
tmp <<= 4;
|
|
}
|
|
v->word[m] = tmp;
|
|
}
|
|
|
|
/* now loop over the rest of the words */
|
|
for (i=m-1; i >= 0; i--) {
|
|
tmp = 0;
|
|
for (j=0; j < 8; j++) {
|
|
tmp = hex_char_to_nibble(*string++);
|
|
tmp <<= 4;
|
|
}
|
|
v->word[i] = tmp;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* functions below not yet tested! */
|
|
|
|
int
|
|
v32_low_bit(v32_t *w) {
|
|
int value;
|
|
|
|
value = low_bit[w->v8[0]];
|
|
if (value != -1)
|
|
return value;
|
|
value = low_bit[w->v8[1]];
|
|
if (value != -1)
|
|
return value + 8;
|
|
value = low_bit[w->v8[2]];
|
|
if (value != -1)
|
|
return value + 16;
|
|
value = low_bit[w->v8[3]];
|
|
if (value == -1)
|
|
return -1;
|
|
return value + 24;
|
|
}
|
|
|
|
/* high_bit not done yet */
|
|
|
|
|
|
|
|
|
|
|