469 lines
15 KiB
C
469 lines
15 KiB
C
/*
|
|
* SpanDSP - a series of DSP components for telephony
|
|
*
|
|
* super_tone_rx.c - Flexible telephony supervisory tone detection.
|
|
*
|
|
* Written by Steve Underwood <steveu@coppice.org>
|
|
*
|
|
* Copyright (C) 2003 Steve Underwood
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License version 2.1,
|
|
* as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
/*! \file */
|
|
|
|
#if defined(HAVE_CONFIG_H)
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <fcntl.h>
|
|
#include <ctype.h>
|
|
#include <time.h>
|
|
#include <inttypes.h>
|
|
#if defined(HAVE_TGMATH_H)
|
|
#include <tgmath.h>
|
|
#endif
|
|
#if defined(HAVE_MATH_H)
|
|
#include <math.h>
|
|
#endif
|
|
#include "floating_fudge.h"
|
|
|
|
#include "spandsp/telephony.h"
|
|
#include "spandsp/fast_convert.h"
|
|
#include "spandsp/complex.h"
|
|
#include "spandsp/vector_float.h"
|
|
#include "spandsp/complex_vector_float.h"
|
|
#include "spandsp/tone_detect.h"
|
|
#include "spandsp/tone_generate.h"
|
|
#include "spandsp/super_tone_rx.h"
|
|
|
|
#include "spandsp/private/super_tone_rx.h"
|
|
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
#define DETECTION_THRESHOLD 16439 /* -42dBm0 */
|
|
#define TONE_TWIST 4 /* 6dB */
|
|
#define TONE_TO_TOTAL_ENERGY 64 /* -3dB */
|
|
#else
|
|
#define DETECTION_THRESHOLD 269338317.0f /* -42dBm0 [((128.0*32768.0/1.4142)*10^((-42 - DBM0_MAX_SINE_POWER)/20.0))^2 => 269338317.0] */
|
|
#define TONE_TWIST 3.981f /* 6dB */
|
|
#define TONE_TO_TOTAL_ENERGY 1.995f /* 3dB */
|
|
#define DTMF_TO_TOTAL_ENERGY 64.152f /* -3dB [BINS*10^(-3/10.0)] */
|
|
#endif
|
|
|
|
static int add_super_tone_freq(super_tone_rx_descriptor_t *desc, int freq)
|
|
{
|
|
int i;
|
|
|
|
if (freq == 0)
|
|
return -1;
|
|
/* Look for an existing frequency */
|
|
for (i = 0; i < desc->used_frequencies; i++)
|
|
{
|
|
if (desc->pitches[i][0] == freq)
|
|
return desc->pitches[i][1];
|
|
}
|
|
/* Look for an existing tone which is very close. We may need to merge
|
|
the detectors. */
|
|
for (i = 0; i < desc->used_frequencies; i++)
|
|
{
|
|
if ((desc->pitches[i][0] - 10) <= freq && freq <= (desc->pitches[i][0] + 10))
|
|
{
|
|
/* Merge these two */
|
|
desc->pitches[desc->used_frequencies][0] = freq;
|
|
desc->pitches[desc->used_frequencies][1] = i;
|
|
make_goertzel_descriptor(&desc->desc[desc->pitches[i][1]], (float) (freq + desc->pitches[i][0])/2, BINS);
|
|
desc->used_frequencies++;
|
|
return desc->pitches[i][1];
|
|
}
|
|
}
|
|
desc->pitches[i][0] = freq;
|
|
desc->pitches[i][1] = desc->monitored_frequencies;
|
|
if (desc->monitored_frequencies%5 == 0)
|
|
{
|
|
desc->desc = (goertzel_descriptor_t *) realloc(desc->desc, (desc->monitored_frequencies + 5)*sizeof(goertzel_descriptor_t));
|
|
}
|
|
make_goertzel_descriptor(&desc->desc[desc->monitored_frequencies++], (float) freq, BINS);
|
|
desc->used_frequencies++;
|
|
return desc->pitches[i][1];
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(int) super_tone_rx_add_tone(super_tone_rx_descriptor_t *desc)
|
|
{
|
|
if (desc->tones%5 == 0)
|
|
{
|
|
desc->tone_list = (super_tone_rx_segment_t **) realloc(desc->tone_list, (desc->tones + 5)*sizeof(super_tone_rx_segment_t *));
|
|
desc->tone_segs = (int *) realloc(desc->tone_segs, (desc->tones + 5)*sizeof(int));
|
|
}
|
|
desc->tone_list[desc->tones] = NULL;
|
|
desc->tone_segs[desc->tones] = 0;
|
|
desc->tones++;
|
|
return desc->tones - 1;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(int) super_tone_rx_add_element(super_tone_rx_descriptor_t *desc,
|
|
int tone,
|
|
int f1,
|
|
int f2,
|
|
int min,
|
|
int max)
|
|
{
|
|
int step;
|
|
|
|
step = desc->tone_segs[tone];
|
|
if (step%5 == 0)
|
|
{
|
|
desc->tone_list[tone] = (super_tone_rx_segment_t *) realloc(desc->tone_list[tone], (step + 5)*sizeof(super_tone_rx_segment_t));
|
|
}
|
|
desc->tone_list[tone][step].f1 = add_super_tone_freq(desc, f1);
|
|
desc->tone_list[tone][step].f2 = add_super_tone_freq(desc, f2);
|
|
desc->tone_list[tone][step].min_duration = min*8;
|
|
desc->tone_list[tone][step].max_duration = (max == 0) ? 0x7FFFFFFF : max*8;
|
|
desc->tone_segs[tone]++;
|
|
return step;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
static int test_cadence(super_tone_rx_segment_t *pattern,
|
|
int steps,
|
|
super_tone_rx_segment_t *test,
|
|
int rotation)
|
|
{
|
|
int i;
|
|
int j;
|
|
|
|
if (rotation >= 0)
|
|
{
|
|
/* Check only for the sustaining of a tone in progress. This means
|
|
we only need to check each block if the latest step is compatible
|
|
with the tone template. */
|
|
if (steps < 0)
|
|
{
|
|
/* A -ve value for steps indicates we just changed step, and need to
|
|
check the last one ended within spec. If we don't do this
|
|
extra test a low duration segment might be accepted as OK. */
|
|
steps = -steps;
|
|
j = (rotation + steps - 2)%steps;
|
|
if (pattern[j].f1 != test[8].f1 || pattern[j].f2 != test[8].f2)
|
|
return 0;
|
|
if (pattern[j].min_duration > test[8].min_duration*BINS
|
|
||
|
|
pattern[j].max_duration < test[8].min_duration*BINS)
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
j = (rotation + steps - 1)%steps;
|
|
if (pattern[j].f1 != test[9].f1 || pattern[j].f2 != test[9].f2)
|
|
return 0;
|
|
if (pattern[j].max_duration < test[9].min_duration*BINS)
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
/* Look for a complete template match. */
|
|
for (i = 0; i < steps; i++)
|
|
{
|
|
j = i + 10 - steps;
|
|
if (pattern[i].f1 != test[j].f1 || pattern[i].f2 != test[j].f2)
|
|
return 0;
|
|
if (pattern[i].min_duration > test[j].min_duration*BINS
|
|
||
|
|
pattern[i].max_duration < test[j].min_duration*BINS)
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(super_tone_rx_descriptor_t *) super_tone_rx_make_descriptor(super_tone_rx_descriptor_t *desc)
|
|
{
|
|
if (desc == NULL)
|
|
{
|
|
if ((desc = (super_tone_rx_descriptor_t *) malloc(sizeof(*desc))) == NULL)
|
|
return NULL;
|
|
}
|
|
desc->tone_list = NULL;
|
|
desc->tone_segs = NULL;
|
|
|
|
desc->used_frequencies = 0;
|
|
desc->monitored_frequencies = 0;
|
|
desc->desc = NULL;
|
|
desc->tones = 0;
|
|
return desc;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(int) super_tone_rx_free_descriptor(super_tone_rx_descriptor_t *desc)
|
|
{
|
|
int i;
|
|
|
|
if (desc)
|
|
{
|
|
for (i = 0; i < desc->tones; i++)
|
|
{
|
|
if (desc->tone_list[i])
|
|
free(desc->tone_list[i]);
|
|
}
|
|
if (desc->tone_list)
|
|
free(desc->tone_list);
|
|
if (desc->tone_segs)
|
|
free(desc->tone_segs);
|
|
if (desc->desc)
|
|
free(desc->desc);
|
|
free(desc);
|
|
}
|
|
return 0;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(void) super_tone_rx_segment_callback(super_tone_rx_state_t *s,
|
|
void (*callback)(void *data, int f1, int f2, int duration))
|
|
{
|
|
s->segment_callback = callback;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(super_tone_rx_state_t *) super_tone_rx_init(super_tone_rx_state_t *s,
|
|
super_tone_rx_descriptor_t *desc,
|
|
tone_report_func_t callback,
|
|
void *user_data)
|
|
{
|
|
int i;
|
|
|
|
if (desc == NULL)
|
|
return NULL;
|
|
if (callback == NULL)
|
|
return NULL;
|
|
if (s == NULL)
|
|
{
|
|
if ((s = (super_tone_rx_state_t *) malloc(sizeof(*s) + desc->monitored_frequencies*sizeof(goertzel_state_t))) == NULL)
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; i < 11; i++)
|
|
{
|
|
s->segments[i].f1 = -1;
|
|
s->segments[i].f2 = -1;
|
|
s->segments[i].min_duration = 0;
|
|
}
|
|
s->segment_callback = NULL;
|
|
s->tone_callback = callback;
|
|
s->callback_data = user_data;
|
|
if (desc)
|
|
s->desc = desc;
|
|
s->detected_tone = -1;
|
|
s->energy = 0.0f;
|
|
for (i = 0; i < desc->monitored_frequencies; i++)
|
|
goertzel_init(&s->state[i], &s->desc->desc[i]);
|
|
return s;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(int) super_tone_rx_release(super_tone_rx_state_t *s)
|
|
{
|
|
return 0;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(int) super_tone_rx_free(super_tone_rx_state_t *s)
|
|
{
|
|
if (s)
|
|
free(s);
|
|
return 0;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
static void super_tone_chunk(super_tone_rx_state_t *s)
|
|
{
|
|
int i;
|
|
int j;
|
|
int k1;
|
|
int k2;
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
int32_t res[BINS/2];
|
|
#else
|
|
float res[BINS/2];
|
|
#endif
|
|
|
|
for (i = 0; i < s->desc->monitored_frequencies; i++)
|
|
res[i] = goertzel_result(&s->state[i]);
|
|
/* Find our two best monitored frequencies, which also have adequate energy. */
|
|
if (s->energy < DETECTION_THRESHOLD)
|
|
{
|
|
k1 = -1;
|
|
k2 = -1;
|
|
}
|
|
else
|
|
{
|
|
if (res[0] > res[1])
|
|
{
|
|
k1 = 0;
|
|
k2 = 1;
|
|
}
|
|
else
|
|
{
|
|
k1 = 1;
|
|
k2 = 0;
|
|
}
|
|
for (j = 2; j < s->desc->monitored_frequencies; j++)
|
|
{
|
|
if (res[j] >= res[k1])
|
|
{
|
|
k2 = k1;
|
|
k1 = j;
|
|
}
|
|
else if (res[j] >= res[k2])
|
|
{
|
|
k2 = j;
|
|
}
|
|
}
|
|
if ((res[k1] + res[k2]) < TONE_TO_TOTAL_ENERGY*s->energy)
|
|
{
|
|
k1 = -1;
|
|
k2 = -1;
|
|
}
|
|
else if (res[k1] > TONE_TWIST*res[k2])
|
|
{
|
|
k2 = -1;
|
|
}
|
|
else if (k2 < k1)
|
|
{
|
|
j = k1;
|
|
k1 = k2;
|
|
k2 = j;
|
|
}
|
|
}
|
|
/* See if this differs from last time. */
|
|
if (k1 != s->segments[10].f1 || k2 != s->segments[10].f2)
|
|
{
|
|
/* It is different, but this might just be a transitional quirk, or
|
|
a one shot hiccup (eg due to noise). Only if this same thing is
|
|
seen a second time should we change state. */
|
|
s->segments[10].f1 = k1;
|
|
s->segments[10].f2 = k2;
|
|
/* While things are hopping around, consider this a continuance of the
|
|
previous state. */
|
|
s->segments[9].min_duration++;
|
|
}
|
|
else
|
|
{
|
|
if (k1 != s->segments[9].f1 || k2 != s->segments[9].f2)
|
|
{
|
|
if (s->detected_tone >= 0)
|
|
{
|
|
/* Test for the continuance of the existing tone pattern, based on our new knowledge of an
|
|
entire segment length. */
|
|
if (!test_cadence(s->desc->tone_list[s->detected_tone], -s->desc->tone_segs[s->detected_tone], s->segments, s->rotation++))
|
|
{
|
|
s->detected_tone = -1;
|
|
s->tone_callback(s->callback_data, s->detected_tone, -10, 0);
|
|
}
|
|
}
|
|
if (s->segment_callback)
|
|
{
|
|
s->segment_callback(s->callback_data,
|
|
s->segments[9].f1,
|
|
s->segments[9].f2,
|
|
s->segments[9].min_duration*BINS/8);
|
|
}
|
|
memcpy (&s->segments[0], &s->segments[1], 9*sizeof(s->segments[0]));
|
|
s->segments[9].f1 = k1;
|
|
s->segments[9].f2 = k2;
|
|
s->segments[9].min_duration = 1;
|
|
}
|
|
else
|
|
{
|
|
/* This is a continuance of the previous state */
|
|
if (s->detected_tone >= 0)
|
|
{
|
|
/* Test for the continuance of the existing tone pattern. We must do this here, so we can sense the
|
|
discontinuance of the tone on an excessively long segment. */
|
|
if (!test_cadence(s->desc->tone_list[s->detected_tone], s->desc->tone_segs[s->detected_tone], s->segments, s->rotation))
|
|
{
|
|
s->detected_tone = -1;
|
|
s->tone_callback(s->callback_data, s->detected_tone, -10, 0);
|
|
}
|
|
}
|
|
s->segments[9].min_duration++;
|
|
}
|
|
}
|
|
if (s->detected_tone < 0)
|
|
{
|
|
/* Test for the start of any of the monitored tone patterns */
|
|
for (j = 0; j < s->desc->tones; j++)
|
|
{
|
|
if (test_cadence(s->desc->tone_list[j], s->desc->tone_segs[j], s->segments, -1))
|
|
{
|
|
s->detected_tone = j;
|
|
s->rotation = 0;
|
|
s->tone_callback(s->callback_data, s->detected_tone, -10, 0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
s->energy = 0;
|
|
#else
|
|
s->energy = 0.0f;
|
|
#endif
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
|
|
SPAN_DECLARE(int) super_tone_rx(super_tone_rx_state_t *s, const int16_t amp[], int samples)
|
|
{
|
|
int i;
|
|
int x;
|
|
int sample;
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
int16_t xamp;
|
|
#else
|
|
float xamp;
|
|
#endif
|
|
|
|
x = 0;
|
|
for (sample = 0; sample < samples; sample += x)
|
|
{
|
|
for (i = 0; i < s->desc->monitored_frequencies; i++)
|
|
x = goertzel_update(&s->state[i], amp + sample, samples - sample);
|
|
for (i = 0; i < x; i++)
|
|
{
|
|
xamp = goertzel_preadjust_amp(amp[sample + i]);
|
|
#if defined(SPANDSP_USE_FIXED_POINT)
|
|
s->energy += ((int32_t) xamp*xamp);
|
|
#else
|
|
s->energy += xamp*xamp;
|
|
#endif
|
|
}
|
|
if (s->state[0].current_sample >= BINS)
|
|
{
|
|
/* We have finished a Goertzel block. */
|
|
super_tone_chunk(s);
|
|
s->energy = 0;
|
|
}
|
|
}
|
|
return samples;
|
|
}
|
|
/*- End of function --------------------------------------------------------*/
|
|
/*- End of file ------------------------------------------------------------*/
|